首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The genome of influenza A virus consists of eight single-strand negative-sense RNA segments, each comprised of a coding region and a noncoding region. The noncoding region of the NS segment is thought to provide the signal for packaging; however, we recently showed that the coding regions located at both ends of the hemagglutinin and neuraminidase segments were important for their incorporation into virions. In an effort to improve our understanding of the mechanism of influenza virus genome packaging, we sought to identify the regions of NS viral RNA (vRNA) that are required for its efficient incorporation into virions. Deletion analysis showed that the first 30 nucleotides of the 3' coding region are critical for efficient NS vRNA incorporation and that deletion of the 3' segment-specific noncoding region drastically reduces NS vRNA incorporation into virions. Furthermore, silent mutations in the first 30 nucleotides of the 3' NS coding region reduced the incorporation efficiency of the NS segment and affected virus replication. These results suggested that segment-specific noncoding regions together with adjacent coding regions (especially at the 3' end) form a structure that is required for efficient influenza A virus vRNA packaging.  相似文献   

2.
RNA structure in the influenza A virus (IAV) has been the focus of several studies that have shown connections between conserved secondary structure motifs and their biological function in the virus replication cycle. Questions have arisen on how to best recognize and understand the pandemic properties of IAV strains from an RNA perspective, but determination of the RNA secondary structure has been challenging. Herein, we used chemical mapping to determine the secondary structure of segment 8 viral RNA (vRNA) of the pandemic A/California/04/2009 (H1N1) strain of IAV. Additionally, this long, naturally occurring RNA served as a model to evaluate RNA mapping with 4-thiouridine (4sU) crosslinking. We explored 4-thiouridine as a probe of nucleotides in close proximity, through its incorporation into newly transcribed RNA and subsequent photoactivation. RNA secondary structural features both universal to type A strains and unique to the A/California/04/2009 (H1N1) strain were recognized. 4sU mapping confirmed and facilitated RNA structure prediction, according to several rules: 4sU photocross-linking forms efficiently in the double-stranded region of RNA with some flexibility, in the ends of helices, and across bulges and loops when their structural mobility is permitted. This method highlighted three-dimensional properties of segment 8 vRNA secondary structure motifs and allowed to propose several long-range three-dimensional interactions. 4sU mapping combined with chemical mapping and bioinformatic analysis could be used to enhance the RNA structure determination as well as recognition of target regions for antisense strategies or viral RNA detection.  相似文献   

3.
The genomic viral RNA (vRNA) segments of influenza A virus contain specific packaging signals at their termini that overlap the coding regions. To further characterize cis-acting signals in segment 7, we introduced synonymous mutations into the terminal coding regions. Mutation of codons that are normally highly conserved reduced virus growth in embryonated eggs and MDCK cells between 10- and 1,000-fold compared to that of the wild-type virus, whereas similar alterations to nonconserved codons had little effect. In all cases, the growth-impaired viruses showed defects in virion assembly and genome packaging. In eggs, nearly normal numbers of virus particles that in aggregate contained apparently equimolar quantities of the eight segments were formed, but with about fourfold less overall vRNA content than wild-type virions, suggesting that, on average, fewer than eight segments per particle were packaged. Concomitantly, the particle/PFU and segment/PFU ratios of the mutant viruses showed relative increases of up to 300-fold, with the behavior of the most defective viruses approaching that predicted for random segment packaging. Fluorescent staining of infected cells for the nucleoprotein and specific vRNAs confirmed that most mutant virus particles did not contain a full genome complement. The specific infectivity of the mutant viruses produced by MDCK cells was also reduced, but in this system, the mutations also dramatically reduced virion production. Overall, we conclude that segment 7 plays a key role in the influenza A virus genome packaging process, since mutation of as few as 4 nucleotides can dramatically inhibit infectious virus production through disruption of vRNA packaging.  相似文献   

4.
5.
Short synthetic influenza virus-like RNAs derived from influenza virus promoter sequences were examined for their ability to stimulate the endonuclease activity of recombinant influenza virus polymerase complexes in vitro, an activity that is required for the cap-snatching activity of primers from host pre-mRNA. An extensive set of point mutants of the 5' arm of the influenza A virus viral RNA (vRNA) was constructed to determine the cis-acting elements which influenced endonuclease activity. Activity was found to be dependent on three features of the conserved vRNA termini: (i) the presence of the 5' hairpin loop structure, (ii) the identity of residues at positions 5 and 10 bases from the 5' terminus, and (iii) the presence of base pair interactions between the 5' and 3' segment ends. Further experiments discounted a role for the vRNA U track in endonuclease activation. This study represents the first mutagenic analysis of the influenza virus promoter with regard to endonuclease activity.  相似文献   

