首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A truncated version of host defense peptide chicken cathelicidin-2, C1-15, possesses potent, broad spectrum antibacterial activity. A variant of this peptide, F2,5,12W, which contains 3 phenylalanine to tryptophan substitutions, possesses improved antibacterial activity and lipopolysaccharide (LPS) neutralizing activity compared to C1-15. In order to improve the proteolytic resistance of both peptides we engineered novel chicken cathelicidin-2 analogs by substitution of l- with d-amino acids and head-to-tail cyclization. Both cyclic and d-amino acid variants showed enhanced stability in human serum compared to C1-15 and F2,5,12W. The d-amino acid variants were fully resistant to proteolysis by trypsin and bacterial proteases. Head-to-tail cyclization of peptide F2,5,12W resulted in a 3.5-fold lower cytotoxicity toward peripheral blood mononuclear cells. In general, these modifications did not influence antibacterial and LPS neutralization activities. It is concluded that for the development of novel therapeutic compounds based on chicken cathelicidin-2 d-amino acid substitutions and cyclization must be considered. These modifications increase the stability and lower cytotoxicity of the peptides without altering their antimicrobial potency.  相似文献   

2.
The study was designed to characterize and compare chicken bone marrow and peripheral blood monocyte derived dendritic cells (chBM-DC and chMoDC) and to evaluate inflammatory cytokine and chemokine alterations in response upon LPS stimulation. Typical morphology was observed in DCs from 48 h of culture using recombinant chicken GM-CSF and IL-4. Maturation of DCs with LPS (1 μg/ml) showed significant up regulation of mRNA of surface markers (CD40, CD80, CD83, CD86, MHC-II and DC-LAMP (CD208)), pro-inflammatory cytokines (IL-1β, IL-6, TNF-α (LITAF)), iNOS, chemokine CXCli2 and TLRs4 and 15. Basal level of TLR1 mRNA expression was higher followed by TLR15 in both DCs irrespective of their origin. Expression of iNOS and CXCLi2 mRNA in mature DCs of both origins were higher than other surface molecules and cytokines studied. Hence, its level of expression can also be used as an additional maturation marker for LPS induced chicken dendritic cell maturation along with CD83 and CD40. LPS matured DCs of both origins upregulated IL-12 and IFN-γ. Based on CD40 and CD83 mRNA expression, it was observed that LPS induced the maturation in both DCs, but chMoDCs responded better in expression of surface markers and inflammatory mediator genes.  相似文献   

3.
Cathelicidins comprise a major family of host-defense antimicrobial peptides in vertebrates. The C-terminal part of the cathelicidins is bestowed with antimicrobial and lipopolysaccharide (LPS) neutralizing activities. In this work, we repot high resolution solution structures of two nontoxic active fragments, residues 1-16 or RG16 and residues 8-26 or LK19, of fowlicidin-1, a cathelicidin family of peptide from chicken, as a complex with LPS using two-dimensional transferred nuclear Overhauser effect (Tr-NOE) spectroscopy. Both peptides are highly flexible and do not assume any preferred conformations in their free states. Upon complexation with endotoxin or LPS, peptides undergo structural transitions towards folded conformations. Structure calculations reveal that the LK19 peptide adopts a well defined helical structure with a bend at the middle. By contrast, the first seven amino acids of RG16 are found to be flexible followed by a helical conformation for the residues L8-A15. In addition, a truncated version of LK19 encompassing residues A15-K26 or AK12 displays an amphipathic helical structure in LPS. Saturation transfer difference (STD) NMR studies demonstrate that all peptides, RG16, LK19, and AK12, are in close proximity with LPS, whereby the aromatic residues showed the strongest STD effects. Fluorescence studies with fluorescein isothiocyanate (FITC) labeled LPS in the presence of full-length fowlicidin-1, LK19, RG16, and AK12 indicated that LPS-neutralization property of these peptides may result from plausible dissociation of LPS aggregates. The helical structures of peptide fragments derived from fowlicidin-1 in LPS could be utilized to develop nontoxic antiendotoxic compounds.  相似文献   

