首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
3.
4.
5.
Malignant gliomas are locally aggressive, highly vascular tumors that have a dismal prognosis, and present therapies provide little improvement in the disease course and outcome. Many types of malignancies, including glioblastoma, originate from a population of cancer stem cells (CSCs) that are able to initiate and maintain tumors. Although CSCs only represent a small fraction of cells within a tumor, their high tumor-initiating capacity and therapeutic resistance drives tumorigenesis. Therefore, it is imperative to identify pathways associated with CSCs to devise strategies to selectively target them. In this study, we describe a novel relationship between glioblastoma CSCs and the Notch pathway, which involves the constitutive activation of STAT3 and NF-κB signaling. Glioma CSCs were isolated and maintained in vitro using an adherent culture system, and the biological properties were compared with the traditional cultures of CSCs grown as multicellular spheres under nonadherent culture conditions. Interestingly, both adherent and spheroid glioma CSCs show constitutive activation of the STAT3/NF-κB signaling pathway and up-regulation of STAT3- and NF-κB-dependent genes. Gene expression profiling also identified components of the Notch pathway as being deregulated in glioma CSCs, and the deregulated expression of these genes was sensitive to treatment with STAT3 and NF-κB inhibitors. This finding is particularly important because Notch signaling appears to play a key role in CSCs in a variety of cancers and controls cell fate determination, survival, proliferation, and the maintenance of stem cells. The constitutive activation of STAT3 and NF-κB signaling pathways that leads to the regulation of Notch pathway genes in glioma CSCs identifies novel therapeutic targets for the treatment of glioma.  相似文献   

6.
BackgroundA-kinase interacting protein 1 (AKIP1) is recently implicated in the pathogenesis of several solid tumors, while its role in glioblastoma multiforme (GBM) is largely unknown. Therefore, the current study aimed to investigate the effect of AKIP1 on GBM cell malignant behaviors, stemness, and its underlying molecular mechanisms.MethodsU-87 MG and A172 cells were transfected with control or AKIP1 overexpression plasmid; control or AKIP1 siRNA plasmid. Then cell proliferation, apoptosis, invasion, CD133+ cell proportion, and sphere formation assays were performed. Furthermore, RNA-Seq was performed in U-87 MG cells. Besides, AKIP1 expression was detected in 25 GBM and 25 low-grade glioma (LGG) tumor samples.ResultsAKIP1 was increased in several GBM cell lines compared to the control cell line. After transfections, it was found that AKIP1 overexpression increased cell invasion, CD133+ cell proportion, and sphere formation ability while less affecting cell proliferation or cell apoptosis in U-87 MG and A172 cells. Moreover, AKIP1 siRNA achieved the opposite effect in these cells, except that it inhibited cell proliferation but induced cell apoptosis to some extent. Subsequent RNA-Seq assay showed several critical carcinogenetic pathways, such as PI3K/AKT, Notch, EGFR tyrosine kinase inhibitor resistance, Ras, ErbB, mTOR pathways, etc. were potentially related to the function of AKIP1 in U-87 MG cells. Clinically, AKIP1 expression was higher in GBM tissues than in LGG tissues, which was also correlated with the poor prognosis of GBM to some degree.ConclusionsAKIP1 regulates the malignant behaviors and stemness of GBM via regulating multiple carcinogenetic pathways.  相似文献   

7.
Li  Qi  Wang  Jia  Ma  Xudong  Wang  Maode  Zhou  Lei 《Journal of bioenergetics and biomembranes》2021,53(5):621-632

Dysregulation of protein O-fucosyl transferase 1 (POFUT1) contributes to the occurrence and progression of multiple cancers. However, whether POFUT1 has a relationship with the pathogenesis of glioblastoma (GBM) is unknown. This work was aimed at evaluating the detailed relevance of POFUT1 in GBM. Here, we demonstrated high levels of POFUT1 in GBM tissue and elucidated that GBM patients with high levels of POFUT1 had a shorter survival rate than those with low levels of POFUT1. POFUT1 knockdown in GBM cells markedly downregulated the ability to proliferate and invade, while overexpression of POFUT1 potentiated the proliferative and invasive ability of GBM cells. Further mechanistic studies indicated that silencing POFUT1 prohibited the activation of Notch signaling, leading to a reduction in the expression of HES1 and HEY1. On the contrary, overexpression of POFUT1 enhanced the activation of Notch signaling. Notably, inhibition of Notch signaling markedly reversed POFUT1-overexpression-induced tumor promotion effects in GBM cells. In addition, POFUT1 silencing markedly repressed the potential of GBM cells to form tumors in vivo. In conclusion, the data of this work indicates that POFUT1 serves a tumor promotion role in GBM by enhancing the activation of Notch signaling. This study underlines the potential role of the POFUT1/Notch axis in GBM progression and proposes POFUT1 as a promising anticancer target for GBM.

