首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antimicrobial peptides (AMPs) are critical components of the innate immune system and exhibit bactericidal activity against a broad spectrum of bacteria. We investigated the use of N‐substituted glycine peptoid oligomers as AMP mimics with potent antimicrobial activity. The antimicrobial mechanism of action varies among different AMPs, but many of these peptides can penetrate bacterial cell membranes, causing cell lysis. We previously hypothesized that amphiphilic cyclic peptoids may act through a similar pore formation mechanism against methicillin‐resistant Staphylococcus aureus (MRSA). Peptoid‐induced membrane disruption is observed by scanning electron microscopy and results in a loss of membrane integrity. We demonstrate that the antimicrobial activity of the peptoids is attenuated with the addition of polyethylene glycol osmoprotectants, signifying protection from a loss of osmotic balance. This decrease in antimicrobial activity is more significant with larger osmoprotectants, indicating that peptoids form pores with initial diameters of ~2.0–3.8 nm. The initial membrane pores formed by cyclic peptoid hexamers are comparable in diameter to those formed by larger and structurally distinct AMPs. After 24 h, the membrane pores expand to >200 nm in diameter. Together, these results indicate that cyclic peptoids exhibit a mechanism of action that includes effects manifested at the cell membrane of MRSA. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 227–236, 2015.  相似文献   

2.
Synthetic polymers mimicking antimicrobial peptides have drawn considerable interest as potential therapeutics. N-substituted glycines, or peptoids, are recognized by their in vivo stability and ease of synthesis. Peptoids are thought to act primarily on the negatively charged lipids that are abundant in bacterial cell membranes. A mechanistic understanding of lipid–peptoid interaction at the molecular level will provide insights for rational design and optimization of peptoids. Here, we highlight recent studies that utilize synchrotron liquid surface X-ray scattering to characterize the underlying peptoid interactions with bacterial and eukaryotic membranes. Cellular membranes are highly complex, and difficult to characterize at the molecular level. Model systems including Langmuir monolayers, are used in these studies to reduce system complexity. The general workflow of these systems and the corresponding data analysis techniques are presented alongside recent findings. These studies investigate the role of peptoid physicochemical characteristics on membrane activity. Specifically, the roles of cationic charge, conformational constraint via macrocyclization, and hydrophobicity are shown to correlate their membrane interactions to biological activities in vitro. These structure–activity relationships have led to new insights into the mechanism of action by peptoid antimicrobials, and suggest optimization strategies for future therapeutics based on peptoids.  相似文献   

3.
Peptoids are peptidomimetic polymers that are resistant to proteolysis and less prone to immune responses; thus, they can provide a practical alternative to peptides. Among the various therapeutic applications that have been explored, cationic amphipathic peptoids have demonstrated broad-spectrum antibacterial activity, including activity towards drug-resistant bacterial strains. While their potency and activity spectrum can be manipulated by sequence variations, bacterial selectivity and systemic toxicity need to be improved for further clinical development. To this aim, we incorporated various hydrophobic or cationic residues to improve the selectivity of the previously developed antibacterial peptoid 1. The analogs with hydrophobic residues demonstrated non-specific cytotoxicity, while those with an additional cationic residue showed improved selectivity and comparable antibacterial activity. Specifically, compared to 1, peptoid 7 showed much lower hemolysis and cytotoxicity, while maintaining the antibacterial activity. Therefore, we believe that peptoid 7?has the potential to serve as a promising alternative to current antimicrobial therapies.  相似文献   

4.
Antimicrobial peptides (AMPs) represent a potential new class of antimicrobial drugs with potent and broad-spectrum activities. However, knowledge about the mechanisms and rates of resistance development to AMPs and the resulting effects on fitness and cross-resistance is limited. We isolated antimicrobial peptide (AMP) resistant Salmonella typhimurium LT2 mutants by serially passaging several independent bacterial lineages in progressively increasing concentrations of LL-37, CNY100HL and Wheat Germ Histones. Significant AMP resistance developed in 15/18 independent bacterial lineages. Resistance mutations were identified by whole genome sequencing in two-component signal transduction systems (pmrB and phoP) as well as in the LPS core biosynthesis pathway (waaY, also designated rfaY). In most cases, resistance was associated with a reduced fitness, observed as a decreased growth rate, which was dependent on growth conditions and mutation type. Importantly, mutations in waaY decreased bacterial susceptibility to all tested AMPs and the mutant outcompeted the wild type parental strain at AMP concentrations below the MIC for the wild type. Our data suggests that resistance to antimicrobial peptides can develop rapidly through mechanisms that confer cross-resistance to several AMPs. Importantly, AMP-resistant mutants can have a competitive advantage over the wild type strain at AMP concentrations similar to those found near human epithelial cells. These results suggest that resistant mutants could both be selected de novo and maintained by exposure to our own natural repertoire of defence molecules.  相似文献   

