首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene targeting is one of the powerful techniques used to investigate eukaryotic genes. In a typical eukaryotic microbe, Saccharomyces cerevisiae yeast, we examined trans-kingdom conjugation between Escherichia coli bacterium and yeast as a gene targeting tool. Here, it is shown that trans-kingdom conjugation effectively induced gene replacement even on yeast's target loci (e.g. ura3-52 allele) which is never targeted by conventional transformation. This clearly indicates that trans-kingdom conjugation offers a very powerful gene targeting tool in yeasts. In fact, Southern hybridization analysis of transconjugants distinctly verified the accuracy in the conjugative gene replacement. The efficiency of gene replacement was about 0.4×10−7 per recipient yeast. This is enough to sustain gene targeting with gene replacement by trans-kingdom conjugation. We also discuss the mechanism of conjugative gene replacement.  相似文献   

2.
Transkingdom conjugation (TKC) permits transfer of DNA from bacteria to eukaryotic cells using a bacterial conjugal transfer system. However, it is not clear whether the process of DNA acceptance in a recipient eukaryote is homologous to the process of conjugation between bacteria. TKC transfer requires mobilizable shuttle vectors that are capable of conjugal transfer and replication in the donor and recipient strains. Here, we developed TKC vectors derived from plasmids belonging to the IncP and IncQ groups. We also investigated forms of transfer of these vectors from Escherichia coli into Saccharomyces cerevisiae to develop TKC as a simple gene introduction method. Both types of vectors were transferred precisely, conserving the origin of transfer (oriT) sequences, but IncP-based vectors appeared to be more efficient than an IncQ-based vector. Interestingly, unlike in agrobacterial T-DNA (transfer DNA) transfer, the efficiency of TKC transfer was similar between a wild-type yeast strain and DNA repair mutants defective in homologous recombination (rad51Δ and rad52Δ) or nonhomologous end joining (rad50Δ, yku70Δ, and lig4Δ). Lastly, a shuttle vector with two repeats of IncP-type oriT (oriTP) sequences flanking a marker gene was constructed. TKC transfer of this vector resulted in precise excision of both the oriTP loci as well as the marker gene, albeit at a low frequency of 17% of all transconjugants. This feature would be attractive in biotechnological applications of TKC. Taken together, these results strongly suggest that in contrast to agrobacterial T-DNA transfer, the circularization of vector single-stranded DNA occurs either before or after transfer but requires a factor(s) from the donor. TKC is a simple method of gene transfer with possible applications in yeast genetics and biotechnology.  相似文献   

3.
Transformation of Nicotiana tabacum leaf explants was attempted with Escherichia coli as a DNA donor either alone or in combination with Agrobacterium tumefaciens. We constructed E. coli donor strains harboring either the promiscuous IncP-type or IncN-type conjugal transfer system and second plasmids containing the respective origins of transfer and plant-selectable markers. Neither of these conjugation systems was able to stably transform plant cells at detectable levels, even when VirE2 was expressed in the donor cells. However, when an E. coli strain expressing the IncN-type conjugation system was coinoculated with a disarmed A. tumefaciens strain, plant tumors arose at high frequencies. This was caused by a two-step process in which the IncN transfer system mobilized the entire shuttle plasmid from E. coli to the disarmed A. tumefaciens strain, which in turn processed the T-DNA and transferred it to recipient plant cells. The mobilizable plasmid does not require a broad-host-range replication origin for this process to occur, thus reducing its size and genetic complexity. Tumorigenesis efficiency was further enhanced by incubation of the bacterial strains on medium optimized for bacterial conjugation prior to inoculation of leaf explants. These techniques circumvent the need to construct A. tumefaciens strains containing binary vectors and could simplify the creation of transgenic plants.  相似文献   

