首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To verify the importance of somatic cells upon in vitro embryo development, in vitro-matured (IVM) and -fertilized (IVF) bovine oocytes were cultured in TCM 199 supplemented with estrous cow serum (10% v/v) and 0.25 mM sodium pyruvate (ECSTCM) under the following treatments: 1) ECSTCM alone; 2) together with bovine oviduct epithelial cells (BOEC); 3) with cumulus cells (CC); 4) in fresh BOEC conditioned ECSTCM; or 5) in frozen-thawed BOEC conditioned ECSTCM. Culturing zygotes encased in cumulus cells significantly reduced the cleavage rate (P<0.05). There was no difference between culture systems in the proportions of embryo development through the 8-cell stage (P=0.42) up to the morula/blastocyst stages (P=0.50) at Day 7 post insemination. However, co-culture with BOEC yielded the highest percentage (21.2% of zygotes; P<0.05) of quality Grade-1 and Grade-2 embryos with the number of blastomeres per embryo (114.4) comparable to that of 7-day-old in vivo-developed embryos of similar grades (102.5), and higher (P<0.05) than those of the other treatments. The ratio of blastocysts to total morulae/blastocysts obtained from frozen-thawed conditioned medium was lower (P<0.05) than that from ECSTCM or after co-culture with BOEC at Day 7 post insemination. On average, 7.5 to 17.5% of the zygotes developed to blastocyst, expanded blastocyst and hatched blastocyst stages by Day 10 post insemination, depending upon the culture system. The difference between treatments, however, was not significant (P=0.68). The results indicate that chronological development up to hatching of bovine IVM-IVF embryos is not favored by somatic cells; however, the presence of viable oviduct epithelial cells in culture significantly improves the quality of 7-day-old embryos.  相似文献   

2.
The aim of this study was to investigate the effects of activin A on development, differential cell counts and apoptosis/necrosis rates of bovine embryos produced in vitro. Presumptive zygotes were cultured up to Day 8 in synthetic oviduct fluid containing aminoacids, citrate, myo-inositol and BSA. In Experiment 1, activin (10 ng mL−1) was added: 1/from Day 1 to Day 3; 2/from Day 1 to Day 8; 3/from Day 3 to Day 8; or 4/absent (control). In Experiment 2, 10 ng mL−1 activin were added either before (Day 3 to Day 5) or after (Day 5 to Day 8) the early morula stage. In Experiment 1, activin during the first 72 h of culture reduced Day 3 cleavage, 5-8 cell rates and blastocyst development, while hatching rates increased. No changes were observed within differential cell counts. In experiment 2, activin improved blastocyst development after, and had no effect before, the Day 5 morula stage. However, trophectoderm (TE) cell numbers decreased with activin both before and after the Day 5 morula stage, suggesting that activin inhibits TE differentiation. The presence of activin during the whole culture had no effect on TUNEL positive cells, but when added at shorter periods activin increased apoptotic rates. Effects of activin during in vitro bovine embryo development, depends on timing of its addition to the culture medium.  相似文献   

3.
By using the approach of immunofluorescence staining with an antibody against 5-methylcytosine (5MeC), the present study detected the DNA methylation patterns of bovine zygotes and preimplantation embryos derived from oocyte in vitro maturation (IVM), in vitro fertilization (IVF) and embryo in vitro culture (IVC). The results showed that: a) paternal-specific demethylation occurred in 61.5% of the examined zygotes, while 34.6% of them showed no demethylation; b) decreased methylation level was observed after the 8-cell stage and persisted through the morula stage, however methylation levels were different between blastomeres within the same embryos; c) at the blastocyst stage, the methylation level was very low in inner cell mass, but high in trophectoderm cells. The present study suggests, at least partly, that IVM/IVF/IVC may have effects on DNA methylation reprogramming of bovine zygotes and early embryos.  相似文献   