5.
Listeria monocytogenes is an opportunistic Gram-positive bacterial pathogen responsible for listeriosis, a human foodborne disease. Its cell wall is densely decorated with wall teichoic acids (WTAs), a class of anionic glycopolymers that play key roles in bacterial physiology, including protection against the activity of antimicrobial peptides (AMPs). In other Gram-positive pathogens, WTA modification by amine-containing groups such as D-alanine was largely correlated with resistance to AMPs. However, in L. monocytogenes, where WTA modification is achieved solely via glycosylation, WTA-associated mechanisms of AMP resistance were unknown. Here, we show that the L-rhamnosylation of L. monocytogenes WTAs relies not only on the rmlACBD locus, which encodes the biosynthetic pathway for L-rhamnose, but also on rmlT encoding a putative rhamnosyltransferase. We demonstrate that this WTA tailoring mechanism promotes resistance to AMPs, unveiling a novel link between WTA glycosylation and bacterial resistance to host defense peptides. Using in vitro binding assays, fluorescence-based techniques and electron microscopy, we show that the presence of L-rhamnosylated WTAs at the surface of L. monocytogenes delays the crossing of the cell wall by AMPs and postpones their contact with the listerial membrane. We propose that WTA L-rhamnosylation promotes L. monocytogenes survival by decreasing the cell wall permeability to AMPs, thus hindering their access and detrimental interaction with the plasma membrane. Strikingly, we reveal a key contribution of WTA L-rhamnosylation for L. monocytogenes virulence in a mouse model of infection.  相似文献   

6.

Analysis of a Selected Set of Antimicrobial Peptides

The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram-negative bacteria. We compared the potency of Cap18, Cap11, Cap11-1-18m2, Cecropin P1, Cecropin B, Bac2A, Bac2A-NH2, Sub5-NH2, Indolicidin, Melittin, Myxinidin, Myxinidin-NH2, Pyrrhocoricin, Apidaecin and Metalnikowin I towards Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, Aeromonas salmonicida, Listeria monocytogenes, Campylobacter jejuni, Flavobacterium psychrophilum, Salmonella typhimurium and Yersinia ruckeri by minimal inhibitory concentration (MIC) determinations. Additional characteristics such as cytotoxicity, thermo and protease stability were measured and compared among the different peptides. Further, the antimicrobial activity of a selection of cationic AMPs was investigated in various E. coli LPS mutants.

Cap18 Shows a High Broad Spectrum Antimicrobial Activity

Of all the tested AMPs, Cap18 showed the most efficient antimicrobial activity, in particular against Gram-negative bacteria. In addition, Cap18 is highly thermostable and showed no cytotoxic effect in a hemolytic assay, measured at the concentration used. However, Cap18 is, as most of the tested AMPs, sensitive to proteolytic digestion in vitro. Thus, Cap18 is an excellent candidate for further development into practical use; however, modifications that should reduce the protease sensitivity would be needed. In addition, our findings from analyzing LPS mutant strains suggest that the core oligosaccharide of the LPS molecule is not essential for the antimicrobial activity of cationic AMPs, but in fact has a protective role against AMPs.  相似文献   

7.
The increase in prevalence of antimicrobial resistance makes the search for new antibiotic agents imperative. Antimicrobial peptides (AMPs) from natural resources have been recognized as suitable tools to combat antibiotic-resistant bacteria. The liver fluke Clonorchis sinensis living in germ-filled environments could be a good source of antimicrobials. Here, we report the use of a rational protocol that combines AMP predictions based on their physicochemical properties and their in vivo stability to discover AMP candidates from the entire genome of C. sinensis. To screen AMP candidates, in silico analyses based on the physicochemical properties of known AMPs, such as length, charge, isoelectric point, and in vitro and in vivo aggregation values were performed. To enhance their in vivo stability, proteins having proteolytic cleavage sites were excluded. As a consequence, four high-activity, highstability peptides were identified. These peptides could be potential starting materials for the development of new AMPs via structural modification and optimization. Thus, this study proposes a refined computational method to develop new AMPs and identifies four AMP candidates, which could serve as templates for further development of peptide antibiotics.  相似文献   

