首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant host-derived proline is proposed to serve as an energy source for rhizobia in the rhizosphere and in symbiotic root nodules. The Bradyrhizobium japonicum proC gene was isolated, and a proC mutant strain that behaved as a strict proline auxotroph in culture was constructed. The proC strain elicited undeveloped nodules on soybeans that lacked nitrogen fixation activity and plant hemoglobin. We conclude that the proC gene is essential for symbiosis and suggest that the mutant does not obtain an exogenous supply of proline in association with soybeans sufficient to satisfy its auxotrophy.  相似文献   

2.
Canthaxanthin (4,4(prm1)-diketo-(beta)-carotene) is produced as the major carotenoid pigment by orange- and dark-pink-pigmented bacteriochlorophyll-containing Bradyrhizobium strains isolated from stem nodules of Aeschynomene species. These two new pigmentation groups differ from the well-studied strain BTAi1, which accumulates spirilloxanthin as the sole carotenoid.  相似文献   

3.
4.
Nearly complete and short partial 16S rRNA sequences were derived from PCR-amplified ribosomal DNAs of Bradyrhizobium japonicum USDA 136 and USDA 110 and five strains of bacteriochlorophyll-synthesizing bacteria isolated from stem nodules of Aeschynomene indica and other Aeschynomene species growing in different geographic regions, including India, The Philippines and North America. We confirmed that the five stem-nodulating strains examined synthesize bacteriochlorophyll a, and the absorption spectra of methanol-extracted cells contained a major absorbance peak at 770 nm. Strains isolated on different continents and from different Aeschynomene species were found to be phylogenetically homogeneous and exhibited levels of sequence similarity of more than 99%. The bacteriochlorophyll-synthesizing rhizobia, Bradyrhizobium japonicum, Blastobacter denitrificans, Afipia felis, and Rhodopseudomonas palustris exhibited levels of sequence similarity of 97% or greater and belong to a distinct line of descent within the alpha-2 subdivision of the Proteobacteria. Variable regions between positions 995 and 1045 provide potential target sites for design of a probe that is able to distinguish the photosynthetic rhizobia from closely related taxa.  相似文献   

5.
Blastobacter spp. are freshwater bacteria that form rosette structures by cellular attachment to a common base. Comparative analyses of ribosomal 16S rRNA gene and internally transcribed spacer region sequences indicated that B. denitrificans is a member of the α-subdivision of Proteobacteria. Among the α-Proteobacteria, B. denitrificans was related to a cluster of genera, including Rhodopseudomonas palustris, Afipia felis, Nitrobacter hamburgensis, and Bradyrhizobium spp. Although the precise phylogenetic relationships among these genera could not be established with a high degree of confidence, the sequences of B. denitrificans and several bradyrhizobial isolates from nodules of Aeschynomene indica were almost identical. Bradyrhizobia are bacteria that form nitrogen-fixing symbioses with legumes, including soybeans (Glycine max) and members of the genus Aeschynomene. From symbiotic infectiveness tests we demonstrated that the type strain for B. denitrificans, IFAM 1005, was capable of forming an effective nitrogen-fixing symbiosis with A. indica. Not only do these results reveal a previously unknown ecological adaptation of a relatively obscure aquatic bacterium, but they also demonstrate how evidence gathered from molecular systematic analyses can sometimes provide clues for predicting ecological behavior.  相似文献   

6.
The diversity of bacteria nodulating Aeschynomene americana L. in Thailand was determined from phenotypic characteristics and multilocus sequence analysis of the 16S rRNA gene and 3 housekeeping genes (dnaK, recA, and glnB). The isolated strains were nonphotosynthetic bacteria and were assigned to the genus Bradyrhizobium, in which B. yuanmingense was the dominant species. Some of the other species, including B. japonicum, B. liaoningense, and B. canariense, were minor species. These isolated strains were divided into 2 groups-nod-containing and divergent nod-containing strains-based on Southern blot hybridization and PCR amplification of nodABC genes. The divergent nod genes could not be PCR amplified and failed to hybridize nod gene probes designed from B. japonicum USDA110, but hybridized to probes from other bradyrhizobial strains under low-stringency conditions. The grouping based on sequence similarity of nod genes was well correlated with the grouping based on that of nifH gene, in which the nod-containing and divergent nod-containing strains were obviously distinguished. The divergent nod-containing strains and photosynthetic bradyrhizobia shared close nifH sequence similarity and an ability to fix nitrogen in the free-living state. Surprisingly, the strains isolated from A. americana could nodulate Aeschynomene plants that belong to different cross-inoculation (CI) groups, including A. afraspera and A. indica. This is the first discovery of bradyrhizobia (nonphotosynthetic and nod-containing strain) originating from CI group 1 nodulating roots of A. indica (CI group 3). An infection process used to establish symbiosis on Aeschynomene different from the classical one is proposed.  相似文献   