4.
5.
Two experiments were conducted to compare the influence of different culture systems and the oviduct donor's cycle phase on the developmental potential of co-cultured bovine embryos derived from IVM/IVF oocytes and to establish an efficient freezing method for oviduct epithelial cells. In the first experiment, the effects of media (Menezo B2, synthetic oviduct fluid SOF); sera (no serum, fetal calf serum FCS, human serum HS); and the presence or absence of monolayer of bovine oviduct epithelial cells (BOEC) on developmental capacity of bovine embryos were investigated. In the second experiment, the influence of oviduct donor's hormonal status (superovulated versus unstimulated) and the cryopreservation of oviductal tissue on the support of developmental competence of bovine IVM/IVF-derived zygotes were examined. Oviduct epithelial cells were cryopreserved according to the modified two-step method previously applied to rabbit embryos. For zygotes co-cultured with a monolayer of BOEC the following blastocyst development rates were obtained: 40.1% (63/157); 34.5% (60/174); 13.0% (7/54); and 19.2% (14/73), respectively, in B2 serum-free medium, B2 plus 20% HS, SOF plus 20% HS, and SOF plus 20% FCS medium. In the absence of BOEC the rates were 12.3% (10/81); 41.4% (36/87); and 8.9% (6/67), respectively, in B2 plus 20% HS, SOF plus 20% HS, and SOF plus 20% FCS. It was shown that the source of oviduct epithelial cells and previous freezing had no influence on the proportion of cleaved zygotes (approximately 70%) or on the percentage of blastocysts (approximately 20%).  相似文献   

6.
This study evaluates a new synthetic substitute (CRYO3, Ref. 5617, Stem Alpha, France) for animal-based products in bovine embryo cryopreservation solutions. During the experiment, fetal calf serum (FCS) and bovine serum albumin (BSA) were used as references. A combination of a thermodynamic approach using differential scanning calorimetry and a biological approach using in vitro-produced bovine embryo slow-freezing was used to characterize cryopreservation solutions containing CRYO3, FCS and BSA. The CRYO3 and fetal calf serum (FCS) slow-freezing solutions were made from Dulbecco's phosphate-buffered saline containing 1.5 m ethylene glycol, 0.1 m sucrose and 20% (v.v−1) of CRYO3 or FCS. The bovine serum albumin (BSA) solution was made by adding 0.1 m sucrose to a commercial solution containing 1.5 m ethylene glycol and 4 g L−1 BSA. These solutions were evaluated using three characteristics: the end of melting temperature, the enthalpy of crystallization (thermodynamic approach) and the embryo survival and hatching rates after in vitro culture (biological approach). The CRYO3 and FCS solutions had similar thermodynamic properties. In contrast, the thermodynamic characteristics of the BSA solution were different from those of the FCS and CRYO3 solutions. Nevertheless, the embryo survival and hatching rates obtained with the BSA and FCS solutions were not different. Similar biological properties can thus be obtained with slow freezing solutions that have different physical properties within a defined range. The embryo survival rate after 48 h of in vitro culture obtained with the CRYO3 solution (81.5%) was higher than that obtained with the BSA (42.2%, P = 0.000 12) and FCS solutions (58%, P = 0.016). Similarly, the embryo hatching rate after 72 h of in vitro culture was higher with the CRYO3 solution (61.1%) than with the BSA (31.1%, P = 0.0055) and FCS solutions (36%, P = 0.018). We conclude that CRYO3 can be used as a chemically defined substitute for animal-based products in in vitro-produced bovine embryo cryopreservation solutions.  相似文献   

7.
Sixteen inner or outer blastomeres from 16-cell embryos and 32 inner or outer blastomeres from 32-cell embryos (nascent blastocysts) were reaggregated and cultured in vitro. In 24 h old blastocysts developed from blastomeres derived from 16-cell embryos the expression of Cdx2 protein was upregulated in outer cells (new trophectoderm) of the inner cells-derived aggregates and downregulated in inner cells (new inner cell mass) of the external cells-derived aggregates. After transfer to pseudopregnant recipients blastocysts originating from both inner and outer blastomeres of 16-cell embryo developed into normal, fertile mice, but the implantation rate of embryos formed from inner cell aggregates was lower. The aggregates of external blastomeres derived from 32 cell embryo usually formed trophoblastic vesicles accompanied by vacuolated cells. In contrast, the aggregates of inner blastomeres quickly compacted but cavitation was delayed. Although in the latter embryos the Cdx2 protein appeared in the new trophectoderm within 24 h of in vitro culture, these embryos formed only very small outgrowths of Troma1-positive giant trophoblastic cells and none of these embryos was able to implant in recipient females. In separate experiment we have produced normal and fertile mice from 16- and 32-cell embryos that were first disaggregated, and then the sister outer and inner blastomeres were reaggregated at random. In blastocysts developed from aggregates, within 24 h of in vitro culture, the majority of inner and outer blastomeres located themselves in their original position (internally and externally), which implies that in these embryos development was regulated mainly by cell sorting.  相似文献   