8.
Bacterial drug resistance is emerging as one of the most significant challenges to human health. Antimicrobial peptides (AMPs), which are produced by many tissues and cell types of invertebrates, insects, and humans, as part of their innate immune system, have attracted considerable interest as alternative antibiotics. Interest in novel mimics of AMPs has increased greatly over the last few years. This report details a new AMP mimic, based on phenylene ethynylene, with improved antimicrobial activity and selectivity. Screening against a large set of bacterial and other organisms demonstrates broad spectrum antimicrobial activity including activity against antibiotic resistant bacterial like methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) as well as activity against yeast (Candida albicans) and fungus (Stachybotrys chartarum). Bacterial resistance development studies using Staphylococcus aureus show a rapid increase in MIC for conventional antibiotics, ciprofloxacin and norfloxacin. In sharp contrast, no change in MIC was observed for the AMP mimic. Cytotoxicity experiments show that the AMP mimic acts preferentially on microbes as opposed to mammalian red blood cells, 3T3 fibroblasts, and HEPG2 cells. In vivo experiments determined the maximum tolerated dose (MTD) to be 10 mg/kg suggesting a therapeutic window is available. These studies indicate that nonpeptidic amphiphilic AMP mimics could be developed as potential new treatments for antibiotic-resistant bacterial infections.  相似文献   

9.
Antimicrobial‐peptide‐based therapies could represent a reliable alternative to overcome antibiotic resistance, as they offer potential advantages such as rapid microbicidal activity and multiple activities against a broad spectrum of bacterial pathogens. Three synthetic antimicrobial peptides (AMPs), AMP72, AMP126, and also AMP2041, designed by using ad hoc screening software developed in house, were synthesized and tested against nine reference strains. The peptides showed a partial β‐sheet structure in 10‐mM phosphate buffer. Low cytolytic activity towards both human cell lines (epithelial, endothelial, and fibroblast) and sheep erythrocytes was observed for all peptides. The antimicrobial activity was dose dependent with a minimum bactericidal concentration (MBC) ranging from 0.17 to 10.12 μM (0.4–18.5 µg/ml) for Gram‐negative and 0.94 to 20.65 μM (1.72‐46.5 µg/ml) for Gram‐positive bacteria. Interestingly, in high‐salt environment, the antibacterial activity was generally maintained for Gram‐negative bacteria. All peptides achieved complete bacterial killing in 20 min or less against Gram‐negative bacteria. A linear time‐dependent membrane permeabilization was observed for the tested peptides at 12.5 µg/ml. In a medium containing Mg2+ and Ca2+, the peptide combination with EDTA restores the antimicrobial activity particularly for AMP2041. Moreover, in combination with anti‐infective agents (quinolones or aminoglycosides) known to bind divalent cation, AMP126 and AMP2041 showed additive activity in comparison with colistin. Our results suggest the following: (i) there is excellent activity against Gram‐negative bacteria, (ii) there is low cytolytic activity, (iii) the presence of a chelating agent restores the antimicrobial activity in a medium containing Mg2+ and Ca2+, and (iv) the MBC value of the combination AMPs–conventional antibiotics was lower than the MBC of single agents alone. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The inclusion of peptoid monomers into antimicrobial peptides (AMPs) increases their proteolytic resistance, but introduces conformational flexibility (reduced hydrogen bonding ability and cis/trans isomerism). We here use NMR spectroscopy to answer how the insertion of a peptoid monomer influences the structure of a regular α-helical AMP upon interaction with a dodecyl phosphocholine (DPC) micelle. Insertion of [(2-methylpropyl)amino]acetic acid in maculatin-G15 shows that the structural change and conformational flexibility depends on the site of insertion. This is governed by the micelle interaction of the amphipathic helices flanking the peptoid monomer and the side chain properties of the peptoid and its preceding residue.  相似文献   

