首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vinculin是一种细胞骨架蛋白兼粘着斑组成蛋白,主要分布于细胞 细胞连接处及细胞 细胞外基质(extracellular matrix, ECM)粘着斑部位.Vinculin通过与多种粘着斑蛋白、细胞骨架蛋白及细胞骨架F-肌动蛋白相结合并相互作用,参与细胞的力 化学信号转导,在细胞粘附、伸展、运动、增殖、存活等过程中起重要作用.本文结合本课题组研究工作,在介绍vinculin分子结构的基础上,对其在细胞力 化学信号转导中的作用做一综述.  相似文献   

2.
细胞迁移在发育、伤口愈合、炎症反应和肿瘤转移等多种病理生理过程中发挥重要作用。细丝蛋白A(filamin A,FlnA)是一种在各组织细胞中广泛表达的微丝结合蛋白,其表达异常导致细胞迁移功能障碍。该文回顾了相关的文献,首先介绍生理情况下细丝蛋白A的功能,接着介绍细丝蛋白A基因突变和表达异常导致的多种遗传性疾病及其与肿瘤转移的关系,突出细丝蛋白A对迁移的影响在这些疾病发病中的作用,最后深入探讨了细丝蛋白A影响细胞迁移和黏附的可能机制。  相似文献   

3.
4.
In this study we have determined the binding specificities of four different neuronal cell types to tenascin-C (TN-C) and larninin using a cell adhesion assay. TN-C was repulsive for small cerebellar neurons and PC12 phaeochromocytoma cells, since after short-term adhesion to the substrate-bound molecule with a maximum of cell binding at 45 min, the cells detached from the substrate and after 22 h only about 25% of the originally adherent cells were still bound. For N2A neuroblastoma cells and retinal cells TN-C was an adhesive substrate, since the number of adherent cells did not decrease after the initial attachment period. All four cell types adhered well to larninin at all time points studied. For short-term adhesion of small cerebellar neurons and PC12 cells two binding sites were identified on TN-C, one being localized within the epidermal growth factor-like repeats three to five and the second within fibronectin type III-like repeats three and four. One binding site for N2A and retinal cells was localized within fibronectin type III-like repeat seven. Binding of small cerebellar neurons to TN-C was dependent on Ca2+, but not on Mg2+and was inhibitable by polyclonal antibodies to β1 integrin. Short-term adhesion of small cerebellar neurons was also inhibitable with a mixture of recombinant fragments of TN-C encompassing the whole molecule, although the specific inhibitory activity of this mixture was ten-fold lower on a molar basis when compared to the native molecule. Our observations indicate that different neuronal cell types use distinct binding sites on TN-C for repellent or adhesive interactions and that β1 integrin is involved in the recognition event leading to repulsion of small cerebellar neurons.  相似文献   

5.
In this study we have determined the binding specificities of four different neuronal cell types to tenascin-C (TN-C) and larninin using a cell adhesion assay. TN-C was repulsive for small cerebellar neurons and PC12 phaeochromocytoma cells, since after short-term adhesion to the substrate-bound molecule with a maximum of cell binding at 45 min, the cells detached from the substrate and after 22 h only about 25% of the originally adherent cells were still bound. For N2A neuroblastoma cells and retinal cells TN-C was an adhesive substrate, since the number of adherent cells did not decrease after the initial attachment period. All four cell types adhered well to larninin at all time points studied. For short-term adhesion of small cerebellar neurons and PC12 cells two binding sites were identified on TN-C, one being localized within the epidermal growth factor-like repeats three to five and the second within fibronectin type III-like repeats three and four. One binding site for N2A and retinal cells was localized within fibronectin type III-like repeat seven. Binding of small cerebellar neurons to TN-C was dependent on Ca2+, but not on Mg2+and was inhibitable by polyclonal antibodies to β1 integrin. Short-term adhesion of small cerebellar neurons was also inhibitable with a mixture of recombinant fragments of TN-C encompassing the whole molecule, although the specific inhibitory activity of this mixture was ten-fold lower on a molar basis when compared to the native molecule. Our observations indicate that different neuronal cell types use distinct binding sites on TN-C for repellent or adhesive interactions and that β1 integrin is involved in the recognition event leading to repulsion of small cerebellar neurons.  相似文献   

