首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Inhibition of G-protein-coupled receptor kinase 2 (GRK2) is an emerging treatment option for heart failure. Because GRK2 is also indispensable for growth and development, we analyzed the impact of GRK2 inhibition on cell growth and proliferation. Inhibition of GRK2 by the dominant-negative GRK2-K220R did not affect the proliferation of cultured cells. In contrast, upon xenograft transplantation of cells into immunodeficient mice, the dominant-negative GRK2-K220R or a GRK2-specific peptide inhibitor increased tumor mass. The enhanced tumor growth upon GRK2 inhibition was attributed to the growth-promoting MAPK pathway because dual inhibition of the GRK2 and RAF-MAPK axis by the Raf kinase inhibitor protein (RKIP) did not increase tumor mass. The MAPK cascade contributed to the cardioprotective profile of GRK2 inhibition by preventing cardiomyocyte death, whereas dual inhibition of RAF/MAPK and GRK2 by RKIP induced cardiomyocyte apoptosis, cardiac dysfunction, and signs of heart failure. Thus, cardioprotective signaling induced by GRK2 inhibition is overlapping with tumor growth promotion.  相似文献   

2.
G protein-coupled receptor kinase-2 (GRK2) is a critical regulator of β-adrenergic receptor (β-AR) signaling and cardiac function. We studied the effects of mechanical stretch, a potent stimulus for cardiac myocyte hypertrophy, on GRK2 activity and β-AR signaling. To eliminate neurohormonal influences, neonatal rat ventricular myocytes were subjected to cyclical equi-biaxial stretch. A hypertrophic response was confirmed by “fetal” gene up-regulation. GRK2 activity in cardiac myocytes was increased 4.2-fold at 48 h of stretch versus unstretched controls. Adenylyl cyclase activity was blunted in sarcolemmal membranes after stretch, demonstrating β-AR desensitization. The hypertrophic response to mechanical stretch is mediated primarily through the Gαq-coupled angiotensin II AT1 receptor leading to activation of protein kinase C (PKC). PKC is known to phosphorylate GRK2 at the N-terminal serine 29 residue, leading to kinase activation. Overexpression of a mini-gene that inhibits receptor-Gαq coupling blunted stretch-induced hypertrophy and GRK2 activation. Short hairpin RNA-mediated knockdown of PKCα also significantly attenuated stretch-induced GRK2 activation. Overexpression of a GRK2 mutant (S29A) in cardiac myocytes inhibited phosphorylation of GRK2 by PKC, abolished stretch-induced GRK2 activation, and restored adenylyl cyclase activity. Cardiac-specific activation of PKCα in transgenic mice led to impaired β-agonist-stimulated ventricular function, blunted cyclase activity, and increased GRK2 phosphorylation and activity. Phosphorylation of GRK2 by PKC appears to be the primary mechanism of increased GRK2 activity and impaired β-AR signaling after mechanical stretch. Cross-talk between hypertrophic signaling at the level of PKC and β-AR signaling regulated by GRK2 may be an important mechanism in the transition from compensatory ventricular hypertrophy to heart failure.  相似文献   

3.
Cardiac fibroblasts (CF) make up 60-70% of the total cell number in the heart and play a critical role in regulating normal myocardial function and in adverse remodeling following myocardial infarction and the transition to heart failure. Recent studies have shown that increased intracellular cAMP can inhibit CF transformation and collagen synthesis in adult rat CF; however, mechanisms by which cAMP production is regulated in CF have not been elucidated. We investigated the potential role of G protein-coupled receptor kinase-2 (GRK2) in modulating collagen synthesis by adult human CF isolated from normal and failing left ventricles. Baseline collagen synthesis was elevated in failing CF and was not inhibited by β-agonist stimulation in contrast to normal controls. β-adrenergic receptor (β-AR) signaling was markedly uncoupled in the failing CF, and expression and activity of GRK2 were increased 3-fold. Overexpression of GRK2 in normal CF recapitulated a heart failure phenotype with minimal inhibition of collagen synthesis following β-agonist stimulation. In contrast, knockdown of GRK2 expression in normal CF enhanced cAMP production and led to greater β-agonist-mediated inhibition of basal and TGFβ-stimulated collagen synthesis versus control. Inhibition of GRK2 activity in failing CF by expression of the GRK2 inhibitor, GRK2ct, or siRNA-mediated knockdown restored β-agonist-stimulated inhibition of collagen synthesis and decreased collagen synthesis in response to TGFβ stimulation. GRK2 appears to play a significant role in regulating collagen synthesis in adult human CF, and increased activity of this kinase may be an important mechanism of maladaptive ventricular remodeling as mediated by cardiac fibroblasts.  相似文献   