11.
12.
Antimicrobial peptides (AMPs) have attracted attentions as a novel antimicrobial agent because of their unique activity against microbes. In the present study, we described a new, previously unreported AMP, moronecidin-like peptide, from Hippocampus comes and compared its antimicrobial activity with moronecidin from hybrid striped bass. Antibacterial assay indicated that gram-positive bacteria were more sensitive to moronecidin and moronecidin-like compared with gram-negative bacteria. Furthermore, both AMPs were found to exhibit effective antifungal activity. Comparative analysis of the antimicrobial activity revealed that moronecidin-like peptide has higher activity against Acinetobacter baumannii and Staphylococcus epidermidis relative to moronecidin. Both moronecidin-like and moronecidin peptides retained their antibacterial activity in physiological pH and salt concentration. The time-killing assay showed that the AMPs completely killed A. baumannii and S. epidermidis isolates after 1 and 5 h at five- and tenfold above their corresponding MICs, respectively. Anti-biofilm assay demonstrated that peptides were able to inhibit 50% of biofilm formation at sub-MIC of 1/8 MIC. Furthermore, moronecidin-like significantly inhibited biofilm formation more than moronecidin at 1/16 MIC. Collectively, our results revealed that antimicrobial and anti-biofilm activities of moronecidin-like are comparable to moronecidin. In addition, the hemolytic and cytotoxic activities of moronecidin-like were lower than those of moronecidin, suggesting it as a potential novel therapeutic agent, and a template to design new therapeutic AMPs.  相似文献   

13.
《Biophysical journal》2022,121(17):3263-3270
Development of a robust, uniform, and magnetically orientable lipid mimetic will undoubtedly advance solid-state NMR of macroscopically aligned membrane proteins. Here, we report on a novel lipid membrane mimetic based on peptoid belts. The peptoids, composed of 15 residues, were synthesized by alternating N-(2-phenethyl)glycine with N-(2-carboxyethyl)glycine residues at a 2:1 molar ratio. The chemically synthesized peptoids possess a much lower degree of polydispersity versus styrene-maleic acid polymers, thus yielding uniform discs. Moreover, the peptoid oligomers are more flexible and do not require a specific folding, unlike lipoproteins, in order to wrap around the hydrophobic membrane core. The NMR spectra measured for the membrane-bound form of Pf1 coat protein incorporated in this new lipid mimetics demonstrate a higher order parameter and uniform linewidths compared with the conventional bicelles and peptide-based macrodiscs. Importantly, unlike bicelles, the peptoid-based macrodiscs are detergent free.  相似文献   

14.
Various semen extender formulas are in use to maintain sperm longevity and quality whilst acting against bacterial contamination in liquid sperm preservation. Aminoglycosides are commonly supplemented to aid in the control of bacteria. As bacterial resistance is increasing worldwide, antimicrobial peptides (AMPs) received lively interest as alternatives to overcome multi-drug resistant bacteria. We investigated, whether synthetic cationic AMPs might be a suitable alternative for conventional antibiotics in liquid boar sperm preservation. The antibacterial activity of two cyclic AMPs (c-WWW, c-WFW) and a helical magainin II amide analog (MK5E) was studied in vitro against two Gram-positive and eleven Gram-negative bacteria. Isolates included ATCC reference strains, multi-resistant E. coli and bacteria cultured from boar semen. Using broth microdilution, minimum inhibitory concentrations were determined for all AMPs. All AMPs revealed activity towards the majority of bacteria but not against Proteus spp. (all AMPs) and Staphylococcus aureus ATCC 29213 (MK5E). We could also demonstrate that c-WWW and c-WFW were effective against bacterial growth in liquid preserved boar semen in situ, especially when combined with a small amount of gentamicin. Our results suggest that albeit not offering a complete alternative to traditional antibiotics, the use of AMPs offers a promising solution to decrease the use of conventional antibiotics and thereby limit the selection of multi-resistant strains.  相似文献   