4.
5.
Defensins are critical components of the innate immune system and play an important role in the integration of innate and adaptive immune responses. Although information on the immunomodulatory properties of peptidoglycan from bacteria is abundant, little is known about the β-defensin induction effect of peptidoglycan from the probiotic Lactobacillus. This study investigated the effect of intact peptidoglycan from L. rhamnosus MLGA on the induction of avian β-defensin 9 in chicken immune cells and intestinal explants. Peptidoglycan from Lactobacillus rhamnosus MLGA dose dependently promoted avian β-defensin 9 mRNA expression in chicken PBMCs, splenocytes, thymocytes, hepatocytes, and chicken embryo jejunum, ileum, and cecum explants and increased the capacity of PBMC or splenocyte lysates to inhibit the growth of Salmonella Enteritidis. In contrast to the effect of L. rhamnosus MLGA-derived peptidoglycan, peptidoglycan derived from pathogenic Staphylococcus aureus reduced avian β-defensin 9 mRNA expression in chicken PBMCs and splenocytes. The inducible effect of peptidoglycan from L. rhamnosus MLGA on avian β-defensin 9 expression in PBMCs and splenocytes was observed without activation of the expression of associated pro-inflammatory cytokines IL-1β, IL-8, and IL-12p40, whereas these cytokine expressions were suppressed by peptidoglycan hydrolysate obtained by lysozyme digestion. The results of the present study show the capability of peptidoglycan derived from L. rhamnosus MLGA to induce the antimicrobial peptide defensin while simultaneously avoiding the deleterious risks of an inflammatory response.  相似文献   

6.

Introduction

Our objective was to assess the capacity of dendrimer aza-bis-phosphonate (ABP) to modulate phenotype of monocytes (Mo) and monocytes derived dendritic cells (MoDC) activated in response to toll-like receptor 4 (TLR4) and interferon γ (IFN- γ) stimulation.

Methods

Mo (n = 12) and MoDC (n = 11) from peripheral blood of healthy donors were prepared. Cells were preincubated or not for 1 hour with dendrimer ABP, then incubated with lipopolysaccharide (LPS; as a TLR4 ligand) and (IFN-γ) for 38 hours. Secretion of tumor necrosis factor α (TNFα), interleukin (IL) -1, IL-6, IL-12, IL-10 and IL-23 in the culture medium was measured by enzyme-linked immunosorbent assay (ELISA) and Cytokine Bead Array. Differentiation and subsequent maturation of MoDC from nine donors in the presence of LPS were analyzed by flow cytometry using CD80, CD86, CD83 and CD1a surface expression as markers.

Results

Mo and MoDC were orientated to a pro-inflammatory state. In activated Mo, TNFα, IL-1β and IL-23 levels were significantly lower after prior incubation with dendrimer ABP. In activated MoDC, dendrimer ABP promoted IL-10 secretion while decreasing dramatically the level of IL-12. TNFα and IL-6 secretion were significantly lower in the presence of dendrimer ABP. LPS driven maturation of MoDC was impaired by dendrimer ABP treatment, as attested by the significantly lower expression of CD80 and CD86.

Conclusion

Our data indicate that dendrimer ABP possesses immunomodulatory properties on human Mo and MoDC, in TLR4 + IFN-γ stimulation model, by inducing M2 alternative activation of Mo and promoting tolerogenic MoDC.  相似文献   

