首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wnt signalling during limb development   总被引:7,自引:0,他引:7  
Wnts control a number of processes during limb development--from initiating outgrowth and controlling patterning, to regulating cell differentiation in a number of tissues. Interactions of Wnt signalling pathway components with those of other signalling pathways have revealed new mechanisms of modulating Wnt signalling, which may explain how different responses to Wnt signalling are elicited in different cells. Given the number of Wnts that are expressed in the limb and their ability to induce differential responses, the challenge will be to dissect precisely how Wnt signalling is regulated and how it controls limb development at a cellular level, together with the other signalling pathways, to produce the functional limb capable of coordinated precise movements.  相似文献   

2.
3.
4.
Small RNA viruses such as influenza viruses extensively manipulate host-cell functions to support their replication. At the same time the infected cell induces an array of defence mechanisms to fight the invader. These processes are mediated by a variety of intracellular signalling cascades. Here we will review the current knowledge of functional kinase signalling and apoptotic events in influenza virus infected cells and how these viruses have learned to misuse these cellular responses for efficient replication.  相似文献   

5.
Reactive oxygen and nitrogen species change cellular responses through diverse mechanisms that are now being defined. At low levels, they are signalling molecules, and at high levels, they damage organelles, particularly the mitochondria. Oxidative damage and the associated mitochondrial dysfunction may result in energy depletion, accumulation of cytotoxic mediators and cell death. Understanding the interface between stress adaptation and cell death then is important for understanding redox biology and disease pathogenesis. Recent studies have found that one major sensor of redox signalling at this switch in cellular responses is autophagy. Autophagic activities are mediated by a complex molecular machinery including more than 30 Atg (AuTophaGy-related) proteins and 50 lysosomal hydrolases. Autophagosomes form membrane structures, sequester damaged, oxidized or dysfunctional intracellular components and organelles, and direct them to the lysosomes for degradation. This autophagic process is the sole known mechanism for mitochondrial turnover. It has been speculated that dysfunction of autophagy may result in abnormal mitochondrial function and oxidative or nitrative stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is controlled, and the impact of autophagic dysfunction on cellular oxidative stress. The present review highlights recent studies on redox signalling in the regulation of autophagy, in the context of the basic mechanisms of mitophagy. Furthermore, we discuss the impact of autophagy on mitochondrial function and accumulation of reactive species. This is particularly relevant to degenerative diseases in which oxidative stress occurs over time, and dysfunction in both the mitochondrial and autophagic pathways play a role.  相似文献   

6.
Polarized cellular responses, for example, cell migration, require the co-ordinated assembly of signalling complexes at a particular subcellular location, such as the leading edge of cells. Small GTPases of the Ras superfamily play central roles in many (polarized) responses to growth factors, chemokines or integrin ligands. These small GTPases are functionally distinct, yet remarkably homologous in their primary sequence and especially in their effector domains. Therefore it has long been unclear how GTPase signalling specificity is regulated. Small GTPases carry a lipid anchor, in the context of a hypervariable region, which mediates membrane association. However, whereas the lipid has long been proposed to be the critical regulator of subcellular GTPase targeting, there is now increasing evidence that specific protein-protein interactions are important as well. This review discusses recent findings on GTPase targeting and proposes a revised model for GTPase signalling. In this model, the hypervariable domain acts in conjunction with the lipid tail to target the GTPase to specific membrane-associated protein complexes. Here, local GTPase activation occurs, leading to subsequent exposure of the effector domain, binding to effector proteins and the initiation of downstream signalling.  相似文献   

7.
Cell adhesion junctions characteristically arise from the cooperative integration of adhesion receptors, cell signalling pathways and the cytoskeleton. This is exemplified by cell–cell interactions mediated by classical cadherin adhesion receptors. These junctions are sites where cadherin adhesion systems functionally couple to the dynamic actin cytoskeleton, a process that entails physical interactions with many actin regulators and regulation by cell signalling pathways. Such integration implies a potential role for molecules that may stand at the interface between adhesion, signalling and the cytoskeleton. One such candidate is the cortical scaffolding protein, vinculin, which is a component of both cell–cell and cell–matrix adhesions. While its contribution to integrin-based adhesions has been extensively studied, less is known about how vinculin contributes to cell–cell adhesions. A major recent advance has come with the realisation that cadherin adhesions are active mechanical structures, where cadherin serves as part of a mechanotransduction pathway by which junctions sense and elicit cellular responses to mechanical stimuli. Vinculin has emerged as an important element in cadherin mechanotransduction, a perspective that illuminates its role in cell–cell interactions. We now review its role as a cortical scaffold and its role in cadherin mechanotransduction.  相似文献   