8.
These studies were designed to develop a coculture system using a simple medium to promote development of 1-cell bovine embryos through the 8-16-cell stage to morula and blastocyst stages. Monolayers for coculture were prepared from bovine oviduct epithelial cells (BOEC). In vivo-fertilized 1-2-cell embryos and ova (384) were surgically collected from superovulated cows. In Experiment 1, embryos cocultured in a simple glucose-free and serum-free medium (CZB) developed with superior scores of embryo quality than embryos cocultured in Ham's F-10 with serum, and a greater percentage developed past 8-16 cells than embryos cocultured in CMRL-1066 with serum (p less than 0.05). In Experiment 2, embryos cocultured with fresh BOEC monolayers averaged more (p less than 0.05) cells than did embryos in coculture with frozen-thawed BOEC monolayers or in BOEC-conditioned medium. Without glucose in the simple medium for the first 48 h of culture, more embryos blastulated (p less than 0.01) by Day 5.5 of culture (Day 6.5 of donor's estrous cycle) than embryos in the same medium with glucose present throughout. In Experiment 3, more embryos tended to hatch in BOEC coculture (p less than 0.10) than in conditioned medium. These results show that a chemically simple medium with fresh BOEC monolayers can provide a significant benefit for coculture of early bovine embryos.  相似文献   

9.
The objective of this study was to determine whether MVV can be transmitted by ovine embryos produced in vitro and whether the zona pellucida (ZP) provides any protection against MVV infection.Zona pellucida (ZP)-intact and ZP-free embryos, produced in vitro, at the 8-16 cell stage, were cocultured for 72h in an insert over an ovine oviduct epithelial cell (OOEC)-goat synovial membrane (GSM) cell monolayer that had been previously infected with MVV (K1514 strain). The embryos were then washed and transferred to either direct contact or an insert over a fresh GSM cell monolayer for 6 h. The presence of MVV was detected using RT-PCR on the ten washing fluids and by the observation of typical cytopathic effects (CPE) in the GSM cell monolayer, which was cultured for 6 weeks.This experiment was repeated 4 times with the same results: MVV viral RNA was detected using RT-PCR in the first three washing media, while subsequent baths were always negative. Specific cytopathic effects of MVV infection and MVV-proviral DNA were detected in GSM cells that were used as a viral indicator and cocultured in direct contact or as an insert with MVV-exposed ZP-free embryos. However, no signs of MVV infection were detected in cells that were cocultured with exposed ZP-intact or non-exposed embryos.This study clearly demonstrates that (i) in vitro, ZP-free, early ovine embryos, which had been exposed to 103 TCID50/m MVV in vitro, are capable of transmitting the virus to susceptible GSM target cells, and that (ii) the IETS recommendations for handling in vivo produced bovine embryos (use of ZP-intact embryos without adherent material and performing ten washes) are effective for the elimination of in vitro MVV infection from in vitro produced ovine embryos. The absence of interaction between ZP-intact embryos and MVV suggests that the in vitro produced embryo zona pellucida provides an effective protective barrier.  相似文献   