4.
The human cardiovascular system has adapted to function optimally in Earth''s 1G gravity, and microgravity conditions cause myocardial abnormalities, including atrophy and dysfunction. However, the underlying mechanisms linking microgravity and cardiac anomalies are incompletely understood. In this study, we investigated whether and how calpain activation promotes myocardial abnormalities under simulated microgravity conditions. Simulated microgravity was induced by tail suspension in mice with cardiomyocyte-specific deletion of Capns1, which disrupts activity and stability of calpain-1 and calpain-2, and their WT littermates. Tail suspension time-dependently reduced cardiomyocyte size, heart weight, and myocardial function in WT mice, and these changes were accompanied by calpain activation, NADPH oxidase activation, and oxidative stress in heart tissues. The effects of tail suspension were attenuated by deletion of Capns1. Notably, the protective effects of Capns1 deletion were associated with the prevention of phosphorylation of Ser-345 on p47phox and attenuation of ERK1/2 and p38 activation in hearts of tail-suspended mice. Using a rotary cell culture system, we simulated microgravity in cultured neonatal mouse cardiomyocytes and observed decreased total protein/DNA ratio and induced calpain activation, phosphorylation of Ser-345 on p47phox, and activation of ERK1/2 and p38, all of which were prevented by calpain inhibitor-III. Furthermore, inhibition of ERK1/2 or p38 attenuated phosphorylation of Ser-345 on p47phox in cardiomyocytes under simulated microgravity. This study demonstrates for the first time that calpain promotes NADPH oxidase activation and myocardial abnormalities under microgravity by facilitating p47phox phosphorylation via ERK1/2 and p38 pathways. Thus, calpain inhibition may be an effective therapeutic approach to reduce microgravity-induced myocardial abnormalities.  相似文献   

5.
Fatty acid synthase (FASN) is known as a crucial enzyme of cellular de novo fatty acid synthesis in mammary gland which has been proved as the main source of short and medium-chain fatty acids of milk. However, the regulatory role of FASN in goat-specific milk fatty acids composition remains unclear. We cloned and analyzed the full-length of FASN gene from the mammary gland of Capra hircus (Xinong Saanen dairy goat) (DQ 915966). Comparative gene expression analysis suggested that FASN is predominantly expressed in fat, small intestine and mammary gland tissues, and expresses higher level at lactation period. Inhibition of FASN activity by different concentrations (0, 5, 15, 25 and 35 μM) of orlistat, a natural inhibitor of FASN, resulted in decreased expression of acetyl-CoA carboxylase α (ACCα), lipoprotein lipase and heart-type fatty acid binding protein (H-FABP) in a concentration-dependent manner in goat mammary gland epithelial cells (GMEC). Similar results were also obtained by silencing of FASN. Additionally, reduction of FASN expression also led to apparent decline of the relative content of decanoic acid (C10:0) and lauric acid (C12:0) in GMEC. Our study provides a direct evidence for inhibition of FASN reduces cellular medium-chain fatty acids synthesis in GMEC.  相似文献   