8.
Ng CK  McAinsh MR 《Annals of botany》2003,92(4):477-485
Calcium ions function as intracellular second messengers in regulating a plethora of cellular processes from acclimative stress responses to survival and programmed cell death. The generation of specificity in Ca2+ signals is dependent on influx and efflux from the extracellular milieu, cytosol and intracellular organelles. One aspect of plant Ca2+ signalling that is currently attracting a great deal of interest is how 'Ca2+-signatures', specific spatio-temporal changes in cytosolic-free Ca2+, encode the necessary information to bring about this range of physiological responses. Here, current information is reviewed on how Ca2+-signatures are generated in plant cells and how stimulus-specific information can be encoded in the form of Ca2+-signatures.  相似文献   

9.
The phytohormone cytokinin triggers numerous and diverse responses during the plant life cycle via a two-component phosphorelay signalling system. Each step of the signalling cascade is supported by a gene family comprising several members. While functional redundancy is observed among family members, additional gene-specific functions encoded by cis-regulatory and coding sequence of individual family members have been described and contribute to specificity in signalling output. In addition, the cellular context of the signal-receiving cell affects the response triggered. Recent studies in Arabidopsis have demonstrated how expression of cytokinin signalling components predefines a spatiotemporal map of signalling sensitivity, which causes local signal amplification and attenuation. In summary, the specific interpretation of cytokinin signalling is affected by an orchestrated interplay of signalling genes and cellular context.  相似文献   

10.
11.
Cell signalling and Trypanosoma cruzi invasion   总被引:1,自引:2,他引:1  
Mammalian cell invasion by the protozoan pathogen Trypanosoma cruzi is critical to its survival in the host. To promote its entry into a wide variety of non-professional phagocytic cells, infective trypomastigotes exploit an arsenal of heterogenous surface glycoproteins, secreted proteases and signalling agonists to actively manipulate multiple host cell signalling pathways. Signals initiated in the parasite upon contact with mammalian cells also function as critical regulators of the invasion process. Whereas the full spectrum of cellular responses modulated by T. cruzi is not yet known, mounting evidence suggests that these pathways impinge on a number of cellular processes, in particular the ubiquitous wound-repair mechanism exploited for lysosome-mediated parasite entry. Furthermore, differential engagement of host cell signalling pathways in a cell type-specific manner and modulation of host cell gene expression by T. cruzi are becoming recognized as essential determinants of infectivity and intracellular survival by this pathogen.  相似文献   

12.
Natural killer (NK) cells are innate immune lymphocytes that recognize and kill cancer and infected cells, which makes them unique ‘off-the-shelf’ candidates for a new generation of immunotherapies. Biomechanical forces in homeostasis and pathophysiology accrue additional immune regulation for NK immune responses. Indeed, cellular and tissue biomechanics impact NK receptor clustering, cytoskeleton remodeling, NK transmigration through endothelial cells, nuclear mechanics, and even NK-dendritic cell interaction, offering a plethora of unexplored yet important dynamic regulation for NK immunotherapy. Such events are made more complex by the heterogeneity of human NK cells. A significant question remains on whether and how biochemical and biomechanical cues collaborate for NK cell mechanotransduction, a process whereby mechanical force is sensed, transduced, and translated to downstream mechanical and biochemical signalling. Herein, we review recent advances in understanding how NK cells perceive and mechanotransduce biophysical cues. We focus on how the cellular cytoskeleton crosstalk regulates NK cell function while bearing in mind the heterogeneity of NK cells, the direct and indirect mechanical cues for NK anti-tumor activity, and finally, engineering advances that are of translational relevance to NK cell biology at the systems level.  相似文献   

13.
Vascular permeability factor: a unique regulator of blood vessel function.   总被引:29,自引:0,他引:29  
Vascular permeability factor (VPF), also known as vascular endothelial growth factor (VEGF), is a potent polypeptide regulator of blood vessel function. VPF promotes an array of responses in endothelium, including hyperpermeability, endothelial cell growth, angiogenesis, and enhanced glucose transport. VPF regulates the expression of tissue factor and the glucose transporter. All of the endothelial cell responses to VPF are evidently mediated by high affinity cell surface receptors. Thus, endothelial cells have a unique and specific spectrum of responses to VPF. Since each of the responses of endothelial cells to VPF are also elicited by agonists, such as bFGF, TNF, histamine and others, it remains a major challenge to determine how post-receptor signalling pathways maintain both specificity and redundancy in cellular responses to various agonists.  相似文献   