6.
Neurotrophins play an essential role in the regulation of actin-dependent changes in growth cone shape and motility. We have studied whether neurotrophin signaling can promote the localization of beta-actin mRNA and protein within growth cones. The regulated localization of specific mRNAs within neuronal processes and growth cones could provide a mechanism to modulate cytoskeletal composition and growth cone dynamics during neuronal development. We have previously shown that beta-actin mRNA is localized in granules that were distributed throughout processes and growth cones of cultured neurons. In this study, we demonstrate that the localization of beta-actin mRNA and protein to growth cones of forebrain neurons is stimulated by neurotrophin-3 (NT-3). A similar response was observed when neurons were exposed to forskolin or db-cAMP, suggesting an involvement of a cAMP signaling pathway. NT-3 treatment resulted in a rapid and transient stimulation of PKA activity that preceded the localization of beta-actin mRNA. Localization of beta-actin mRNA was blocked by prior treatment of cells with Rp-cAMP, an inhibitor of cAMP-dependent protein kinase A. Depolymerization of microtubules, but not microfilaments, inhibited the NT-3-induced localization of beta-actin mRNA. These results suggest that NT-3 activates a cAMP-dependent signaling mechanism to promote the microtubule-dependent localization of beta-actin mRNA within growth cones.  相似文献   

7.
To evaluate the role of MacMARCKS, a major substrate of protein kinase C, in cell adhesion, we selected a macrophage cell line, Wehi 274.1.7. Although surface expression of β2-integrins can be detected on these cells, they lack the phorbol ester- or chemokine-induced adhesion to ICAM-1-coated surface, an event mediated by β2-integrins. Concomitantly, these cells lack expression of both MacMARCKS and its homologue, MARCKS. When wild type MacMARCKS was expressed in these cells, the phorbol ester-induced adhesion to ICAM-1-coated surface increased approximately 5-fold compared to vector transfected control cells. To further investigate the potential physiological role of MacMARCKS in this adhesion event, we also tested the effect of monocyte chemotactic protein-1, and a 3-fold increase in the adhesion to ICAM-1-coated surface was observed with MacMARCKS-transfected cells. Therefore, these data suggest that MacMARCKS is an essential component in regulating cell adhesion.  相似文献   

8.
记忆的形成阶段包含着神经元突触的可塑性变化过程.近年来的研究表明,神经细胞粘附分子可同时增进突触的可塑性和维持突触结构的稳定性.许多研究证实神经细胞粘附分子对与学习和记忆相关的过程起着一定的调节作用.  相似文献   

9.
Cadherin-mediated adhesion initiates cell reorganization into tissues, but the mechanisms and dynamics of such adhesion are poorly understood. Using time-lapse imaging and photobleach recovery analyses of a fully functional E-cadherin/GFP fusion protein, we define three sequential stages in cell–cell adhesion and provide evidence for mechanisms involving E-cadherin and the actin cytoskeleton in transitions between these stages. In the first stage, membrane contacts between two cells initiate coalescence of a highly mobile, diffuse pool of cell surface E-cadherin into immobile punctate aggregates along contacting membranes. These E-cadherin aggregates are spatially coincident with membrane attachment sites for actin filaments branching off from circumferential actin cables that circumscribe each cell. In the second stage, circumferential actin cables near cell–cell contact sites separate, and the resulting two ends of the cable swing outwards to the perimeter of the contact. Concomitantly, subsets of E-cadherin puncta are also swept to the margins of the contact where they coalesce into large E-cadherin plaques. This reorganization results in the formation of a circumferential actin cable that circumscribes both cells, and is embedded into each E-cadherin plaque at the contact margin. At this stage, the two cells achieve maximum contact, a process referred to as compaction. These changes in E-cadherin and actin distributions are repeated when additional single cells adhere to large groups of cells. The third stage of adhesion occurs as additional cells are added to groups of >3 cells; circumferential actin cables linked to E-cadherin plaques on adjacent cells appear to constrict in a purse-string action, resulting in the further coalescence of individual plaques into the vertices of multicell contacts. The reorganization of E-cadherin and actin results in the condensation of cells into colonies. We propose a model to explain how, through strengthening and compaction, E-cadherin and actin cables coordinate to remodel initial cell–cell contacts to the final condensation of cells into colonies.  相似文献   

10.
Heterogeneity of Soluble Neural Cell Adhesion Molecule   总被引:3,自引:3,他引:0  
Soluble neural cell adhesion molecule (NCAM) from rat brain neuronal cell culture media consists predominantly of a polypeptide of Mr approximately 115,000. Minor amounts of a polypeptide of Mr approximately 180,000 and two inconsistently appearing components of Mr 160,000 and 145,000 are also observed. The Mr 115,000 component is derived from the neuronal membrane NCAM components NCAM-A of Mr 190,000, NCAM-B of Mr 140,000, or both. Thus, as a part of the catabolism of membrane NCAM-A plus -B, a minor fraction is posttranslationally cleaved and recovered in the media as discernible soluble NCAM polypeptides. The half-life of membrane NCAM-A plus -B is less than 24 h. Astrocyte culture media contains a predominant soluble NCAM component of Mr 120,000 derived from membrane-associated NCAM-C. A close comparison of deglycosylated soluble NCAM from astrocyte and neuronal cultures showed a small but consistent difference in Mr, a result suggesting that different NCAM polypeptides are released from the membrane of neurons and astrocytes. In contrast to the Mr 115,000-120,000 NCAM polypeptides, the Mr 180,000 polypeptide from neuronal culture media does not seem to be derived from membrane-attached NCAM and may therefore represent a secreted NCAM isoform.  相似文献   