6.
7.
G protein-coupled receptor kinase-2 and -3 (GRK2 and GRK3) in cardiac myocytes catalyze phosphorylation and desensitization of different G protein-coupled receptors through specificity controlled by their carboxyl-terminal pleckstrin homology domain. Although GRK2 has been extensively investigated, the function of cardiac GRK3 remains unknown. Thus, in this study cardiac function of GRK3 was investigated in transgenic (Tg) mice with cardiac-restricted expression of a competitive inhibitor of GRK3, i.e. the carboxyl-terminal plasma membrane targeting domain of GRK3 (GRK3ct). Cardiac myocytes from Tg-GRK3ct mice displayed significantly enhanced agonist-stimulated alpha(1)-adrenergic receptor-mediated activation of ERK1/2 versus cardiac myocytes from nontransgenic littermate control (NLC) mice consistent with inhibition of GRK3. Tg-GRK3ct mice did not display alterations of cardiac mass or left ventricular dimensions compared with NLC mice. Tail-cuff plethysmography of 3- and 9-month-old mice revealed elevated systolic blood pressure in Tg-GRK3ct mice versus control mice (3-month-old mice, 136.8 +/- 3.6 versus 118.3 +/- 4.7 mm Hg, p < 0.001), an observation confirmed by radiotelemetric recording of blood pressure of conscious, unrestrained mice. Simultaneous recording of left ventricular pressure and volume in vivo by miniaturized conductance micromanometry revealed increased systolic performance with significantly higher stroke volume and stroke work in Tg-GRK3ct mice than in NLC mice. This phenotype was corroborated in electrically paced ex vivo perfused working hearts. However, analysis of left ventricular function ex vivo as a function of increasing filling pressure disclosed significantly reduced (dP/dt)(min) and prolonged time constant of relaxation (tau) in Tg-GRK3ct hearts at elevated supraphysiological filling pressure compared with control hearts. Thus, inhibition of GRK3 apparently reduces tolerance to elevation of preload. In conclusion, inhibition of cardiac GRK3 causes hypertension because of hyperkinetic myocardium and increased cardiac output relying at least partially on cardiac myocyte alpha(1)-adrenergic receptor hyper-responsiveness. The reduced tolerance to elevation of preload may cause impaired ability to withstand pathophysiological mechanisms of heart failure.  相似文献   

8.
Excess myocardial triacylglycerol accumulation (i.e., cardiac steatosis) impairs heart function, suggesting that enzymes promoting triacylglycerol metabolism exert essential regulatory effects on heart function. Comparative gene identification 58 (CGI-58) is a key enzyme that promotes the hydrolysis of triglycerides by activating adipose triglyceride lipase and plays a protective role in maintaining heart function. In this study, the effects of CGI-58 on heart function and the underlying mechanism were investigated using cardiac-specific CGI58-knockout mice (CGI-58cko mice). Echocardiography and pathological staining were performed to detect changes in the structure and function of the heart. Proteomic profiling, immunofluorescent staining, western blotting, and real-time PCR were used to evaluate molecular changes. In CGI-58cko mice, we detected cardiac hypertrophic remodeling and heart failure associated with excessive cardiac lipid accumulation, ROS production, and decreased expression of regulators of fatty acid metabolism. These changes were markedly attenuated in CGI-58cko mice injected with rAAV9-CGI58. A quantitative proteomics analysis revealed significant increases in the expression of ER stress-related proteins and decreases in proteins related to fatty acid and amino acid metabolism in the hearts of CGI-58cko mice. Furthermore, the inhibition of ER stress by the inhibitor 4-PBA improved mitochondrial dysfunction, reduced oxidative stress, and reversed cardiac remodeling and dysfunction in cultured cardiomyocytes or in CGI-58cko mice. Our results suggested that CGI-58 is essential for the maintenance of heart function by reducing lipid accumulation and ER stress in cardiomyocytes, providing a new therapeutic target for cardiac steatosis and dysfunction.Subject terms: Heart failure, Heart failure  相似文献   

9.
An increasing number of investigations including human studies demonstrate that pharmacological ischaemic preconditioning is a viable way to protect the heart from myocardial ischaemia/reperfusion (I/R) injury. This study investigated the role of hydroxychloroquine (HCQ) in the heart during I/R injury. In vitro and in vivo models of myocardial I/R injury were used to assess the effects of HCQ. It was found that HCQ was protective in neonatal rat cardiomyocytes through inhibition of apoptosis, measured by TUNEL and cleaved caspase-3. This protection in vitro was mediated through enhancement of ERK1/2 phosphorylation mediated by HCQ in a dose-dependent fashion. A decrease in infarct size was observed in an in vivo model of myocardial I/R injury in HCQ treated animals and furthermore this protection was blocked in the presence of the ERK1/2 inhibitor U0126. For the first time, we have shown that HCQ promotes a preconditioning like protection in an in vivo simulated rat myocardial I/R injury model. Moreover, it was shown that HCQ is protective via enhanced phosphorylation of the pro-survival kinase ERK1/2.  相似文献   