  相似文献   

8.
The prognosis for patients with malignant gliomas is poor, but improvements may emerge from a better understanding of the pathophysiology of glioma signalling. Recent therapeutic developments have implicated lipid signalling in glioma cell death. Stress signalling in glioma cell death involves mitochondria and endoplasmic reticulum. Lipid mediators also signal via extrinsic pathways in glioma cell proliferation, migration and interaction with endothelial and microglial cells. Glioma cell death and tumour regression have been reported using polyunsaturated fatty acids in animal models, human ex vivo explants, glioma cell preparations and in clinical case reports involving intratumoral infusion. Cell death signalling was associated with generation of reactive oxygen intermediates and mitochondrial and other signalling pathways. In this review, evidence for mitochondrial responses to stress signals, including polyunsaturated fatty acids, peroxidising agents and calcium is presented. Additionally, evidence for interaction of glioma cells with primary brain endothelial cells is described, modulating human glioma peroxidative signalling. Glioma responses to potential therapeutic agents should be analysed in systems reflecting tumour connectivity and CNS structural and functional integrity. Future insights may also be derived from studies of signalling in glioma-derived tumour stem cells.  相似文献   

9.
Glioblastoma multiforme (GBM) is the most common malignant tumour in the adult brain and hard to treat. Nuclear factor κB (NF‐κB) signalling has a crucial role in the tumorigenesis of GBM. EGFR signalling is an important driver of NF‐κB activation in GBM; however, the correlation between EGFR and the NF‐κB pathway remains unclear. In this study, we investigated the role of mucosa‐associated lymphoma antigen 1 (MALT1) in glioma progression and evaluated the anti‐tumour activity and effectiveness of MI‐2, a MALT1 inhibitor in a pre‐clinical GBM model. We identified a paracaspase MALT1 that is involved in EGFR‐induced NF‐kB activation in GBM. MALT1 deficiency or inhibition significantly affected the proliferation, survival, migration and invasion of GBM cells both in vitro and in vivo. Moreover, MALT1 inhibition caused G1 cell cycle arrest by regulating multiple cell cycle–associated proteins. Mechanistically, MALTI inhibition blocks the degradation of IκBα and prevents the nuclear accumulation of the NF‐κB p65 subunit in GBM cells. This study found that MALT1, a key signal transduction cascade, can mediate EGFR‐induced NF‐kB activation in GBM and may be potentially used as a novel therapeutic target for GBM.  相似文献   

10.
Glioblastoma multiforme (GBM) is an aggressive malignant brain tumour that is resistant to existing therapeutics. Identifying signalling pathways deregulated in GBM that can be targeted therapeutically is critical to improve the present dismal prognosis for GBM patients. In this report, we have identified that the BRG1 (Brahma-Related Gene-1) catalytic subunit of the SWI/SNF chromatin remodelling complex promotes the malignant phenotype of GBM cells. We found that BRG1 is ubiquitously expressed in tumour tissue from GBM patients, and high BRG1 expression levels are localized to specific brain tumour regions. Knockout (KO) of BRG1 by CRISPR-Cas9 gene editing had minimal effects on GBM cell proliferation, but significantly inhibited GBM cell migration and invasion. BRG1-KO also sensitized GBM cells to the anti-proliferative effects of the anti-cancer agent temozolomide (TMZ), which is used to treat GBM patients in the clinic, and selectively altered STAT3 tyrosine phosphorylation and gene expression. These results demonstrate that BRG-1 promotes invasion and migration, and decreases chemotherapy sensitivity, indicating that it functions in an oncogenic manner in GBM cells. Taken together, our findings suggest that targeting BRG1 in GBM may have therapeutic benefit in the treatment of this deadly form of brain cancer.  相似文献   

11.
12.
13.
Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults, with a median survival of ~12-18 months post-diagnosis. GBM usually recurs within 12 months post-resection, with poor prognosis. Thus, novel therapeutic strategies to target and kill GBM cells are urgently needed. The marked difference of tumour cells with respect to normal brain cells renders glioblastoma a good candidate for selective targeted therapies. Recent experimental strategies focus on over expressed cell surface receptors. Targeted toxins represent a new class of selective molecules composed by a potent protein toxin and a carrier ligand. Targeted toxins approaches against glioblastoma were under investigation in phase I and II clinical trials with several immunotoxins (IT)/ligand toxins such as IL4-Pseudomonas aeruginosa exotoxin A (IL4-PE, NBI-3001), tumour growth factor fused to PE38, a shorter PE variant, (TGF)alpha-TP-38, IL13-PE38, and a transferrin-C diphtheriae toxin mutant (Tf-CRM107). In this work, we studied the effects of the plant ribosome-inactivating saporin and of its chimera transferrin-saporin against two different GBM cell lines. The data obtained here indicate that cell proliferation is affected by the toxin treatments but that different mechanisms are used, directly linked to the presence of an active or inactive p53. A model is proposed for these alternative intracellular pathways.  相似文献   