7.
8.
Lipopolysaccharide (LPS) is a major component of the outer membrane of Gram-negative bacteria. It has strong toxicity and might cause sepsis or septic shock. Thus early detection of LPS and neutralization of LPS toxicity are required. We obtained several new LPS-binding peptides using a phage display method. We synthesized 3 of these peptides and analyzed their binding affinity and capacity to LPS. One of these peptides, named Li5-001, showed high binding affinity to LPS and lipid A; the Kd values were 10 and 1 nM, respectively. Li5-001 showed a high binding capacity to LPS, and was estimated to bind 130 ng LPS/mg, which is higher than that of polymyxin B (80 ng LPS/mg); however, its LPS-neutralizing activity was low. Li5-001 coupled with beads will be useful for eliminating endotoxin contamination from pharmaceuticals. Its low LPS-neutralizing activity allows to be used in the Limulus amebocyte lysate test without eluting LPS from the Li5-001 coupled beads.  相似文献   

9.

Background

Bupleurum polysaccharides (BPs), isolated from Bupleurum smithii var. parvifolium, possesses immunomodulatory activity, particularly on inflammation. Bacterial endotoxin lipopolysaccharide (LPS) triggers innate immune responses through Toll-like receptor 4 (TLR4) on host cell membrane. The present study was performed to evaluate whether the therapeutic efficacy of BPs on suppression of LPS’s pathogenecity could be associated with the modulating of TLR4 signaling pathway.

Methodology/Principal Findings

LPS stimulated expression and activation of factors in the TLR4 signaling system, including TLR4, CD14, IRAK4, TRAF6, NF-κB, and JNK, determined using immunocytochemical and/or Western blot assays. BPs significantly inhibited these effects of LPS. LPS increased pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-12p40, and IFN-β) and NO production, evaluated using ELISA and Griess reaction assays, respectively. BPs antagonized these effects of LPS. Interestingly, BPs alone augmented secretion of some pro-inflammatory cytokines of non-LPS stimulated macrophages and enhanced phagocytic activity towards fluorescent E.coli bioparticles. In a rat model of acute lung injury (ALI) with pulmonary hemorrhage and inflammation, BPs ameliorated lung injuries and suppressed TLR4 expression.

Significance

The therapeutic properties of BPs in alleviating inflammatory diseases could be attributed to its inhibitory effect on LPS-mediated TLR4 signaling.  相似文献   

10.

Introduction

The present study assessed the potential functions of interleukin (IL)-32α on inflammatory arthritis and endotoxin shock models using IL-32α transgenic (Tg) mice. The potential signaling pathway for the IL-32-tumor necrosis factor (TNF)α axis was analyzed in vitro.

Methods

IL-32α Tg mice were generated under control of a ubiquitous promoter. Two disease models were used to examine in vivo effects of overexpressed IL-32α: Toll-like receptor (TLR) ligand-induced arthritis developed using a single injection of lipopolysaccharide (LPS) or zymosan into the knee joints; and endotoxin shock induced with intraperitoneal injection of LPS and D-galactosamine. TNFα antagonist etanercept was administered simultaneously with LPS in some mice. Using RAW264.7 cells, in vitro effects of exogenous IL-32α on TNFα, IL-6 or macrophage inflammatory protein 2 (MIP-2) production were assessed with or without inhibitors for nuclear factor kappa B (NFκB) or mitogen-activated protein kinase (MAPK).

Results

Single injection of LPS, but not zymosan, resulted in development of severe synovitis with substantial articular cartilage degradation in knees of the Tg mice. The expression of TNFα mRNA in inflamed synovia was highly upregulated in the LPS-injected Tg mice. Moreover, the Tg mice were more susceptive to endotoxin-induced lethality than the wild-type control mice 48 hours after LPS challenge; but blockade of TNFα by etanercept protected from endotoxin lethality. In cultured bone marrow cells derived from the Tg mice, overexpressed IL-32α accelerated production of TNFα upon stimulation with LPS. Of note, exogenously added IL-32α alone stimulated RAW264.7 cells to express TNFα, IL-6, and MIP-2 mRNAs. Particularly, IL-32α -induced TNFα, but not IL-6 or MIP-2, was inhibited by dehydroxymethylepoxyquinomicin (DHMEQ) and U0126, which are specific inhibitors of nuclear factor kappa B (NFκB) and extracellular signal regulated kinase1/2 (ERK1/2), respectively.