6.
A final step in the influenza virus replication cycle is the assembly of the viral structural proteins and the packaging of the eight segments of viral RNA (vRNA) into a fully infectious virion. The process by which the RNA genome is packaged efficiently remains poorly understood. In an approach to analyze how vRNA is packaged, we rescued a seven-segmented virus lacking the hemagglutinin (HA) vRNA (deltaHA virus). This virus could be passaged in cells constitutively expressing HA protein, but it was attenuated in comparison to wild-type A/WSN/33 virus. Supplementing the deltaHA virus with an artificial segment containing green fluorescent protein (GFP) or red fluorescent protein (RFP) with HA packaging regions (45 3' and 80 5' nucleotides) partially restored the growth of this virus to wild-type levels. The absence of the HA vRNA in the deltaHA virus resulted in a 40 to 60% reduction in the packaging of the PA, NP, NA, M, and NS vRNAs, as measured by quantitative PCR (qPCR), and the packaging of these vRNAs was partially restored in the presence of GFP/RFP packaging constructs. To further define nucleotides of the HA coding sequence which are important for vRNA packaging, synonymous mutations were introduced into the full-length HA cDNA of influenza A/WSN/33 and A/Puerto Rico/8/34 viruses, and mutant viruses were rescued. qPCR analysis of vRNAs packaged in these mutant viruses identified a key region of the open reading frame (nucleotides 1659 to 1671) that is critical for the efficient packaging of an influenza virus H1 HA segment.  相似文献   

7.
At the final step in viral replication, the viral genome must be incorporated into progeny virions, yet the genomic regions required for this process are largely unknown in RNA viruses, including influenza virus. Recently, it was reported that both ends of the neuraminidase (NA) coding region are critically important for incorporation of this vRNA segment into influenza virions (Y. Fujii, H. Goto, T. Watanabe, T. Yoshida, and Y. Kawaoka, Proc. Natl. Acad. Sci. USA 100:2002-2007, 2003). To determine the signals in the hemagglutinin (HA) vRNA required for its virion incorporation, we made a series of deletion constructs of this segment. Subsequent analysis showed that 9 nucleotides at the 3' end of the coding region and 80 nucleotides at the 5' end are sufficient for efficient virion incorporation of the HA vRNA. The utility of this information for stable expression of foreign genes in influenza viruses was assessed by generating a virus whose HA and NA vRNA coding regions were replaced with those of vesicular stomatitis virus glycoprotein (VSVG) and green fluorescent protein (GFP), respectively, while retaining virion incorporation signals for these segments. Despite the lack of HA and NA proteins, the resultant virus, which possessed only VSVG on the virion surface, was viable and produced GFP-expressing plaques in cells even after repeated passages, demonstrating that two foreign genes can be incorporated and maintained stably in influenza A virus. These findings could serve as a model for the construction of influenza A viruses designed to express and/or deliver foreign genes.  相似文献   

8.
9.
Reassortment of influenza viral RNA (vRNA) segments in co-infected cells can lead to the emergence of viruses with pandemic potential. Replication of influenza vRNA occurs in the nucleus of infected cells, while progeny virions bud from the plasma membrane. However, the intracellular mechanics of vRNA assembly into progeny virions is not well understood. Here we used recent advances in microscopy to explore vRNA assembly and transport during a productive infection. We visualized four distinct vRNA segments within a single cell using fluorescent in situ hybridization (FISH) and observed that foci containing more than one vRNA segment were found at the external nuclear periphery, suggesting that vRNA segments are not exported to the cytoplasm individually. Although many cytoplasmic foci contain multiple vRNA segments, not all vRNA species are present in every focus, indicating that assembly of all eight vRNA segments does not occur prior to export from the nucleus. To extend the observations made in fixed cells, we used a virus that encodes GFP fused to the viral polymerase acidic (PA) protein (WSN PA-GFP) to explore the dynamics of vRNA assembly in live cells during a productive infection. Since WSN PA-GFP colocalizes with viral nucleoprotein and influenza vRNA segments, we used it as a surrogate for visualizing vRNA transport in 3D and at high speed by inverted selective-plane illumination microscopy. We observed cytoplasmic PA-GFP foci colocalizing and traveling together en route to the plasma membrane. Our data strongly support a model in which vRNA segments are exported from the nucleus as complexes that assemble en route to the plasma membrane through dynamic colocalization events in the cytoplasm.  相似文献   

10.

Background

Influenza B and C are single-stranded RNA viruses that cause yearly epidemics and infections. Knowledge of RNA secondary structure generated by influenza B and C will be helpful in further understanding the role of RNA structure in the progression of influenza infection.

Findings

All available protein-coding sequences for influenza B and C were analyzed for regions with high potential for functional RNA secondary structure. On the basis of conserved RNA secondary structure with predicted high thermodynamic stability, putative structures were identified that contain splice sites in segment 8 of influenza B and segments 6 and 7 of influenza C. The sequence in segment 6 also contains three unused AUG start codon sites that are sequestered within a hairpin structure.