7.
In mammalian cells, the ‘Golgi reassembly and stacking protein’ (GRASP) family has been implicated in Golgi stacking, but the broader functions of GRASP proteins are still unclear. The yeast Saccharomyces cerevisiae contains a single non‐essential GRASP homolog called Grh1. However, Golgi cisternae in S. cerevisiae are not organized into stacks, so a possible structural role for Grh1 has been difficult to test. Here, we examined the localization and function of Grh1 in S. cerevisiae and in the related yeast Pichia pastoris, which has stacked Golgi cisternae. In agreement with earlier studies indicating that Grh1 interacts with coat protein II (COPII) vesicle coat proteins, we find that Grh1 colocalizes with COPII at transitional endoplasmic reticulum (tER) sites in both yeasts. Deletion of P. pastoris Grh1 had no obvious effect on the structure of tER–Golgi units. To test the role of S. cerevisiae Grh1, we exploited the observation that inhibiting ER export in S. cerevisiae generates enlarged tER sites that are often associated with the cis Golgi. This tER–Golgi association was preserved in the absence of Grh1. The combined data suggest that Grh1 acts early in the secretory pathway, but is dispensable for the organization of secretory compartments.  相似文献   

8.
Lymphodepletion is currently used to enhance the efficacy of cytotoxic T lymphocyte adoptive transfer immunotherapy against cancer. This beneficial effect of conditioning regimens is due, at least in part, to promoting the breakdown of peripheral CD8+ T cell tolerance. Lymphodepletion by total body irradiation induces systemic translocation of commensal bacteria LPS from the gastrointestinal tract. Since LPS is a potent activator of the innate immune system, including antigen presenting dendritic cells, we hypothesized that LPS translocation could be required for the breakdown of peripheral tolerance observed in irradiated mice. To address this issue, we have treated irradiated mice with antibiotics in order to prevent LPS translocation and utilized them in T cell adoptive transfer experiments. Surprisingly, we found that despite of completely blocking LPS translocation into the bloodstream, antibiotic treatment did not prevent the breakdown of peripheral tolerance. Although irradiation induced the activation of cross-presenting CD8+ dendritic cells in the lymphoid tissue, LPS could not solely account for this effect. Activation of dendritic cells by mechanisms other than LPS translocation is sufficient to promote the differentiation of potentially autoreactive CD8+ T cells into effectors in irradiated mice. Our data indicate that LPS translocation is dispensable for the breakdown of CD8+ T cell tolerance in irradiated mice.  相似文献   

9.
Bradyrhizobium strains isolated from the nonlegume Parasponia spp. formed a group of strains that were highly competitive for nodulation of P. andersonii when paired with strains isolated from legumes. Strains from legumes, including those of similar effectiveness to NGR231 and CP283, were not able to form nodules as single occupants on P. andersonii in the presence of Parasponia strains. However, NGR86, an isolate from Macroptilium lathyroides, jointly occupied one-third of the nodules formed with each of the three strains isolated from Parasponia spp. Time taken for nodules to appear may have influenced the outcome of competition, since CP283 and all isolates from legumes were slow to nodulate P. andersonii. Among the Parasponia strains, competitiveness for nodulation of P. andersonii was not associated with effectiveness of nitrogen fixation. The highly effective strain CP299 was a poor competitor when paired with the least effective strain NGR231. CP283 was the least competitive of the Parasponia strains but was still able to dominate nodules when paired with legume isolates. Dual occupancy was high, up to 67% when the inoculum contained CP299 and CP273. Both the Muc+ and Muc- types of CP283 form a symbiosis of similar effectiveness and were similarly competitive at high inoculation densities, but the Muc- form was more competitive at low inoculum densities. Both forms frequently occupied the same nodule. Bradyrhizobium strains isolated from Parasponia spp. may have specific genetic information that favor their ability to competitively and effectively infect plants in the genus Parasponia (Ulmaceae) outside the Leguminosae.  相似文献   

10.
《Current biology : CB》2014,24(3):347-350
  1. Download : Download high-res image (118KB)
  2. Download : Download full-size image
  相似文献   