15.
Antimicrobial peptides (AMPs) were recently determined to be potential candidates for treating drug-resistant bacterial infections. The aim of this study was to develop shorter AMP fragments that combine maximal bactericidal effect with minimal synthesis cost. We first synthesized a series of truncated forms of AMPs (anti-lipopolysaccharide factor from shrimp, epinecidin from grouper, and pardaxin from Pardachirus marmoratus). The minimum inhibitory concentrations (MICs) of modified AMPs against ten bacterial species were determined. We also examined the synergy between peptide and non-peptide antibiotics. In addition, we measured the inhibitory rate of cancer cells treated with AMPs by MTS assay. We found that two modified antibacterial peptides (epinecidin-8 and pardaxin-6) had a broad range of action against both gram-positive and gram-negative bacteria. Furthermore, epinecidin and pardaxin were demonstrated to have high antibacterial and anticancer activities, and both AMPs resulted in a significant synergistic improvement in the potencies of streptomycin and kanamycin against methicillin-resistant Staphylococcus aureus. Neither AMP induced significant hemolysis at their MICs. In addition, both AMPs inhibited human epithelial carcinoma (HeLa) and fibrosarcoma (HT-1080) cell growth. The functions of these truncated AMPs were similar to those of their full-length equivalents. In conclusion, we have successfully identified shorter, inexpensive fragments with maximal bactericidal activity. This study also provides an excellent basis for the investigation of potential synergies between peptide and non-peptide antibiotics, for a broad range of antimicrobial and anticancer activities.  相似文献   

16.
17.
We have recently reported a peptoid (N-alkyl-oligoglycine) molecule that binds to the Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) with high affinity and specificity. Moreover, this peptoid is capable of inhibiting VEGFR2 function in vivo (Udugamasooriya et al. J Am Chem Soc 130:5744–5745, 2008) and thus is a lead compound for anti-angiogenic agents. Moreover, the assay developed to identify this VEGFR2 inhibitor is likely to be a general route to peptoid antagonists or agonists of integral membrane receptors. Therefore, it is important to determine whether the VEGFR2-targeted peptoid, and indeed peptoids in general, are inherently immunogenic since an anti-peptoid immune response would significantly complicate their development as therapeutic candidates. In this study, the VEGFR2-targeted peptoid as well as other peptoids of varying lengths were injected into mice along with an immunostimulatory agent. We demonstrate that no significant anti-peptoid immune response is induced. It is further shown that this is not a trivial result of the lack of immunogenicity of a particular peptoid sequence, since conjugation of the peptoids to carrier proteins such as KLH prior to injection induces a robust anti-peptoid immune response. We conclude that free peptoid molecules are not immunogenic, probably due to a lack of T cell epitopes and that peptoid-based therapeutics are therefore not likely to be hindered by anti-peptoid antibody production in most cases.  相似文献   

18.
Air pollution is a risk factor for respiratory infections, and one of its main components is particulate matter (PM), which is comprised of a number of particles that contain iron, such as coal fly ash (CFA). Since free iron concentrations are extremely low in airway surface liquid (ASL), we hypothesize that CFA impairs antimicrobial peptides (AMP) function and can be a source of iron to bacteria. We tested this hypothesis in vivo by instilling mice with Pseudomonas aeruginosa (PA01) and CFA and determine the percentage of bacterial clearance. In addition, we tested bacterial clearance in cell culture by exposing primary human airway epithelial cells to PA01 and CFA and determining the AMP activity and bacterial growth in vitro. We report that CFA is a bioavailable source of iron for bacteria. We show that CFA interferes with bacterial clearance in vivo and in primary human airway epithelial cultures. Also, we demonstrate that CFA inhibits AMP activity in vitro, which we propose as a mechanism of our cell culture and in vivo results. Furthermore, PA01 uses CFA as an iron source with a direct correlation between CFA iron dissolution and bacterial growth. CFA concentrations used are very relevant to human daily exposures, thus posing a potential public health risk for susceptible subjects. Although CFA provides a source of bioavailable iron for bacteria, not all CFA particles have the same biological effects, and their propensity for iron dissolution is an important factor. CFA impairs lung innate immune mechanisms of bacterial clearance, specifically AMP activity. We expect that identifying the PM mechanisms of respiratory infections will translate into public health policies aimed at controlling, not only concentration of PM exposure, but physicochemical characteristics that will potentially cause respiratory infections in susceptible individuals and populations.  相似文献   

19.
20.
As proteolytically stable peptidomimetics, peptoids could serve as antifungal agents to supplement a therapeutic field wrought with toxicity issues. We report the improvement of an antifungal peptoid, AEC5, through an iterative structure-activity relationship study. A sarcosine scan was used to first identify the most pharmacophorically important peptoid building blocks of AEC5, followed by sequential optimization of each building block. The optimized antifungal peptoid from this study, β-5, has improved potency towards Cryptococcus neoformans and decreased toxicity towards mammalian cells. For example, the selectivity ratio for C. neoformans over mammalian fibroblasts was improved from 8 for AEC5 to 37 for β-5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号