10.
Continuous hyperglycemia is considered to be the most significant pathogenesis of diabetic cardiomyopathy, which manifests as cardiac hypertrophy and subsequent heart failure. O-GlcNAcylation has attracted attention as a post-translational protein modification in the past decade. The role of O-GlcNAcylation in high glucose-induced cardiomyocyte hypertrophy remains unclear. We studied the effect of O-GlcNAcylation on neonatal rat cardiomyocytes that were exposed to high glucose and myocardium in diabetic rats induced by streptozocin. High glucose (30 mM) incubation induced a greater than twofold increase in cell size and increased hypertrophy marker gene expression accompanied by elevated O-GlcNAcylation protein levels. High glucose increased ERK1/2 but not p38 MAPK or JNK activity, and cyclin D2 expression was also increased. PUGNAc, an inhibitor of β-N-acetylglucosaminidase, enhanced O-GlcNAcylation and imitated the effects of high glucose. OGT siRNA and ERK1/2 inhibition with PD98059 treatment blunted the hypertrophic response and cyclin D2 upregulation. OGT inhibition also prevented ERK1/2 activation. We also observed concentric hypertrophy and similar changes of O-GlcNAcylation level, ERK1/2 activation and cyclin D2 expression in myocardium of diabetic rats induced by streptozocin. In conclusion, O-GlcNAcylation plays a role in high glucose-induced cardiac hypertrophy via ERK1/2 and cyclin D2.  相似文献   

11.
Derangements in metabolism and related signaling pathways characterize the failing heart. One such signal, O-linked β-N-acetylglucosamine (O-GlcNAc), is an essential post-translational modification regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase (OGA), which modulate the function of many nuclear and cytoplasmic proteins. We recently reported reduced OGA expression in the failing heart, which is consistent with the pro-adaptive role of increased O-GlcNAcylation during heart failure; however, molecular mechanisms regulating these enzymes during heart failure remain unknown. Using miRNA microarray analysis, we observed acute and chronic changes in expression of several miRNAs. Here, we focused on miR-539 because it was predicted to target OGA mRNA. Indeed, co-transfection of the OGA-3′UTR containing reporter plasmid and miR-539 overexpression plasmid significantly reduced reporter activity. Overexpression of miR-539 in neonatal rat cardiomyocytes significantly suppressed OGA expression and consequently increased O-GlcNAcylation; conversely, the miR-539 inhibitor rescued OGA protein expression and restored O-GlcNAcylation. In conclusion, this work identifies the first target of miR-539 in the heart and the first miRNA that regulates OGA. Manipulation of miR-539 may represent a novel therapeutic target in the treatment of heart failure and other metabolic diseases.  相似文献   

12.
Growth hormone (GH) has been reported to be useful to treat heart failure. To elucidate whether GH has direct beneficial effects on the heart, we examined effects of GH on oxidative stress-induced apoptosis in cardiac myocytes. TUNEL staining and DNA ladder analysis revealed that hydrogen peroxide (H2O2)-induced apoptosis of cardiomyocytes was significantly suppressed by the pretreatment with GH. GH strongly activated extracellular signal-regulated kinases (ERKs) in cardiac myocytes and the cardioprotective effect of GH was abolished by inhibition of ERKs. Overexpression of dominant negative mutant Ras suppressed GH-stimulated ERK activation. Overexpression of Csk that inactivates Src family tyrosine kinases also inhibited ERK activation evoked by GH. A broad-spectrum inhibitor of protein tyrosine kinases (PTKs), genistein, strongly suppressed GH-induced ERK activation and the cardioprotective effect of GH against apoptotic cell death. GH induced tyrosine phosphorylation of EGF receptor and JAK2 in cardiac myocytes, and an EGF receptor inhibitor tyrphostin AG1478 and a JAK2 inhibitor tyrphostin B42 completely inhibited GH-induced ERK activation. Tyrphostin B42 also suppressed the phosphorylation of EGF receptor stimulated by GH. These findings suggest that GH has a direct protective effect on cardiac myocytes against apoptosis and that the effect of GH is attributed at least in part to the activation of ERKs through Ras and PTKs including JAK2, Src, and EGF receptor tyrosine kinase.  相似文献   