Conclusions

These results show that IL-32α contributed to the development of inflammatory arthritis and endotoxin lethality. Stimulation of TLR signaling with LPS appeared indispensable for activating the IL-32α-TNFα axis in vivo. However, IL-32α alone induced TNFα production in RAW264.7 cells through phosphorylation of inhibitor kappa B (IκB) and ERK1/2 MAPK. Further studies on the potential involvement of IL-32α-TNFα axis will be beneficial in better understanding the pathology of autoimmune-related arthritis and infectious immunity.  相似文献   

11.
The orphan receptor sigma-1 (sigmar-1) is a transmembrane chaperone protein expressed in both the central nervous system and in immune cells. It has been shown to regulate neuronal differentiation and cell survival, and mediates anti-inflammatory responses and immunosuppression in murine in vivo models. Since the details of these findings have not been elucidated so far, we studied the effects of the endogenous sigmar-1 ligands N,N-dimethyltryptamine (NN-DMT), its derivative 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and the synthetic high affinity sigmar-1 agonist PRE-084 hydrochloride on human primary monocyte-derived dendritic cell (moDCs) activation provoked by LPS, polyI:C or pathogen-derived stimuli to induce inflammatory responses. Co-treatment of moDC with these activators and sigma-1 receptor ligands inhibited the production of pro-inflammatory cytokines IL-1β, IL-6, TNFα and the chemokine IL-8, while increased the secretion of the anti-inflammatory cytokine IL-10. The T-cell activating capacity of moDCs was also inhibited, and dimethyltryptamines used in combination with E. coli or influenza virus as stimulators decreased the differentiation of moDC-induced Th1 and Th17 inflammatory effector T-cells in a sigmar-1 specific manner as confirmed by gene silencing. Here we demonstrate for the first time the immunomodulatory potential of NN-DMT and 5-MeO-DMT on human moDC functions via sigmar-1 that could be harnessed for the pharmacological treatment of autoimmune diseases and chronic inflammatory conditions of the CNS or peripheral tissues. Our findings also point out a new biological role for dimethyltryptamines, which may act as systemic endogenous regulators of inflammation and immune homeostasis through the sigma-1 receptor.  相似文献   

12.
It is now well established that major depression is accompanied and characterized by altered responses of the immune-inflammatory system. In this study we investigated the pro-inflammatory activation of monocytes isolated from depressed patients as a parameter not influenced by such confounds as the time of day, the nutritional and exercise status or the age and gender of patients. Monocytes from depressed patients and from healthy controls were isolated in vitro; after 24-h incubation under basal conditions, cells were exposed for 24-h to 100 ng/ml of endotoxin (bacterial lipopolysaccharide, LPS). We found that monocytes from drug-free depressed patients and controls release the same amounts of prostaglandin E2 (PGE2) under basal conditions, whereas monocytes from patients are dramatically less reactive to LPS (8.62-fold increase vs previous 24 hrs) compared to healthy controls (123.3-fold increase vs previous 24 hrs). Such blunted prostanoid production was paralleled by a reduction in COX-2 gene expression, whereas other pro-inflammatory mediators, namely interleukin-1β (IL-1 β) and -6 (IL-6) showed a trend to increased gene expression. The above changes were not associated to increased levels of circulating glucocorticoids. After 8 months of antidepressive drug treatment, the increase in PGE2 production after the endotoxin challenge was partially restored, whereas the increase in IL-1 β and -6 levels observed at baseline was completely abolished. In conclusion, our findings show that the reactivity of monocytes from depressed patients might be considered as a marker of the immune-inflammatory disorders associated to depression, although the lack of paired healthy controls at follow-up does not allow to conclude that monocyte reactivity to endotoxin is also a marker of treatment outcome.  相似文献   