11.
The hydrophobic C terminus of pore-forming colicins associates with and inserts into the cytoplasmic membrane and is the target of the respective immunity protein. The hydrophobic region of colicin U of Shigella boydii was mutated to identify determinants responsible for recognition of colicin U by the colicin U immunity protein. Deletion of the tip of the hydrophobic hairpin of colicin U resulted in a fully active colicin that was no longer inactivated by the colicin U immunity protein. Replacement of eight amino acids at the tip of the colicin U hairpin by the corresponding amino acids of the related colicin B resulted in colicin U(575–582ColB), which was inactivated by the colicin U immunity protein to 10% of the level of inactivation of the wild-type colicin U. The colicin B immunity protein inactivated colicin U(575–582ColB) to the same degree. These results indicate that the tip of the hydrophobic hairpin of colicin U and of colicin B mainly determines the interaction with the corresponding immunity proteins and is not required for colicin activity. Comparison of these results with published data suggests that interhelical loops and not membrane helices of pore-forming colicins mainly interact with the cognate immunity proteins and that the loops are located in different regions of the A-type and E1-type colicins. The colicin U immunity protein forms four transmembrane segments in the cytoplasmic membrane, and the N and C termini face the cytoplasm.  相似文献   

12.
Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other β-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known β-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to the genus Burkholderia; four distinct clusters could be discerned, with strains isolated from the same host species usually clustering very closely. Five of the strains (MAP3-5, Br3407, Br3454, Br3461, and Br3469) were selected for further studies of the symbiosis-related genes nodA, the NodD-dependent regulatory consensus sequences (nod box), and nifH. The nodA and nifH sequences were very close to each other and to those of B. phymatum STM815, B. caribensis TJ182, and Cupriavidus taiwanensis LMG19424 but were relatively distant from those of B. tuberum STM678. In addition to nodulating their original hosts, all five strains could also nodulate other Mimosa spp., and all produced nodules on Mimosa pudica that had nitrogenase (acetylene reduction) activities and structures typical of effective N2-fixing symbioses. Finally, both wild-type and green fluorescent protein-expressing transconjugant strains of Br3461 and MAP3-5 produced N2-fixing nodules on their original hosts, Mimosa bimucronata (Br3461) and Mimosa pigra (MAP3-5), and hence this confirms strongly that Burkholderia strains can form effective symbioses with legumes.  相似文献   