4.
Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the underlying mechanisms were examined. With a modified Escherichia coli donor strain, different C. jejuni recipient strains displayed significant variation in conjugation efficiency ranging from 6.2 × 10−8 to 6.0 × 10−3 CFU per recipient cell. Despite reduced viability, heat shock of standard C. jejuni NCTC 11168 and 81-176 strains (e.g., 48 to 54°C for 30 to 60 min) could dramatically enhance C. jejuni conjugation efficiency up to 1,000-fold. The phenotype of the heat shock-enhanced conjugation in C. jejuni recipient cells could be sustained for at least 9 h. Filtered supernatant from the heat shock-treated C. jejuni cells could not enhance conjugation efficiency, which suggests that the enhanced conjugation efficiency is independent of secreted substances. Mutagenesis analysis indicated that the clustered regularly interspaced short palindromic repeats system and the selected restriction-modification systems (Cj0030/Cj0031, Cj0139/Cj0140, Cj0690c, and HsdR) were dispensable for heat shock-enhanced conjugation in C. jejuni. Taking all results together, this study demonstrated a heat shock-enhanced conjugation efficiency in standard C. jejuni strains, leading to an optimized conjugation protocol for molecular manipulation of this organism. The findings from this study also represent a significant step toward elucidation of the molecular mechanism of conjugative gene transfer in C. jejuni.  相似文献   

5.
Marine Vibrio S14 strains and an Escherichia coli strain were starved in artificial seawater (NSS) with no added carbon, nitrogen, or phosphorus. The broad-host-range plasmid RP1 was transferred between the starving S14 strains and also from the E. coli donor to the S14 recipient under oligotrophic conditions, in which mixtures of donor and recipient cells were held on Nuclepore filters either floated on NSS or held such that NSS flowed through the filter. Transconjugants were obtained from S14 donors and recipients starved for at least 15 days before being mixed together for conjugation, whereas transconjugants were recovered from the E. coli donor and S14 recipient for up to 3 days of prestarvation, but not after 5 days. Transconjugants were obtained when there were as few as about 105 and 104 cells of starving S14 donors and recipients, respectively, per ml held on the filters. Starved donor and recipient mixtures incubated at 4 or 26°C, as well as those allowed to mate for 2, 5, or 24 h, all yielded numbers of transconjugants which were not significantly (P > 0.05) different.  相似文献   

6.
Conjugation is the primary mechanism of horizontal gene transfer that spreads antibiotic resistance among bacteria. Although conjugation normally occurs in surface-associated growth (e.g., biofilms), it has been traditionally studied in well-mixed liquid cultures lacking spatial structure, which is known to affect many evolutionary and ecological processes. Here we visualize spatial patterns of gene transfer mediated by F plasmid conjugation in a colony of Escherichia coli growing on solid agar, and we develop a quantitative understanding by spatial extension of traditional mass-action models. We found that spatial structure suppresses conjugation in surface-associated growth because strong genetic drift leads to spatial isolation of donor and recipient cells, restricting conjugation to rare boundaries between donor and recipient strains. These results suggest that ecological strategies, such as enforcement of spatial structure and enhancement of genetic drift, could complement molecular strategies in slowing the spread of antibiotic resistance genes.  相似文献   

7.
Results obtained when studying conjugation in mycobacteria by means of different methods are summarized. The method of conjugation on surface of a solid complete medium was tested with different auxotrophic mutants of different strains ofMycobacterium smegmatis. It was not possible to obtain positive results even by means of the above method. This was probably due to unsuitability of the chosen strains ofMycobacterium smegmatis. Preparation of the donor strain by transfer of the F factor fromEscherichia coli F’ORF 1ade + lac+ pro+ toMycobacterium phlei PA adeStm r by means of sexduction is described. Frequency of the phenotype PAade + Stmr increased in the average by two and a half orders of magnitude with respect to the control, however, a further transfer from cultures of the cellsade + Stmr to cells ade could not be demonstrated. Experiments aimed at transferring the R factor from strainsEscherichia coli K-12 toMycobacterium phlei were unsuccessful.  相似文献   