13.
The pro-inflammatory cytokine interleukin (IL)-1β is a clinical target in many conditions involving dysregulation of the immune system; therapeutics that block IL-1β have been approved to treat diseases such as rheumatoid arthritis (RA), neonatal onset multisystem inflammatory diseases, cryopyrin-associated periodic syndromes, active systemic juvenile idiopathic arthritis. Here, we report the generation and engineering of a new fully human antibody that binds tightly to IL-1β with a neutralization potency more than 10 times higher than that of the marketed antibody canakinumab. After affinity maturation, the derived antibody shows a >30-fold increased affinity to human IL-1β compared with its parent antibody. This anti-human IL-1β IgG also cross-reacts with mouse and monkey IL-1β, hence facilitating preclinical development. In a number of mouse models, this antibody efficiently reduced or abolished signs of disease associated with IL-1β pathology. Due to its high affinity for the cytokine and its potency both in vitro and in vivo, we propose that this novel fully human anti-IL-1β monoclonal antibody is a promising therapeutic candidate and a potential alternative to the current therapeutic arsenal.  相似文献   

14.
15.
Antimicrobial peptides (AMPs), also called host defense peptides, particularly those with amphipathic helical structures, are emerging as target molecules for therapeutic development due to their immunomodulatory properties. Although the antimicrobial activity of AMPs is known to be exerted primarily by permeation of the bacterial membrane, the mechanism underlying its anti-inflammatory activity remains to be elucidated. We report potent anti-inflammatory activity of WALK11.3, an antimicrobial model peptide with an amphipathic helical conformation, in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. This peptide inhibited the expression of inflammatory mediators, including nitric oxide, COX-2, IL-1β, IL-6, INF-β, and TNF-α. Although WALK11.3 did not exert a major effect on all downstream signaling in the MyD88-dependent pathway, toll-like receptor 4 (TLR4)- mediated pro-inflammatory signals were markedly attenuated in the TRIF-dependent pathway due to inhibition of the phosphorylation of STAT1 by attenuation of IRF3 phosphorylation. WALK11.3 specifically inhibited the endocytosis of TLR4, which is essential for triggering TRIF-mediated signaling in macrophage cells. Hence, we suggest that specific interference with TLR4 endocytosis could be one of the major modes of the anti-inflammatory action of AMPs. Our designed WALK11 peptides, which possess both antimicrobial and anti-inflammatory activities, may be promising molecules for the development of therapies for infectious inflammation.  相似文献   

16.
17.
At present, antibiotics options to cure infections caused by drug resistant Gram-negative pathogens are highly inadequate. LPS outer membrane, proteins involved in LPS transport and biosynthesis pathways are vital targets. Thanatin, an insect derived 21-residue long antimicrobial peptide may be exploited for the development of effective antibiotics against Gram-negative bacteria. As a mode of bacterial cell killing, thanatin disrupts LPS outer membrane and inhibits LPS transport by binding to the periplasmic protein LptAm. Here, we report structure-activity correlation of thanatin and analogs for the purpose of rational design. These analogs of thanatin are investigated, by NMR, ITC and fluorescence, to correlate structure, antibacterial activity and binding with LPS and LptAm, a truncated monomeric variant. Our results demonstrate that an analog thanatin M21F exhibits superior antibacterial activity. In LPS interaction analyses, thanatin M21F demonstrate high affinity binding to outer membrane LPS. The atomic resolution structure of thanatin M21F in LPS micelle reveals four stranded β-sheet structure in a dimeric topology whereby the sidechain of aromatic residues Y10, F21 sustained mutual packing at the interface. Strikingly, LptAm binding affinity of thanatin M21F has been significantly increased with an estimated Kd ~ 0.73 nM vs 13 nM for thanatin. Further, atomic resolution structures and interactions of Ala based thanatin analogs define plausible correlations with antibacterial activity and LPS, LptAm interactions. Taken together, the current work provides a frame-work for the designing of thanatin based potent antimicrobial peptides for the treatment of drug resistance Gram-negative bacteria.  相似文献   