13.
Aldose reductase (AR), an enzyme mediating the first step in the polyol pathway of glucose metabolism, is associated with complications of diabetes mellitus and increased cardiac ischemic injury. We investigated whether deleterious effects of AR are due to its actions specifically in cardiomyocytes. We created mice with cardiac specific expression of human AR (hAR) using the α–myosin heavy chain (MHC) promoter and studied these animals during aging and with reduced fatty acid (FA) oxidation. hAR transgenic expression did not alter cardiac function or glucose and FA oxidation gene expression in young mice. However, cardiac overexpression of hAR caused cardiac dysfunction in older mice. We then assessed whether hAR altered heart function during ischemia reperfusion. hAR transgenic mice had greater infarct area and reduced functional recovery than non-transgenic littermates. When the hAR transgene was crossed onto the PPAR alpha knockout background, another example of greater heart glucose oxidation, hAR expressing mice had increased heart fructose content, cardiac fibrosis, ROS, and apoptosis. In conclusion, overexpression of hAR in cardiomyocytes leads to cardiac dysfunction with aging and in the setting of reduced FA and increased glucose metabolism. These results suggest that pharmacological inhibition of AR will be beneficial during ischemia and in some forms of heart failure.  相似文献   

14.
DNA methylation and histone acetylation inhibitors are widely used to study the role of epigenetic marks in the regulation of gene expression. In addition, several of these molecules are being tested in clinical trials or already in use in the clinic. Antimetabolites, such as the DNA-hypomethylating agent 5-azacytidine (5-AzaC), have been shown to lower malignant progression to acute myeloid leukemia and to prolong survival in patients with myelodysplastic syndromes. Here we examined the effects of DNA methylation inhibitors on the expression of lipid biosynthetic and uptake genes. Our data demonstrate that, independently of DNA methylation, 5-AzaC selectively and very potently reduces expression of key genes involved in cholesterol and lipid metabolism (e.g. PCSK9, HMGCR, and FASN) in all tested cell lines and in vivo in mouse liver. Treatment with 5-AzaC disturbed subcellular cholesterol homeostasis, thereby impeding activation of sterol regulatory element-binding proteins (key regulators of lipid metabolism). Through inhibition of UMP synthase, 5-AzaC also strongly induced expression of 1-acylglycerol-3-phosphate O-acyltransferase 9 (AGPAT9) and promoted triacylglycerol synthesis and cytosolic lipid droplet formation. Remarkably, complete reversal was obtained by the co-addition of either UMP or cytidine. Therefore, this study provides the first evidence that inhibition of the de novo pyrimidine synthesis by 5-AzaC disturbs cholesterol and lipid homeostasis, probably through the glycerolipid biosynthesis pathway, which may contribute mechanistically to its beneficial cytostatic properties.  相似文献   

15.
Survival and adaptation to oxidative stress is important for many organisms, and these occur through the activation of many different signaling pathways. In this report, we showed that Caenorhabditis (C.) elegans G protein–coupled receptor kinases modified the ability of the organism to resist oxidative stress. In acute oxidative stress studies using juglone, loss-of-function grk-2 mutants were more resistant to oxidative stress compared with loss-of-function grk-1 mutants and the wild-type N2 animals. This effect was Ce-AKT-1 dependent, suggesting that Ce-GRK2 adjusted C. elegans oxidative stress resistance through the IGF/insulin-like signaling (IIS) pathway. Treating C. elegans with a GRK2 inhibitor, the selective serotonin reuptake inhibitor paroxetine, resulted in increased acute oxidative stress resistance compared with another selective serotonin reuptake inhibitor, fluoxetine. In chronic oxidative stress studies with paraquat, both grk-1 and grk-2 mutants had longer lifespan compared with the wild-type N2 animals in stress. In summary, this research showed the importance of both GRKs, especially GRK2, in modifying oxidative stress resistance.  相似文献   

