首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Twin, family and recent molecular studies support the hypothesis of genetic overlapping between schizophrenia and bipolar disorder. Brain structural features shared by both psychiatric disorders might be the phenotypic expression of a common genetic risk background. Interleukin‐1 (IL‐1) cluster (chromosome 2q13) genetic variability, previously associated with an increased risk both for schizophrenia and for bipolar disorder, has been also associated with gray matter (GM) deficits, ventricular enlargement and hypoactivity of prefrontal cortex in schizophrenia. The aim of the present study was to analyze the influence of IL‐1 cluster on brain morphology in bipolar disorder. Genetic variability at IL‐1B and IL‐1RN genes was analyzed in 20 DSM‐IV ( Diagnostic and Statistical Manual of Mental Disorders ‐Fourth Edition) bipolar patients. Magnetic resonance imaging (MRI) measurements were obtained for whole‐brain GM and white matter, dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus, hippocampus and lateral ventricles. MRI data were corrected for age and cranial size using regression parameters from a group of 45 healthy subjects. A ?511C/T polymorphism (rs16944) of IL‐1B gene was associated with whole‐brain GM deficits (P = 0.031) and left DLPFCGM deficits (P = 0.047) in bipolar disorder patients. These findings support the hypothesis of IL‐1 cluster variability as a shared genetic risk factor contributing to GM deficits both in bipolar disorder and in schizophrenia. Independent replication in larger samples would be of interest to confirm these results.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Schizophrenia and bipolar disorder are leading causes of morbidity across all populations, with heritability estimates of ∼80% indicating a substantial genetic component. Population genetics and genome-wide association studies suggest an overlap of genetic risk factors between these illnesses but it is unclear how this genetic component is divided between common gene polymorphisms, rare genomic copy number variants, and rare gene sequence mutations. We report evidence that the lipid transporter gene ABCA13 is a susceptibility factor for both schizophrenia and bipolar disorder. After the initial discovery of its disruption by a chromosome abnormality in a person with schizophrenia, we resequenced ABCA13 exons in 100 cases with schizophrenia and 100 controls. Multiple rare coding variants were identified including one nonsense and nine missense mutations and compound heterozygosity/homozygosity in six cases. Variants were genotyped in additional schizophrenia, bipolar, depression (n > 1600), and control (n > 950) cohorts and the frequency of all rare variants combined was greater than controls in schizophrenia (OR = 1.93, p = 0.0057) and bipolar disorder (OR = 2.71, p = 0.00007). The population attributable risk of these mutations was 2.2% for schizophrenia and 4.0% for bipolar disorder. In a study of 21 families of mutation carriers, we genotyped affected and unaffected relatives and found significant linkage (LOD = 4.3) of rare variants with a phenotype including schizophrenia, bipolar disorder, and major depression. These data identify a candidate gene, highlight the genetic overlap between schizophrenia, bipolar disorder, and depression, and suggest that rare coding variants may contribute significantly to risk of these disorders.  相似文献   

13.
14.
Subburaju S  Benes FM 《PloS one》2012,7(3):e33352
Recent studies of the hippocampus have suggested that a network of genes is associated with the regulation of the GAD67 (GAD1) expression and may play a role in γ-amino butyric acid (GABA) dysfunction in schizophrenia (SZ) and bipolar disorder (BD). To obtain a more detailed understanding of how GAD67 regulation may result in GABAergic dysfunction, we have developed an in vitro model in which GABA cells are differentiated from the hippocampal precursor cell line, HiB5. Growth factors, such as PDGF, and BDNF, regulate the GABA phenotype by inducing the expression of GAD67 and stimulating the growth of cellular processes, many with growth cones that form appositions with the cell bodies and processes of other GAD67-positive cells. These changes are associated with increased expression of acetylated tubulin, microtubule-associated protein 2 (MAP2) and the post-synaptic density protein 95 (PSD95). The addition of BDNF, together with PDGF, increases the levels of mRNA and protein for GAD67, as well as the high affinity GABA uptake protein, GAT1. These changes are associated with increased concentrations of GABA in the cytoplasm of “differentiated” HiB5 neurons. In the presence of Ca2+ and K+, newly synthesized GABA is released extracellularly. When the HiB5 cells appear to be fully differentiated, they also express GAD65, parvalbumin and calbindin, and GluR subtypes as well as HDAC1, DAXX, PAX5, Runx2, associated with GAD67 regulation. Overall, these results suggest that the HiB5 cells can differentiate into functionally mature GABA neurons in the presence of gene products that are associated with GAD67 regulation in the adult hippocampus.  相似文献   

15.
The synaptic connectivity between rod bipolar cells and GABAergic neurons in the inner plexiform layer (IPL) of the rat retina was studied using two immunocytochemical markers. Rod bipolar cells were stained with an antibody specific for protein kinase C (PKC, α isoenzyme), and GABAergic neurons were stained with an antiserum specific for glutamic-acid decarboxylase (GAD). Some amacrine cells were also labeled with the anti-PKC antiserum. All PKC-labeled amacrine cells examined showed GABA immunoreactivity, indicating that PKC-labeled amacrine cells constitute a subpopulation of GABAergic amacrine cells in the rat retina. A total of 150 ribbon synapses established by rod bipolar cells were observed in the IPL. One member of the postsynaptic dyads was always an unlabeled AII amacrine cell process, and the other belonged to an amacrine-cell process showing GAD immunoreactivity. The majority (n=92) (61.3%) of these processes made reciprocal synapses back to the axon terminals of rod bipolar cells. In addition, 78 conventional synapses onto rod bipolar axons were observed, and among them 52 (66.7%) were GAD-immunoreactive. Thus GABA provides the major inhibitory input to rod bipolar cells.  相似文献   