18.
Designed peptides that would selectively interact with lipopolysaccharide (LPS) or endotoxin and fold into specific conformations could serve as important scaffolds toward the development of antisepsis compounds. Here, we describe solution structure of a designed amphipathic peptide, H2N-YVKLWRMIKFIR-CONH2 (YW12D) in complex with endotoxin as determined by transferred nuclear Overhauser effect spectroscopy. The conformation of the isolated peptide is highly flexible, but undergoes a dramatic structural stabilization in the presence of LPS. Structure calculations reveal that the peptide presents two amphipathic surfaces in its bound state to LPS whereby each surface is characterized by two positive charges and a number of aromatic and/or aliphatic residues. ITC data suggests that peptide interacts with two molecules of lipid A. In activity assays, YW12D exhibits neutralization of LPS toxicity with very little hemolysis of red blood cells. Structural and functional properties of YW12D would be applicable in designing low molecular weight non-toxic antisepsis molecules.  相似文献   

19.
The immune system plays a fundamental role in both the development and pathobiology of stroke. Inflammasomes are multiprotein complexes that have come to be recognized as critical players in the inflammation that ultimately contributes to stroke severity. Inflammasomes recognize microbial and host-derived danger signals and activate caspase-1, which in turn controls the production of the pro-inflammatory cytokine IL-1β. We have shown that A151, a synthetic oligodeoxynucleotide containing multiple telemeric TTAGGG motifs, reduces IL-1β production by activated bone marrow derived macrophages that have been subjected to oxygen-glucose deprivation and LPS stimulation. Further, we demonstrate that A151 reduces the maturation of caspase-1 and IL-1β, the levels of both the iNOS and NLRP3 proteins, and the depolarization of mitochondrial membrane potential within such cells. In addition, we have demonstrated that A151 reduces ischemic brain damage and NLRP3 mRNA levels in SHR-SP rats that have undergone permanent middle cerebral artery occlusion. These findings clearly suggest that the modulation of inflammasome activity via A151 may contribute to a reduction in pro-inflammatory cytokine production by macrophages subjected to conditions that model brain ischemia and modulate ischemic brain damage in an animal model of stroke. Therefore, modulation of ischemic pathobiology by A151 may have a role in the development of novel stroke prevention and therapeutic strategies.  相似文献   

20.
Neuron-microglia co-cultures treated with pro-inflammatory agents are a useful tool to study neuroinflammation in vitro, where to test the potential neuroprotective effect of anti-inflammatory compounds. However, a great diversity of experimental conditions can be found in the literature, making difficult to select the working conditions when considering this approach for the first time. We compared the use of neuron-primary microglia and neuron-BV2 cells (a microglial cell line) co-cultures, using different neuron:microglia ratios, treatments and time post-treatment to induce glial activation and derived neurotoxicity. We show that each model requires different experimental conditions, but that both neuron-BV2 and neuron-primary microglia LPS/IFN-γ-treated co-cultures are good to study the potential neuroprotective effect of anti-inflammatory agents. The contribution of different pro-inflammatory parameters in the neurotoxicity induced by reactive microglial cells was determined. IL-10 pre-treatment completely inhibited LPS/IFN-γ-induced TNF-α and IL-6 release, and COX-2 expression both in BV2 and primary microglial cultures, but not NO production and iNOS expression. However, LPS/IFN-γ induced neurotoxicity was not inhibited in IL-10 pre-treated co-cultures. The inhibition of NO production using the specific iNOS inhibitor 1400 W totally abolished the neurotoxic effect of LPS/IFN-γ, suggesting a major role for NO in the neurotoxic effect of activated microglia. Consequently, among the anti-inflammatory agents, special attention should be paid to compounds that inhibit NO production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号