16.
Septic shock results from bacterial infection and is associated with multi-organ failure, high mortality, and cardiac dysfunction. Sepsis causes both myocardial inflammation and energy depletion. We hypothesized that reduced cardiac energy production is a primary cause of ventricular dysfunction in sepsis. The JNK pathway is activated in sepsis and has also been implicated in impaired fatty acid oxidation in several tissues. Therefore, we tested whether JNK activation inhibits cardiac fatty acid oxidation and whether blocking JNK would restore fatty acid oxidation during LPS treatment. LPS treatment of C57BL/6 mice and adenovirus-mediated activation of the JNK pathway in cardiomyocytes inhibited peroxisome proliferator-activated receptor α expression and fatty acid oxidation. Surprisingly, none of the adaptive responses that have been described in other types of heart failure, such as increased glucose utilization, reduced αMHC:βMHC ratio or induction of certain microRNAs, occurred in LPS-treated mice. Treatment of C57BL/6 mice with a general JNK inhibitor (SP600125) increased fatty acid oxidation in mice and a cardiomyocyte-derived cell line. JNK inhibition also prevented LPS-mediated reduction in fatty acid oxidation and cardiac dysfunction. Inflammation was not alleviated in LPS-treated mice that received the JNK inhibitor. We conclude that activation of JNK signaling reduces fatty acid oxidation and prevents the peroxisome proliferator-activated receptor α down-regulation that occurs with LPS.  相似文献   

17.
Cardiomyocyte loss is the main cause of myocardial dysfunction following an ischemia-reperfusion (IR) injury. Mitochondrial dysfunction and altered mitochondrial network dynamics play central roles in cardiomyocyte death. Proteasome inhibition is cardioprotective in the setting of IR; however, the mechanisms underlying this protection are not well-understood. Several proteins that regulate mitochondrial dynamics and energy metabolism, including Mitofusin-2 (Mfn2), are degraded by the proteasome. The aim of this study was to evaluate whether proteasome inhibition can protect cardiomyocytes from IR damage by maintaining Mfn2 levels and preserving mitochondrial network integrity. Using ex vivo Langendorff-perfused rat hearts and in vitro neonatal rat ventricular myocytes, we showed that the proteasome inhibitor MG132 reduced IR-induced cardiomyocyte death. Moreover, MG132 preserved mitochondrial mass, prevented mitochondrial network fragmentation, and abolished IR-induced reductions in Mfn2 levels in heart tissue and cultured cardiomyocytes. Interestingly, Mfn2 overexpression also prevented cardiomyocyte death. This effect was apparently specific to Mfn2, as overexpression of Miro1, another protein implicated in mitochondrial dynamics, did not confer the same protection. Our results suggest that proteasome inhibition protects cardiomyocytes from IR damage. This effect could be partly mediated by preservation of Mfn2 and therefore mitochondrial integrity.  相似文献   

18.
The Notch signaling pathway plays versatile roles during heart development. However, there is contradictory evidence that Notch pathway either facilitates or impairs cardiomyogenesis in vitro. In this study, we developed iPSCs by reprogramming of murine fibroblasts with GFP expression governed by Oct4 promoter, and identified an effective strategy to enhance cardiac differentiation through timely modulation of Notch signaling. The Notch inhibitor DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester) alone drove the iPSCs to a neuronal fate. After mesoderm induction of embryoid bodies initiated by ascorbic acid (AA), the subsequent treatment of DAPT accelerated the generation of spontaneously beating cardiomyocytes. The timed synergy of AA and DAPT yielded an optimal efficiency of cardiac differentiation. Mechanistic studies showed that Notch pathway plays a biphasic role in cardiomyogenesis. It favors the early–stage cardiac differentiation, but exerts negative effects on the late-stage differentiation. Therefore, DAPT administration at the late stage enforced the inhibition of endogenous Notch activity, thereby enhancing cardiomyogenesis. In parallel, DAPT dramatically augmented the expression of Wnt3a, Wnt11, BMP2, and BMP4. In conclusion, our results highlight a practicable approach to generate cardiomyocytes from iPSCs based on the stage-specific biphasic roles of Notch signaling in cardiomyogenesis.  相似文献   