13.
The Aspergillus nidulans endocytic internalization protein SlaB is essential, in agreement with the key role in apical extension attributed to endocytosis. We constructed, by gene replacement, a nitrate-inducible, ammonium-repressible slaB1 allele for conditional SlaB expression. Video microscopy showed that repressed slaB1 cells are able to establish but unable to maintain a stable polarity axis, arresting growth with budding-yeast-like morphology shortly after initially normal germ tube emergence. Using green fluorescent protein (GFP)-tagged secretory v-SNARE SynA, which continuously recycles to the plasma membrane after being efficiently endocytosed, we establish that SlaB is crucial for endocytosis, although it is dispensable for the anterograde traffic of SynA and of the t-SNARE Pep12 to the plasma and vacuolar membrane, respectively. By confocal microscopy, repressed slaB1 germlings show deep plasma membrane invaginations. Ammonium-to-nitrate medium shift experiments demonstrated reversibility of the null polarity maintenance phenotype and correlation of normal apical extension with resumption of SynA endocytosis. In contrast, SlaB downregulation in hyphae that had progressed far beyond germ tube emergence led to marked polarity maintenance defects correlating with deficient SynA endocytosis. Thus, the strict correlation between abolishment of endocytosis and disability of polarity maintenance that we report here supports the view that hyphal growth requires coupling of secretion and endocytosis. However, downregulated slaB1 cells form F-actin clumps containing the actin-binding protein AbpA, and thus F-actin misregulation cannot be completely disregarded as a possible contributor to defective apical extension. Latrunculin B treatment of SlaB-downregulated tips reduced the formation of AbpA clumps without promoting growth and revealed the formation of cortical “comets” of AbpA.Germinating asexual spores (conidiospores) of Aspergillus nidulans transiently undergo isotropic growth (“swelling”) before establishing a polarity axis that grows by apical extension, leading to the characteristic tubular morphology of the fungal cell (15, 16, 33). Stable maintenance of a polarity axis at the high apical extension rates of A. nidulans (∼0.5 μm/min at 25°C) (23) can be attributable, at least in part, to the polarization of the secretory apparatus and the predominant and highly efficient delivery of secretory vesicles to the apex (8, 18, 40, 49). In addition, work from several laboratories strongly indicated that hyphal tip growth also involves endocytosis. A key observation supporting this involvement was that despite the fact that endocytosis can occur elsewhere, the endocytic internalization machinery predominates in the hyphal tip, forming a subapical collar. The spatial association of this collar with the apical region where secretory materials are delivered would allow removal of excess lipids/proteins reaching the plasma membrane with secretory vesicles (1, 2, 30, 49, 51, 57), but, most importantly, rapid endocytic recycling (i.e., efficient endocytosis of membrane proteins followed by their redelivery to the plasma membrane) can generate and maintain polarity, as shown with the v-SNARE and secretory-vesicle-resident SynA, which is a substrate of the subapical endocytic ring (1, 49, 52). It is plausible that such a mechanism could drive the polarization of one or more proteins acting as positional cues to mediate polarity maintenance.Genetic evidence strongly supported the conclusion that endocytosis is required for apical extension. Mutational inactivation of the A. nidulans fimbrin FimA or of the small GTPase ArfBArf6 (a regulator of endocytosis from fungi to mammals), led to delayed polarity establishment and morphologically aberrant tips indicative of polarity maintenance defects (30, 51). These mutations, although very severely debilitating, are not lethal. In contrast, heterokaryon rescue showed that SlaB, a key F-actin regulator of the endocytic internalization machinery (26), is essential in A. nidulans (2). slaBΔ cells are able to establish polarity, but they arrest in apical extension during the very early steps of polarity maintenance with a bud-like germ tube (2). However, work with Aspergillus oryzae using a thiamine-repressible promoter to drive A. oryzae End4 (AoEnd4) (SlaB) expression showed that although endocytosis was prevented and hyphal morphology altered under repressing conditions, hyphal tip extension and polarity maintenance were not completely abolished (20), perhaps suggesting that the phenotype of the thiamine-repressed conditional allele might not fully resemble the null phenotype.F-actin strongly predominates in the hyphal tips (2, 14, 17, 49, 51). Because endocytic internalization is powered by F-actin (27), predominance of endocytic “patches” (i.e., sites of endocytic internalization) in the tip accounts, at least in part, for F-actin polarization. However, F-actin plays fundamental nonendocytic roles in the tip; for example, actin cables nucleated by the SepA formin localizing to the apical crescent are thought to play a major role in secretion, whereas a network of F-actin microfilaments appears to be a major component of the Spitzenkörper (4, 21, 43, 49). Notably, all genes used to address the role of endocytosis in apical extension share in common their involvement in regulating F-actin. Thus, the Saccharomyces cerevisiae ArfB orthologue Arf3p regulates endocytosis but also appears to regulate F-actin at multiple levels (12, 28, 44). Like their respective S. cerevisiae orthologues Sla2p and Sac6p, SlaB and FimA are key components of endocytic patches, but in budding yeast their orthologues appear to regulate F-actin dynamics beyond endocytosis (27, 35, 56).To gain insight into the essential role of SlaB in A. nidulans, we designed a conditional expression allele. Time-lapse microscopy under restrictive conditions demonstrated that polarity establishment is essentially normal but that these mutant germ tubes arrested in apical extension subsequently undergo swelling, acquiring the characteristic bud-like shape of abortive slaBΔ germlings. Medium shift experiments allowed us to address the role of SlaB in apical extension beyond these early stages of polarity maintenance. We demonstrate the key role that SlaB plays in endocytosis and polarity maintenance, but we also show that deficiency of SlaB affects the actin cytoskeleton.  相似文献   