8.
Cells aggregate and can be recovered from suspension when exposed to an ultrasonic standing wave field. The acoustic force on individual cells in a standing wave decreases with particle volume. A plane ultrasonic field generated by a transducer driven at 3.3 MHz was used here to investigate the removal of Escherischia coli, cells with dimensions of the order of 1.0 m, from batch suspension by sedimentation over a range of concentrations (103 to 1010 cells ml–1). Cell removal efficiencies greater than 90% were achieved at initial concentrations of 1010 cells ml–1. Removal efficiencies decreased gradually to zero, as initial bacterial concentration was reduced to 107 cells ml–1. It was found that, when low concentrations of E. coli (103 to 105 cells ml–1) were added to suspensions of larger particles (i.e. yeast cells) that were of sufficient concentration to form aggregates in the sound field, E. coli could be harvested to an efficiency of 40%. The results imply that the E. coli became trapped and sediment with aggregates of larger particles. Some strains of bacteria are capable of DNA transfer by conjugation. The transfer rate of E. coli RP4 plasmid is order of magnitudes greater when conjugation occurs on solid medium rather than in liquid suspension. We have investigated whether the conjugation rate would also be higher in ultrasonically induced E. coli clumps than in free suspension. The donor strain was mixed with a recipient strain of E. coli, then sonicated in a capillary at 4.6 MHz in a tubular transducer for 5 min. The bacteria aggregated successfully. Results showed a three-fold increase in the rate of conjugation compared to a liquid mating control.  相似文献   

9.
Conjugation is the primary mechanism of horizontal gene transfer that spreads antibiotic resistance among bacteria. Although conjugation normally occurs in surface-associated growth (e.g., biofilms), it has been traditionally studied in well-mixed liquid cultures lacking spatial structure, which is known to affect many evolutionary and ecological processes. Here we visualize spatial patterns of gene transfer mediated by F plasmid conjugation in a colony of Escherichia coli growing on solid agar, and we develop a quantitative understanding by spatial extension of traditional mass-action models. We found that spatial structure suppresses conjugation in surface-associated growth because strong genetic drift leads to spatial isolation of donor and recipient cells, restricting conjugation to rare boundaries between donor and recipient strains. These results suggest that ecological strategies, such as enforcement of spatial structure and enhancement of genetic drift, could complement molecular strategies in slowing the spread of antibiotic resistance genes.  相似文献   

10.
Horizontal gene transfer, mediated by conjugative plasmids, is a major driver of the global rise of antibiotic resistance. However, the relative contributions of factors that underlie the spread of plasmids and their roles in conjugation in vivo are unclear. To address this, we investigated the spread of clinical Extended Spectrum Beta-Lactamase (ESBL)-producing plasmids in the absence of antibiotics in vitro and in the mouse intestine. We hypothesised that plasmid properties would be the primary determinants of plasmid spread and that bacterial strain identity would also contribute. We found clinical Escherichia coli strains natively associated with ESBL-plasmids conjugated to three distinct E. coli strains and one Salmonella enterica serovar Typhimurium strain. Final transconjugant frequencies varied across plasmid, donor, and recipient combinations, with qualitative consistency when comparing transfer in vitro and in vivo in mice. In both environments, transconjugant frequencies for these natural strains and plasmids covaried with the presence/absence of transfer genes on ESBL-plasmids and were affected by plasmid incompatibility. By moving ESBL-plasmids out of their native hosts, we showed that donor and recipient strains also modulated transconjugant frequencies. This suggests that plasmid spread in the complex gut environment of animals and humans can be predicted based on in vitro testing and genetic data.Subject terms: Antibiotics, Microbial ecology, Phylogenomics  相似文献   

11.
To study the role of the E. coli recipient cell in conjugation recipient cell mutants deficient in conjugation (Con-) were isolated. Mutants specific for F-type E. coli donor cells (ConF-) and mutants specific deficient in conjugation with I-type donor cells (ConI-) were isolated.Both ConF- and ConI- mutants were blocked in stable mating pair formation. Biochemical analysis of the mutants suggests that the outer membrane protein coded by the ompA gene and LPS are important for recipient activity in F-type conjugation while LPS is important for recipient activity in I-type conjugation.  相似文献   