11.
P-选择素及其细胞黏附与血栓形成   总被引:9,自引:0,他引:9  
P-选择素是选择素家族的重要黏附分子,作为血小板/内皮细胞活化标志和细胞黏附受体,其可通过介导血小板、内皮细胞黏附及与白细胞的相互作用,启动参与了包括炎症和血栓形成等多种病理生理起始过程,是炎症/血栓的重要介质和靶分子。抑制P-选择素及其与配体的结合和作用,可使病理状态下血栓局部白细胞聚集减少、细胞因子及组织因子表达降低、纤维蛋白生成减少,从而有助于抑制血栓的形成。因此,随着P-选择素及其细胞黏附与血栓形成研究的不断深入和阐明,以P-选择素为靶标的血栓性疾病的诊断和抗黏附治疗,也已引起人们关注并具有良好的临床应用价值和前景。  相似文献   

12.
Eph receptors and their ligands, ephrins, represent the largest group of the receptor tyrosine kinase (RTK) family, and they mediate numerous developmental processes in a variety of organisms. Ephrins are membrane-bound proteins that are mainly divided into two classes: A class ephrins, which are linked to the membrane by a glycosylphosphatidylinositol (GPI) linkage, and B class ephrins, which are transmembrane ligands. Based on their domain structures and affinities for ligand binding, the Eph receptors are also divided into two groups. Trans-dimerization of Eph receptors with their membrane-tethered ligands regulates cell-cell interactions and initiates bidirectional signaling pathways. These pathways are intimately involved in regulating cytoskeleton dynamics, cell migration, and alterations in cellular dynamics and shapes. The EphBs and ephrinBs are specifically localized and modified to promote higher-order clustering and initiate of bidirectional signaling. In this review, we present an in-depth overview of the structure, mechanisms, cell signaling, and functions of EphB/ephrinB in cell adhesion and migration.  相似文献   

13.
The major manifestations of amoeboid locomotion in Naegleria—cytoplasmic streaming, pseudopod production, cell polarity and focal contact production—require that the actin-based cytoskeleton be extremely dynamic. Whether these features are causally linked is unclear. In an attempt to answer this question we have used the fungal product cytochalasin B (cyt B) to dissect the motility process. This drug can perturb the organisation of actin filaments both in vivo and in vitro. Essentially cyt B acts as a molecule which can cap the barbed ends of actin filaments. Not surprisingly therefore cyt B has an effect on rates of actin polymerization and the dynamic state of actin in the cytoplasm. We have found that cyt B has a profound effect on focal contact production and breakdown. Within minutes of addition of cyt B focal contact production ceases, existing focal contacts are stabilised but cytoplasmic streaming and pseudopod production are not blocked. In conclusion it is now clear that the state of actin required for focal contact production is different from that required for pseudopod extension and cytoplasmic streaming.  相似文献   

14.
15.
The kinetics of neural cell adhesion molecule (NCAM) binding to heparin were studied in a heparin-Sepharose-based solid-phase binding assay. The observed binding is time dependent and saturable. A binding constant of 5.2 +/- 1.4 X 10(-8) M is observed for binding of newborn rat NCAM to heparin. This is approximately 25 times lower than the binding constant determined for newborn rat NCAM homophilic binding. Both Scatchard and Hill plot analyses suggest the presence of only one binding site. Fab' fragments of antibodies to rat NCAM significantly inhibit binding, a result indicating that a specific site on NCAM is involved in binding to heparin. The binding is inhibited by heparin (IC50, approximately 5 micrograms/ml), whereas chondroitin sulfate is a less potent inhibitor (IC50, approximately 15 micrograms/ml).  相似文献   