14.
15.
The majority of spontaneous chromosome breakage occurs during the process of DNA replication. Homologous recombination is the primary mechanism of repair of such damage, which probably accounts for the fact that it is essential for genome integrity and viability in mammalian cells. The Mre11 complex plays diverse roles in the maintenance of genomic integrity, influencing homologous recombination, checkpoint activation, and telomere maintenance. The complex is essential for cellular viability, but given its myriad influences on genomic integrity, the mechanistic basis for the nonviability of Mre11 complex-deficient cells has not been defined. In this study we generated mice carrying a conditional allele of Rad50 and examined the effects of Rad50 deficiency in proliferative and nonproliferative settings. Depletion of Rad50 in cultured cells caused extensive DNA damage and death within 3 to 5 days of Rad50 deletion. This was not associated with gross telomere dysfunction, suggesting that the telomeric functions of the Mre11 complex are not required for viability. Rad50 was also dispensable for the viability of quiescent liver and postmitotic Purkinje cells of the cerebellum. These findings support the idea that the essential functions of the Mre11 complex are associated with DNA replication and further suggest that homologous recombination is not essential in nondividing cells.The Mre11 complex regulates both DNA damage checkpoint function and repair. Its checkpoint functions appear to be primarily related to its role as a DNA double-strand break (DSB) sensor which binds DNA damage and activates ATM (ataxia-telangiectasia [AT] mutated). The ATM kinase transduces the damage signal via phosphorylating mediators of the damage response (30, 42), which promotes cell cycle arrest, DNA repair, and apoptosis. Mre11 complex functions are compromised in the human chromosome instability syndromes Nijmegen breakage syndrome and AT-like disorder, which are caused by hypomorphic mutations in Nbs1 and Mre11. Cells derived from patients and from mouse models of these diseases exhibit spontaneous DNA damage, ionizing radiation (IR) sensitivity, and checkpoint defects (25, 27, 48, 52, 57).The complex''s primary role in DNA repair is in recombinational DSB repair, and this role likely underlies its essential nature. In Saccharomyces cerevisiae, the complex governs homologous recombination (HR) and nonhomologous end joining (NHEJ) (19), whereas in vertebrate systems it primarily functions in HR (51, 61, 62). In fact, studies of Nbs1-deficient cells suggest that the Mre11 complex may inhibit NHEJ in mammals (62). Data from several species also implicate the Mre11 nuclease in the metabolism of topoisomerase adducts (40, 43, 49). This highly conserved function could also explain why the Mre11 complex is essential.The Mre11 complex''s function at telomeres may also be required for viability. Telomeres protect the ends of linear chromosomes from being recognized as DSBs and thereby activating the DNA damage response (DDR) (9). In S. cerevisiae the Mre11 complex influences telomere length maintenance (5, 28), whereas in mammals the complex interacts with the telomere binding protein Trf2 and localizes to telomeres (63). Loss of Trf2 results in telomere uncapping, causing activation of the DDR, telomere fusions, and senescence (7). Given the association of Mre11 with Trf2, it is conceivable that acute Mre11 complex deficiency in the mouse would phenocopy Trf2 loss and similarly lead to cell death as a result of telomere uncapping.Conclusions regarding the essential nature of HR in general (33, 47, 53) and the Mre11 complex specifically (10, 17, 45, 59, 62) have been derived from the analysis of proliferating cells in vitro or in vivo. The coincidence of DNA replication and the formation of spontaneous DSBs prompted us to test whether the Mre11 complex and, by extension, HR would be essential in quiescent or postmitotic tissues in which the frequency of spontaneous DSBs is significantly reduced. To examine this issue, we generated mice containing a conditional Rad50 allele in which the Rad50 gene could be inactivated in quiescent and postmitotic cells.Our results indicate that Rad50 is not required for homeostasis or viability of quiescent hepatocytes of the adult liver; nor does it appear to be required for maintenance of postmitotic Purkinje cells of the cerebellum. In contrast, Rad50 was required for viability of proliferating tissue culture and bone marrow cells. Rad50-deficient hepatocytes that were induced to divide via hepatectomy were able to achieve limited division and survived despite the presence of DNA damage that persisted long after the bulk of regeneration was complete. Rad50-deficient cells did not exhibit overtly dysfunctional telomeres, suggesting that their loss of viability was not due to acute telomere failure. These data indicate that the Mre11 complex and, by extension, HR may be dispensable in postmitotic cells and are consistent with the interpretation that the replication-associated functions of the Mre11 complex account for its essential nature.  相似文献   

16.
Symbioses between uptake hydrogenase host-regulated (Hup-hr) phenotypes of Bradyrhizobium japonicum and exotic, agronomically unadapted soybean germ plasm were examined for expression of uptake hydrogenase activity. Determinations for hydrogen evolution and uptake hydrogenase activity identified five plant introduction (PI) lines which formed hydrogen-oxidizing symbioses with strains USDA 61 and PA3 6c. Hup-hr strains belonging to serogroup 94 expressed uptake hydrogenase activity in symbioses with PI 181696 and PI 219655 at rates sufficient to prevent hydrogen from escaping the nodules. The identification of soybean germ plasm forming hydrogen-oxidizing symbioses with Hup-hr bradyrhizobia potentially has implications for enhancing nitrogen fixation efficiency in soybean production.  相似文献   