Conclusions

When added to previous studies on influenza A, the results suggest that influenza splicing may share common structural strategies for regulation of splicing. In particular, influenza 3′ splice sites are predicted to form secondary structures that can switch conformation to regulate splicing. Thus, these RNA structures present attractive targets for therapeutics aimed at targeting one or the other conformation.  相似文献   

11.
12.
Influenza A virus is a threat to humans due to seasonal epidemics and infrequent, but dangerous, pandemics that lead to widespread infection and death. Eight segments of RNA constitute the genome of this virus and they encode greater than eight proteins via alternative splicing of coding (+)RNAs generated from the genomic (-)RNA template strand. RNA is essential in its life cycle. A bioinformatics analysis of segment 5, which encodes nucleoprotein, revealed a conserved structural motif in the (+)RNA. The secondary structure proposed by energy minimization and comparative analysis agrees with structure predicted based on experimental data using a 121 nucleotide in vitro RNA construct comprising an influenza A virus consensus sequence and also an entire segment 5 (+)RNA (strain A/VietNam/1203/2004 (H5N1)). The conserved motif consists of three hairpins with one being especially thermodynamically stable. The biological importance of this conserved secondary structure is supported in experiments using antisense oligonucleotides in cell line, which found that disruption of this motif led to inhibition of viral fitness. These results suggest that this conserved motif in the segment 5 (+)RNA might be a candidate for oligonucleotide-based antiviral therapy.  相似文献   

13.
14.
The influenza A virus genome consists of eight viral RNAs (vRNAs) that form viral ribonucleoproteins (vRNPs). Even though evidence supporting segment-specific packaging of vRNAs is accumulating, the mechanism ensuring selective packaging of one copy of each vRNA into the viral particles remains largely unknown. We used electron tomography to show that the eight vRNPs emerge from a common 'transition zone' located underneath the matrix layer at the budding tip of the virions, where they appear to be interconnected and often form a star-like structure. This zone appears as a platform in 3D surface rendering and is thick enough to contain all known packaging signals. In vitro, all vRNA segments are involved in a single network of intermolecular interactions. The regions involved in the strongest interactions were identified and correspond to known packaging signals. A limited set of nucleotides in the 5' region of vRNA 7 was shown to interact with vRNA 6 and to be crucial for packaging of the former vRNA. Collectively, our findings support a model in which the eight genomic RNA segments are selected and packaged as an organized supramolecular complex held together by direct base pairing of the packaging signals.  相似文献   

15.
16.
A three-dimensional structural model of an influenza virus ribonucleoprotein particle reconstituted in vivo from recombinant proteins and a model genomic vRNA has been generated by electron microscopy. It shows a circular shape and contains nine nucleoprotein monomers, two of which are connected with the polymerase complex. The nucleoprotein monomers show a curvature that may be responsible for the formation of helical structures in the full-size viral ribonucleoproteins. The monomers show distinct contact boundaries at the two sides of the particle, suggesting that the genomic RNA may be located in association with the nucleoprotein at the base of the ribonucleoprotein complex. Sections of the three-dimensional model show a trilobular morphology in the polymerase complex that is consistent with the presence of its three subunits.  相似文献   

17.
18.
19.
20.
Promoter elements in the influenza vRNA terminal structure.   总被引:6,自引:1,他引:5       下载免费PDF全文
The role of the partially double-stranded influenza vRNA terminal structure and its constitutive elements as a promoter signal was studied in vivo in a series of nucleotide substitution and insertion derivatives. A series of single and complementary double exchanges restoring intrastrand base pairing shows that a distal promoter element consists of a six-base pair double-stranded RNA rod in long-range complementary interaction. Within the distal element, all base pair positions are freely exchangeable, and hence no nucleotide-specific recognition could be identified. The proximal promoter element consists of nine partially complementary nucleotides at the vRNA 5' and 3' end. The nine plus six base pair panhandle rod of protein-free vRNA is interrupted by a central third element, a single unpaired nucleotide: adenosine 10 or various substitute residues, which appears to cause a bulged conformation in the overall structure. Mutagenization studies in the promoter proximal element indicate that, upon binding to polymerase, nucleotides at positions 2 and 3 interact with positions 9 and 8 within each branch (5' or 3') in short-range base pairing. In this conformation, the intermediate positions 4-7 are exposed as a single-stranded tetra-loop, which includes invariant guanosine residue 5 in the top conformational position of the 5' segment loop. Altogether, the three base paired segments in angular conjunction to each other adopt a conformation that is described in a "corkscrew model" for an activated stage of vRNA/polymerase interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号