16.
Integrins are transmembrane proteins linking the extracellular matrix or certain cell–cell contacts to the cytoskeleton. To study integrin–cytoskeleton interactions we wanted to relate talin–integrin interaction to integrin function in cell spreading and formation of focal adhesions. For talin-binding studies we used fusion proteins of glutathione S-transferase and the cytoplasmic domain of integrin β1 (GST-cytoβ1) expressed in bacteria. For functional studies chimeric integrins containing the extracellular and transmembrane parts of β3 linked to the cytoplasmic domain of β1 were expressed in CHO cells as a dimer with the αIIb subunit. Point mutations in the amino acid sequence N785PIY788 of β1 disrupted both the integrin–talin interaction and the ability of the integrin to mediate cell spreading. COOH-terminal truncation of β1 at the amino acid position 797 disrupted its ability to mediate cell spreading, whereas the disruption of talin binding required deletion of five more amino acids (truncation at position 792). A synthetic peptide from this region of β1 (W780DTGENPIYKSAV792) bound to purified talin and inhibited talin binding to GST-cytoβ1. The ability of the mutants to mediate focal adhesion formation or to codistribute to focal adhesions formed by other integrins correlated with their ability to mediate cell spreading. These results confirm the previous finding that a talin-binding site in the integrin β1 tail resides at or close to the central NPXY motif and suggest that the integrin–talin interaction is necessary but not sufficient for integrin-mediated cell spreading.  相似文献   

17.
18.
《Molecular membrane biology》2013,30(7-8):427-444
Abstract

Small GTPases of the Rho family (RhoA, Rac1, and Cdc42) and the Ras family GTPase Rap1 are essential for the assembly and function of epithelial cell-cell junctions. Through their downstream effectors, small GTPases modulate junction formation and stability, primarily by orchestrating the polymerization and contractility of the actomyosin cytoskeleton. The major upstream regulators of small GTPases are guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Several GEFs and a few GAPs have been localized at epithelial junctions, and bind to specific junctional proteins. Thus, junctional proteins can regulate small GTPases at junctions, through their interactions with GEFs and GAPs. Here we review the current knowledge about the mechanisms of regulation of small GTPases by junctional proteins. Understanding these mechanisms will help to clarify at the molecular level how small GTPases control the morphogenesis and physiology of epithelial tissues, and how they are disregulated in disease.  相似文献   

19.
Mutations in kakapo were recovered in genetic screens designed to isolate genes required for integrin-mediated adhesion in Drosophila. We cloned the gene and found that it encodes a large protein (>5,000 amino acids) that is highly similar to plectin and BPAG1 over the first 1,000–amino acid region, and contains within this region an α-actinin type actin-binding domain. A central region containing dystrophin-like repeats is followed by a carboxy domain that is distinct from plectin and dystrophin, having neither the intermediate filament-binding domain of plectin nor the dystroglycan/syntrophin-binding domain of dystrophin. Instead, Kakapo has a carboxy terminus similar to the growth arrest–specific protein Gas2. Kakapo is strongly expressed late during embryogenesis at the most prominent site of position-specific integrin adhesion, the muscle attachment sites. It is concentrated at apical and basal surfaces of epidermal muscle attachment cells, at the termini of the prominent microtubule bundles, and is required in these cells for strong attachment to muscles. Kakapo is also expressed more widely at a lower level where it is essential for epidermal cell layer stability. These results suggest that the Kakapo protein forms essential links among integrins, actin, and microtubules.  相似文献   

20.
Neural cell adhesion molecules composed of immunoglobulin and fibronectin type III-like domains have been implicated in cell adhesion, neurite outgrowth, and fasciculation. Axonin-1 and Ng cell adhesion molecule (NgCAM), two molecules with predominantly axonal expression exhibit homophilic interactions across the extracellular space (axonin- 1/axonin-1 and NgCAM/NgCAM) and a heterophilic interaction (axonin-1–NgCAM) that occurs exclusively in the plane of the same membrane (cis-interaction). Using domain deletion mutants we localized the NgCAM homophilic binding in the Ig domains 1-4 whereas heterophilic binding to axonin-1 was localized in the Ig domains 2-4 and the third FnIII domain. The NgCAM–NgCAM interaction could be established simultaneously with the axonin-1–NgCAM interaction. In contrast, the axonin-1–NgCAM interaction excluded axonin-1/axonin-1 binding. These results and the examination of the coclustering of axonin-1 and NgCAM at cell contacts, suggest that intercellular contact is mediated by a symmetric axonin-12/NgCAM2 tetramer, in which homophilic NgCAM binding across the extracellular space occurs simultaneously with a cis-heterophilic interaction of axonin-1 and NgCAM. The enhanced neurite fasciculation after overexpression of NgCAM by adenoviral vectors indicates that NgCAM is the limiting component for the formation of the axonin-12/NgCAM2 complexes and, thus, neurite fasciculation in DRG neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号