19.
G‐protein‐coupled receptor kinase 2 (GRK2) is a member of a kinase family originally discovered for its role in the phosphorylation and desensitization of G‐protein‐coupled receptors. It is expressed in high levels in myeloid cells and its levels are altered in many inflammatory disorders including sepsis. To address the physiological role of myeloid cell‐specific GRK2 in inflammation, we generated mice bearing GRK2 deletion in myeloid cells (GRK2?mye). GRK2?mye mice exhibited exaggerated inflammatory cytokine/chemokine production, and organ injury in response to lipopolysaccharide (LPS, a TLR4 ligand) when compared to wild‐type littermates (GRK2fl/fl). Consistent with this, peritoneal macrophages from GRK2?mye mice showed enhanced inflammatory cytokine levels when stimulated with LPS. Our results further identify TLR4‐induced NF‐κB1p105‐ERK pathway to be selectively regulated by GRK2. LPS‐induced activation of NF‐κB1p105‐MEK‐ERK pathway is significantly enhanced in the GRK2?mye macrophages compared to GRK2fl/fl cells and importantly, inhibition of the p105 and ERK pathways in the GRK2?mye macrophages, limits the enhanced production of LPS‐induced cytokines/chemokines. Taken together, our studies reveal previously undescribed negative regulatory role for GRK2 in TLR4‐induced p105‐ERK pathway as well as in the consequent inflammatory cytokine/chemokine production and endotoxemia in mice. J. Cell. Physiol. 226: 627–637, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Transgenic mice with cardiac-specific expression of a peptide inhibitor of G protein-coupled receptor kinase (GRK)3 [transgenic COOH-terminal GRK3 (GRK3ct) mice] display myocardial hypercontractility without hypertrophy and enhanced α(1)-adrenergic receptor signaling. A role for GRK3 in the pathogenesis of heart failure (HF) has not been investigated, but inhibition of its isozyme, GRK2, has been beneficial in several HF models. Here, we tested whether inhibition of GRK3 modulated evolving cardiac hypertrophy and dysfunction after pressure overload. Weight-matched male GRK3ct transgenic and nontransgenic littermate control (NLC) mice subjected to chronic pressure overload by abdominal aortic banding (AB) were compared with sham-operated (SH) mice. At 6 wk after AB, a significant increase of cardiac mass consistent with induction of hypertrophy was found, but no differences between GRK3ct-AB and NLC-AB mice were discerned. Simultaneous left ventricular (LV) pressure-volume analysis of electrically paced, ex vivo perfused working hearts revealed substantially reduced systolic and diastolic function in NLC-AB mice (n = 7), which was completely preserved in GRK3ct-AB mice (n = 7). An additional cohort was subjected to in vivo cardiac catheterization and LV pressure-volume analysis at 12 wk after AB. NLC-AB mice (n = 11) displayed elevated end-diastolic pressure (8.5 ± 3.1 vs. 2.9 ± 1.2 mmHg, P < 0.05), reduced cardiac output (3,448 ± 323 vs. 4,488 ± 342 μl/min, P < 0.05), and reduced dP/dt(max) and dP/dt(min) (both P < 0.05) compared with GRK3ct-AB mice (n = 16), corroborating the preserved cardiac structure and function observed in GRK3ct-AB hearts assessed ex vivo. Increased cardiac mass and myocardial mRNA expression of β-myosin heavy chain confirmed the similar induction of cardiac hypertrophy in both AB groups, but only NLC-AB hearts displayed significantly elevated mRNA levels of brain natriuretic peptide and myocardial collagen contents as well as reduced β(1)-adrenergic receptor responsiveness to isoproterenol, indicating increased LV wall stress and the transition to HF. Inhibition of cardiac GRK3 in mice does not alter the hypertrophic response but attenuates cardiac dysfunction and HF after chronic pressure overload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号