16.
17.
18.
Gamma‐aminobutyric acid (GABA) is a non‐protein amino acid commonly present in all organisms. Because cellular levels of GABA in plants are mainly regulated by synthesis (glutamate decarboxylase, GAD) and catabolism (GABA‐transaminase, GABA‐T), we attempted seed‐specific manipulation of the GABA shunt to achieve stable GABA accumulation in rice. A truncated GAD2 sequence, one of five GAD genes, controlled by the glutelin (GluB‐1) or rice embryo globulin promoters (REG) and GABA‐T‐based trigger sequences in RNA interference (RNAi) cassettes controlled by one of these promoters as well, was introduced into rice (cv. Koshihikari) to establish stable transgenic lines under herbicide selection using pyriminobac. T1 and T2 generations of rice lines displayed high GABA concentrations (2–100 mg/100 g grain). In analyses of two selected lines from the T3 generation, there was a strong correlation between GABA level and the expression of truncated GAD2, whereas the inhibitory effect of GABA‐T expression was relatively weak. In these two lines both with two T‐DNA copies, their starch, amylose, and protein levels were slightly lower than non‐transformed cv. Koshihikari. Free amino acid analysis of mature kernels of these lines demonstrated elevated levels of GABA (75–350 mg/100 g polished rice) and also high levels of several amino acids, such as Ala, Ser, and Val. Because these lines of seeds could sustain their GABA content after harvest (up to 6 months), the strategy in this study could lead to the accumulation GABA and for these to be sustained in the edible parts.  相似文献   

19.
Maternal infection during pregnancy increases the risk of neurodevelopmental disorders in the offspring. In addition to its influence on other neuronal systems, this early-life environmental adversity has been shown to negatively affect cortical γ-aminobutyric acid (GABA) functions in adult life, including impaired prefrontal expression of enzymes required for GABA synthesis. The underlying molecular processes, however, remain largely unknown. In the present study, we explored whether epigenetic modifications represent a mechanism whereby maternal infection during pregnancy can induce such GABAergic impairments in the offspring. We used an established mouse model of prenatal immune challenge that is based on maternal treatment with the viral mimetic poly(I:C). We found that prenatal immune activation increased prefrontal levels of 5-methylated cytosines (5mC) and 5-hydroxymethylated cytosines (5hmC) in the promoter region of GAD1, which encodes the 67-kDa isoform of the GABA-synthesising enzyme glutamic acid decarboxylase (GAD67). The early-life challenge also increased 5mC levels at the promoter region of GAD2, which encodes the 65-kDa GAD isoform (GAD65). These effects were accompanied by elevated GAD1 and GAD2 promoter binding of methyl CpG-binding protein 2 (MeCP2) and by reduced GAD67 and GAD65 mRNA expression. Moreover, the epigenetic modifications at the GAD1 promoter correlated with prenatal infection-induced impairments in working memory and social interaction. Our study thus highlights that hypermethylation of GAD1 and GAD2 promoters may be an important molecular mechanism linking prenatal infection to presynaptic GABAergic impairments and associated behavioral and cognitive abnormalities in the offspring.  相似文献   

20.

Background

Findings from family studies and recent genome-wide association studies have indicated overlap in the risk genes between schizophrenia and bipolar disorder (BD). After finding a linkage between the ST8SIA2 (ST8 alpha-N-acetyl-neuraminide alpha-2, 8-sicalyltransferase 2 gene) locus (15q26) and mixed families with schizophrenia and BD, several studies have reported a significant association between this gene and schizophrenia or BD. We investigated the genetic association between ST8SIA2 and both schizophrenia and BD in the Korean population.

Methods

A total of 582 patients with schizophrenia, 339 patients with BD, and 502 healthy controls were included. Thirty-one tag single nucleotide polymorphisms (SNPs) across the ST8SIA2 region and three other SNPs showing significant associations in previous studies were genotyped. The associations were evaluated by logistic regression analysis using additive, dominant, and recessive genetic models.

Results

Fourteen of 34 SNPs showed a nominally significant association (p < 0.05) with at least one diagnostic group. These association trends were strongest for the schizophrenia and combined schizophrenia and bipolar I disorder (BD-I) groups. The strongest association was observed in rs11637898 for schizophrenia (p = 0.0033) and BD-I (p = 0.0050) under the dominant model. The association between rs11637898 and the combined schizophrenia and BD-I group (p = 0.0006, under the dominant model) remained significant after correcting for multiple testing.

Discussion

We identified a possible role of ST8SIA2 in the common susceptibility of schizophrenia and BD-I. However, no association trend was observed for bipolar II disorder. Further efforts are needed to identify a specific phenotype associated with this gene crossing the current diagnostic categories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号