17.
Hedgehog (Hh) signaling modulates T cell development and function but its exact role remains a matter of debate. To further address this issue we made use of conditional knock-out mice in which the Hh receptor Patched1 (Ptch) is inactivated in the T cell lineage. Thymocyte development was moderately compromised by the deletion of Ptch as characterized by reduced numbers of CD4 and CD8 single-positive cells. In contrast, peripheral T cells were not affected. Proliferation and IFNγ secretion by Ptch-deficient T cells were indistinguishable from controls irrespectively of whether we used strong or suboptimal conditions for stimulation. Analysis of CTL and Treg cell functions did not reveal any differences between both genotypes, and T cell apoptosis induced by glucocorticoids or γ-irradiation was also similar. Surprisingly, absence of Ptch did not lead to an activation of canonic Hh signaling in peripheral T cells as indicated by unaltered expression levels of Gli1 and Gli2. To test whether we could uncover any role of Ptch in T cells in vivo we subjected the mutant mice to three different disease models, namely allogeneic bone marrow transplantation mimicking graft-versus-host disease, allergic airway inflammation as a model of asthma and growth of adoptively transferred melanoma cells as a means to test tumor surveillance by the immune system. Nonetheless, we were neither able to demonstrate any difference in the disease courses nor in any pathogenic parameter in these three models of adaptive immunity. We therefore conclude that the Hh receptor Ptch is dispensable for T cell function in vitro as well as in vivo.  相似文献   

18.
19.
The ecological examination of members of the family Rhizobiaceae has been hampered by the lack of a selective medium for isolation of root nodule bacteria from soil. A novel non-antibiotic-containing medium has been developed which allows selective isolation of Bradyrhizobium japonicum and B. elkanii strains from soil and inoculants. The medium, BJSM, is based on the resistance of B.japonicum and B. elkanii strains to more than 40 μg of the metals ions Zn2+ and Co2+ per ml. BJSM does not allow growth of Rhizobium sp. strains. We used BJSM to isolate bacteria from a Hubbard soil and from several commercially prepared soybean inoculants. Ninety-eight percent of the isolates obtained from Hubbard soil nodulated Glycine max cv. Kasota, and between 55 and 95% of the isolates from the commercial inoculants had the ability to nodulate soybeans. Numbers of bradyrhizobia obtained by using BJSM, strain-specific fluorescent antibodies, and the most-probable-number plant infection assay indicated that the three techniques were comparable in quantifying B. japonicum strains in soils and inoculants, although most-probable-number counts were generally 0.5 order of magnitude greater than those obtained by using BJSM. Results of our studies indicate that BJSM is useful for direct isolation and quantification of B. japonicum and B. elkanii from natural soils and inoculants. This medium may prove to be an important tool for autecological and enumeration studies of diverse populations of bradyrhizobia and as a quality control method for soybean inoculants.  相似文献   

20.
Enzyme electrophoresis and rRNA sequencing were used to analyze relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legumes (Clitoria javitensis, Erythrina costaricensis, Rhynchosia pyramidalis, and Desmodium axillare) growing on Barro Colorado Island (BCI), Panama. Bacteria with identical multilocus allele profiles were commonly found in association with two or more legume genera. Among the 16 multilocus genotypes (electrophoretic types [ETs]) detected, six ETs formed a closely related cluster that included isolates from all four legume taxa. Bacteria from two other BCI legumes (Platypodium and Machaerium) sampled in a previous study were also identical to certain ETs in this group. Isolates from different legume genera that had the same ET had identical nucleotide sequences for both a 5′ portion of the 23S rRNA and the nearly full-length 16S rRNA genes. These results suggest that Bradyrhizobium genotypes with low host specificity may be prevalent in this tropical forest. Parsimony analysis of 16S rRNA sequence variation indicated that most isolates were related to Bradyrhizobium japonicum USDA 110, although one ET sampled from C. javitensis had a 16S rRNA gene highly similar to that of Bradyrhizobium elkanii USDA 76. However, this isolate displayed a mosaic structure within the 5′ 23S rRNA region: one 84-bp segment was identical to that of BCI isolate Pe1-3 (a close relative of B. japonicum USDA 110, based on 16S rRNA data), while an adjacent 288-bp segment matched that of B. elkanii USDA 76. This mosaic structure is one of the first observations suggesting recombination in nature between Bradyrhizobium isolates related to B. japonicum versus B. elkanii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号