12.
Strains of Escherichia coli recently isolated from human feces were examined for the frequency with which they accept an R factor (R1) from a derepressed fi+ strain of E. coli K-12 and transfer it to fecal and laboratory strains. Colicins produced by some of the isolates rapidly killed the other half of the mating pair; therefore, conjugation was conducted by a membrane filtration procedure whereby this effect was minimized. The majority of fecal E. coli isolates accepted the R factor at lower frequencies than K-12 F, varying from 10−2 per donor cell to undetectable levels. The frequencies with which certain fecal recipients received the R-plasmid were increased when its R+ transconjugant was either cured of the R1-plasmid and remated with the fi+ strain or backcrossed into the parental strain. The former suggests the loss of an incompatibility plasmid, and the latter suggests the modification of the R1-plasmid deoxyribonucleic acid (DNA). In general, the fecal R+E. coli transconjugants were less effective donors for K-12 F and heterologous fecal strains than was the fi+ K-12 strain, whereas the single strain of Citrobacter freundii examined was generally more competent. Passage of the R1-plasmid to strains of salmonellae reached mating frequencies of 10−1 per donor cell when the recipient was a Salmonella typhi previously cured of its resident R-plasmid. However, two recently isolated strains of Salmonella accepted the R1-plasmid from E. coli K-12 R+ or the R+E. coli transconjugants at frequencies of 5 × 10−7 or less.  相似文献   

13.
We previously demonstrated efficient transformation of the thermophile Geobacillus kaustophilus HTA426 using conjugative plasmid transfer from Escherichia coli BR408. To evaluate the versatility of this approach to thermophile transformation, this study examined genetic transformation of various thermophilic Bacillus and Geobacillus spp. using conjugative plasmid transfer from E. coli strains. E. coli BR408 successfully transferred the E. coliGeobacillus shuttle plasmid pUCG18T to 16 of 18 thermophiles with transformation efficiencies between 4.1 × 10?7 and 3.8 × 10?2/recipient. Other E. coli strains that are different from E. coli BR408 in intracellular DNA methylation also generated transformants from 9 to 15 of the 18 thermophiles, including one that E. coli BR408 could not transform, although the transformation efficiencies of these strains were generally lower than those of E. coli BR408. The conjugation was performed by simple incubation of an E. coli donor and a thermophile recipient without optimization of experimental conditions. Moreover, thermophile transformants were distinguished from abundant E. coli donor only by high temperature incubation. These observations suggest that conjugative plasmid transfer, particularly using E. coli BR408, is a facile and versatile approach for plasmid introduction into thermophilic Bacillus and Geobacillus spp., and potentially a variety of other thermophiles.  相似文献   

14.
Unstable pathogenicity islands are chromosomal elements that can be transferred from one bacterium to another. Salmonella enterica serovar Enteritidis (S. Enteritidis) is a pathogenic bacterium containing such unstable pathogenicity islands. One of them, denominated ROD21, is 26.5 kb in size and capable of excising from the chromosome in certain culture conditions, as well as during bacterial infection of phagocytic cells. In this study we have evaluated whether ROD21 can be effectively transferred from one bacterium to another. We generated a donor and several recipient strains of S. Enteritidis to carry out transfer assays in liquid LB medium. These assays showed that ROD21 is effectively transferred from donor to recipient strains of S. Enteritidis and S. Typhimurium. When Escherichia coli was used as the recipient strain, ROD21 transfer failed to be observed. Subsequently, we showed that a conjugative process was required for the transfer of the island and that changes in temperature and pH increased the transfer frequency between Salmonella strains. Our data indicate that ROD21 is an unstable pathogenicity island that can be transferred by conjugation in a species-specific manner between Salmonellae. Further, ROD21 transfer frequency increases in response to environmental changes, such as pH and temperature.  相似文献   

15.
For conjugation between prokaryotic Agrobacterium tumefaciensand eukaryotic Saccharomyces cerevisiae, we constructed twonovel conjugative plasmids. A. tumefaciens transmitted the plasmidsto S. cerevisiae with the aid of tra genes on a helper plasmid.The transmitted plasmids retained their original structure andfunction in transconjugant yeasts. The presence of Ti plasmidbarely affected the trans-kingdom conjugation. 1A preliminary report of this work was presented in Japaneseby Yoshida et al. (1993).  相似文献   