14.
15.
PKB and the mitochondria: AKTing on apoptosis   总被引:8,自引:0,他引:8  
Cellular homeostasis depends upon the strict regulation of responses to external stimuli, such as signalling cascades triggered by nutrients and growth factors, and upon cellular metabolism. One of the major molecules coordinating complex signalling pathways is protein kinase B (PKB), a serine/threonine kinase also known as Akt. The number of substrates known to be phosphorylated by PKB and its interacting partners, as well as our broad understanding of how PKB is implicated in responses to growth factors, metabolic pathways, proliferation, and cell death via apoptosis is constantly increasing. Activated by the insulin/growth factor-phosphatidylinositol 3-kinase (PI3K) cascade, PKB triggers events that promote cell survival and prevent apoptosis. It is also now widely accepted that mitochondria are not just suppliers of ATP, but that they participate in regulatory and signalling events, responding to multiple physiological inputs and genetic stresses, and regulate both cell proliferation and death. Thus, mitochondria are recognized as important players in apoptotic events and it is logical to predict some form of interplay with PKB. In this review, we will summarize mechanisms by which PKB mediates its anti-apoptotic activities in cells and survey recent developments in understanding mitochondrial dynamics and their role during apoptosis.  相似文献   

16.
Protein kinase C, calcium and phospholipid degradation.   总被引:17,自引:0,他引:17  
In most cells, calcium signals are transient, while the resulting physiological responses often persist longer. The sustained activation of protein kinase C has been postulated to be essential for maintaining such cellular responses. It is becoming clear that an elaborate network involving protein kinase C, calcium and degradation of membrane phospholipids may generate several molecules that are necessary for sustaining the activation of protein kinase C itself. Multiple members of the protein kinase C family show distinct responses to calcium and the phospholipid degradation products, suggesting their unique functions in cell signalling.  相似文献   

17.
Ubiquitin is a highly versatile post-translational modification that controls virtually all types of cellular events. Over the past ten years we have learned that diverse forms of ubiquitin modifications and of ubiquitin binding modules co-exist in the cell, giving rise to complex networks of protein:protein interactions. A central problem that continues to puzzle ubiquitinologists is how cells translate this myriad of stimuli into highly specific responses. This is a classical signalling problem. Here, we draw parallels with the phosphorylation signalling pathway and we discuss the expanding repertoire of ubiquitin signals, signal tranducers and signalling-regulated E3 enzymes. We examine recent advances in the field, including a new mechanism of regulation of E3 ligases that relies on ubiquitination.  相似文献   

18.
c-Jun N-terminal kinases (JNKs) are intracellular stress-activated signalling molecules, which are controlled by a highly evolutionarily conserved signalling cascade. In mammalian cells, JNKs are regulated by a wide variety of cellular stresses and growth factors and have been implicated in the regulation of remarkably diverse biological processes, such as cell shape changes, immune responses and apoptosis. How can such different stimuli activate the JNK pathway and what roles does JNK play in vivo? Molecular genetic analysis of the Drosophila JNK gene has started to provide answers to these questions, confirming the role of this molecule in development and stress responses and suggesting a conserved function for JNK signalling in processes such as wound healing. Here, we review this work and discuss how future experiments in Drosophila should reveal the cell type-specific mechanisms by which JNKs perform their diverse functions.  相似文献   

19.
Stimulation of almost all mammalian cell types leads to the release of cellular ATP and autocrine feedback through a diverse array of purinergic receptors. Depending on the types of purinergic receptors that are involved, autocrine signalling can promote or inhibit cell activation and fine-tune functional responses. Recent work has shown that autocrine signalling is an important checkpoint in immune cell activation and allows immune cells to adjust their functional responses based on the extracellular cues provided by their environment. This Review focuses on the roles of autocrine purinergic signalling in the regulation of both innate and adaptive immune responses and discusses the potential of targeting purinergic receptors for treating immune-mediated disease.  相似文献   

20.
Lymphocyte function is regulated by complex signalling responses to diverse extracellular inputs, and a cell will often receive multiple, conflicting signals at one time. The mechanisms by which a lymphocyte integrates these signals into a single cellular response are not well understood. An important factor in the integration of signals likely involves the regulation of access of signalling molecules to cell surface receptors and of receptor signals to morphological determinants within the cell. Recent studies have led to important advances in our understanding of both the mechanisms by which signals are compartmentalized in T cells and the physiological role played by such compartmentalization. We review progress in the field, with a particular focus on membrane microdomains or lipid rafts and on cell polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号