14.
15.
16.
Long noncoding RNA (lncRNA) AGAP2 antisense RNA 1 (AGAP2-AS1) has been suggested to function as an oncogenic lncRNA in lung cancer, breast cancer, and anaplastic glioma. However, the expression pattern and molecular mechanism of AGAP2-AS1 in glioblastoma multiforme (GBM) remains unknown. The purpose of this study is to present more evidence about the clinical and biological function of AGAP2-AS1 in GBM. In our results, we found AGAP2-AS1 expression was increased in GBM compared with adjacent normal brain tissues or low-grade glioma tissues, and there was no significantly different between low-grade glioma tissues and normal tissues. Kaplan-Meier survival analysis indicated patients with GBM having high-expression of AGAP2-AS1 had shorter overall survival time than those with low expression of AGAP2-AS1. The loss-of-function studies showed that downregulation of AGAP2-AS1 depressed cell proliferation, migration, and invasion, and promoted cell apoptosis in GBM. In summary, AGAP2-AS1 is a prognostic biomarker for patients with GBM, and functions as an oncogenic lncRNA to modulate GBM cell proliferation, apoptosis, migration, and invasion, which suggests that AGAP2-AS1 is potential therapeutic target for GBM.  相似文献   

17.
Despite advances in surgery, imaging, chemotherapy, and radiation, patients with glioblastoma multiforme (GBM), the most common histological subtype of glioma, have an especially dismal prognosis; >70% of GBM patients die within 2 years of diagnosis. In many human cancers, the microRNA miR-21 is overexpressed, and accumulating evidence indicates that it functions as an oncogene. Here, we report that miR-21 is overexpressed in human GBM cell lines and tumor tissue. Moreover, miR-21 expression in GBM patient samples is inversely correlated with patient survival. Knockdown of miR-21 in GBM cells inhibited cell proliferation in vitro and markedly inhibited tumor formation in vivo. A number of known miR-21 targets have been identified previously. By microarray analysis, we identified and validated insulin-like growth factor (IGF)-binding protein-3 (IGFBP3) as a novel miR-21 target gene. Overexpression of IGFBP3 in glioma cells inhibited cell proliferation in vitro and inhibited tumor formation of glioma xenografts in vivo. The critical role that IGFBP3 plays in miR-21-mediated actions was demonstrated by a rescue experiment, in which IGFBP3 knockdown in miR-21KD glioblastoma cells restored tumorigenesis. Examination of tumors from GBM patients showed that there was an inverse relationship between IGFBP3 and miR-21 expression and that increased IGFBP3 expression correlated with better patient survival. Our results identify IGFBP3 as a novel miR-21 target gene in glioblastoma and suggest that the oncogenic miRNA miR-21 down-regulates the expression of IGFBP3, which acts as a tumor suppressor in human glioblastoma.  相似文献   

18.
19.
20.
Glioblastoma multiforme (GBM) exhibits the most malignant brain tumor with very poor prognosis. MicroRNAs (miRNAs) are regulatory factors that can downregulate the expression of multiple genes. Several miRNAs acting as tumor-suppressor genes have been identified so far. The delivery of miRNA by mesenchymal stem cell (MSC) due to their ability to specifically target tumors is a new, hopeful therapeutic approach for glioblastoma. The objective of our study is the investigation of the effect of lentivirus-mediated microRNA-4731 (miR-4731) genetic manipulated adipose-derived (AD)-MSC on GBM. The downregulation of miR-4731 in human GBM tumor was detected using the GEO dataset. To evaluate the function of miR-4731, we overexpressed miR-4731 using lentiviral vectors in U-87 and U-251 GBM cell lines. The effects of miR-4731 on cell proliferation and cell cycle of glioma cells were analyzed by wound test and flow-cytometry assay. miR-4731 inhibited the proliferation of GBM cancer cells. Coculturing was used to study the antiproliferative effect of miR-4731-AD-MSCs on GBM cell lines. Direct and indirect coculture of GBM cell lines with miR-4731-AD-MSCs induced cell cycle arrest and apoptosis. Our findings suggest that AD-MSCs expressing miR-4731 have favorable antitumor characteristics and should be further explored in future glioma therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号