16.
17.
Bacillus thuringiensis and Bacillus cereus belong to the B. cereus species group. The two species share substantial chromosomal similarity and differ mostly in their plasmid content. The phylogenetic relationship between these species remains a matter of debate. There is genetic exchange both within and between these species, and current evidence indicates that insects are a particularly suitable environment for the growth of and genetic exchange between these species. We investigated the conjugation efficiency of B. thuringiensis var. kurstaki KT0 (pHT73-EmR) as a donor and a B. thuringiensis and several B. cereus strains as recipients; we used one-recipient and two-recipient conjugal transfer systems in vitro (broth and filter) and in Bombyx mori larvae, and assessed multiplication following conjugation between Bacillus strains. The B. thuringiensis KT0 strain did not show preference for genetic exchange with the B. thuringiensis recipient strain over that with the B. cereus recipient strains. However, B. thuringiensis strains germinated and multiplied more efficiently than B. cereus strains in insect larvae and only B. thuringiensis maintained complete spore germination for at least 24 h in B. mori larvae. These findings show that there is no positive association between bacterial multiplication efficiency and conjugation ability in infected insects for the used strains.  相似文献   

18.
Summary The fate of the donor DNA after conjugation in Escherichia coli was studied through crosses with a Hfr lacZ5 donor and several F- lacZ22 recipients. The fate of the donor allele was studied by assaying the -galactosidase activity formed by complementation between the lacZ5 allele and the lacZ22 allele. We used continuous cultures of the recipient in order to be able to study the fate of the donor DNA during many generations under constant physiological conditions. We could show that the donor DNA allele is inactivated in Rec+, recA171 and recB21 recipient cells. The inactivation rate depends on the nature of the recipient, Rec+ or recombination deficient, and especially in the case of the recombination deficient mutants on the growth rate of the recipient.  相似文献   

19.
《Microbiological research》2014,169(4):287-293
Quinoxaline is a chemical compound that presents a structure that is similar to quinolone antibiotics. The present work reports the study of the antimicrobial activity of quinoxaline N,N-dioxide and some derivatives against bacterial and yeast strains. The compounds studied were quinoxaline-1,4-dioxide (QNX), 2-methylquinoxaline-1,4-dioxide (2MQNX), 2-methyl-3-benzoylquinoxaline-1,4-dioxide (2M3BenzoylQNX), 2-methyl-3-benzylquinoxaline-1,4-dioxide (2M3BQNX), 2-amino-3-cyanoquinoxaline-1,4-dioxide (2A3CQNX), 3-methyl-2-quinoxalinecarboxamide-1,4-dioxide (3M2QNXC), 2-hydroxyphenazine-N,N-dioxide (2HF) and 3-methyl-N-(2-methylphenyl)quinoxalinecarboxamide-1,4-dioxide (3MN(2MF)QNXC). The prokaryotic strains used were Staphylococcus aureus ATCC 6538, S. aureus ATCC 6538P, S. aureus ATCC 29213, Escherichia coli ATCC 25922, E. coli S3R9, E. coli S3R22, E. coli TEM-1 CTX-M9, E. coli TEM-1, E. coli AmpC Mox-2, E. coli CTX-M2 e E. coli CTX-M9. The Candida albicans ATCC 10231 and Saccharomyces cerevisiae PYCC 4072 were used as eukaryotic strains. For the compounds that presented activity using the disk diffusion method, the minimum inhibitory concentration (MIC) was determined. The alterations of cellular viability were evaluated in a time-course assay. Death curves for bacteria and growth curves for S. cerevisiae PYCC 4072 were also accessed. The results obtained suggest potential new drugs for antimicrobial activity chemotherapy since the MIC's determined present low values and cellular viability tests show the complete elimination of the bacterial strain. Also, the cellular viability tests for the eukaryotic model, S. cerevisiae, indicate low toxicity for the compounds tested.  相似文献   

20.
Summary Mutant strains ofEscherichia coli, which were thermosensitive with respect to DNA replication, were used for conjugation experiments at 37°C and 42°C. Inhibition of DNA synthesis in the donor strain has no influence on the yield of recombinats. Inhibition of DNA synthesis in the recipient strain is accompanied by a complete loss of recombinant formation. Both are also true for homosexual crosses. Temporary inhibition of DNA synthesis in the recipient cell during conjugation effects reversible inhibition of DNA transfer.It is concluded that DNA transfer depends on DNA synthesis in the recipient strain, whereas DNA synthesis in the donor strain seems to be unnecessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号