10.
A positive association between P4 concentration and initial bovine embryo survival has been reported. The objective of this study was to establish two coculture systems as a model to study the influence of progesterone on the initial bovine embryo development. Granulosa cells (GC) or bovine oviduct epithelial cells (BOECs) were used at the base of embryo culture medium microdroplets (TCM199 and 10% of superovulated oestrus cow serum, (SOCS)) supplemented or not with progesterone (P4, 33.4 ng mL(-1)) and/or a progesterone receptor antagonist (onapristone, OP, 2.2x10(-5)M). Presumptive zygotes were transferred to monolayers after in vitro maturation and fertilization of bovine oocytes with thawed swim-up selected sperm. Embryo development was carried out according to the following groups: experiment 1, BOEC (n=378) and BOEC plus OP (n=325); experiment 2, GC (n=514); GC plus OP (n=509); BOEC (n=490); BOEC plus P4 (n=500); BOEC plus P4 and OP (n=502). Embryos were checked for cleavage at day 2 and for stage development between days 8 and 12 of culture. In experiment 1, no differences (P>0.05) were identified between BOEC and BOECOP groups for embryo rates of development, quality or developmental stages. Also in experiment 2, no differences were found in embryo rates of development, quality or developmental stages between embryos cultured under the two coculture systems when no supplementation was added. Embryo development rates were not affected by OP presence in GCOP group. However, P4 negatively affected Day 8 (D8) embryo development rates in BOEC system (BOECP4=16.8+/-2.6% vs. BOEC=23.7+/-1.7%, P=0.02). This negative effect was abolished when P4 antagonist (OP) was added to the culture medium. BOEC supplementation with P4 also induced a delay on embryo development at D8 as confirmed by a lower development score (BOECP4=3.0+/-1.4 vs. GC=3.4+/-0.1, GCOP=3.5+/-0.1, BOEC=3.4+/-0.1 and BOECP4OP=3.5+/-0.1; P<0.05). These results demonstrate that OP supplementation had no harmful effect on embryo development either in granulosa, where P4 is naturally synthesised, or in BOEC coculture systems. Also we can not confirm a direct association between high P4 concentrations and embryo survival during early stages, although P4 may influence early embryo development through different mechanisms mediated by the type of cells present.  相似文献   

11.
This study investigated effects of hexoses, fetal calf serum (FCS), and phenazine ethosulfate (PES) during the culture of bovine embryos on blastocyst development and survival after cryopreservation by slow freezing or vitrification. The basal, control medium was chemically defined (CDM) plus 0.5% fatty acid-free BSA. In vitro-produced bovine zygotes were cultured in CDM-1 with 0.5 mM glucose; after 60 hr, 8-cell embryos were cultured 4.5 days in CDM-2. The 8-cell embryos were randomly allocated to a 2 x 3 x 2 x 3 factorial experimental design with two energy substrates (2 mM glucose or fructose); three additives (0.3 microM PES, 10% FCS, and control); two cryopreservation methods using no animal products (conventional slow freezing or vitrification); and semen from three bulls with two replicates for each bull. A total of 1,107 blastocysts were produced. Fructose resulted in 13% more blastocysts per oocyte than glucose (37.2% vs. 32.9%), and per 8-cell embryo (51.3% vs. 45.3%; P < 0.01). No differences were found for additives (P > 0.1) control, FCS, or PES for blastocysts per oocyte or per 8-cell embryo. There was a significant interaction (P < 0.05) between additives and hexoses for blastocyst production; although trends were similar, the benefit of fructose compared to glucose was greater for controls than for FCS or PES. Culture of embryos with PES, which reduces cytoplasmic lipid content, improved cryotolerance of bovine embryos; post-cryopreservation survival of blastocysts averaged over vitrification and slow freezing (between which there was no difference) was 91.9%, 84.9%, and 60.2% of unfrozen controls (P < 0.01) for PES, control, and FCS groups, respectively.  相似文献   

12.
The objective of this study was to determine the effect of fetal calf serum (FCS) on the quality of in vitro produced bovine embryos. Cumulus oocyte-complexes (COCs, n = 2 449) recovered by ovum pick-up from Bos taurus indicus donors were randomly assigned to experimental groups. Sperm selected by Percoll gradient was used for in vitro fertilization (insemination = Day 0). In Experiment 1 (n = 1 745 COCs), zygotes were cultured in vitro in Synthetic Oviduct Fluid + 4 mg/mL of bovine serum albumin (BSA), or BSA + 2% FCS (BSA+FCS). In Experiment 2 (n = 704 COCs), the COCs were cultured in SOF + BSA, BSA + 2% FCS, or BSA + 2% FCS on D4 (BSA + FCSD4). In Experiment 1, blastocyst yield (51%) and Quality I blastocysts (41%) at Day 7 were higher (P < 0.05) in the BSA + FCS treatment than in BSA (42 and 30%, respectively). In Experiment 2, blastocyst yield was higher (P < 0.05) in the BSA+FCS (47%) treatment. Quality I blastocyst yield was higher (P < 0.05) for BSA + FCS (34%) and BSA+FCSD4 (32%) compared to the BSA treatment (20%). A total of 820 embryos were transferred, with no significant differences among groups in pregnancy rates. In conclusion, in vitro culture in SOFaaci + BSA + FCS enhanced blastocyst yield and Quality I blastocysts; adding FCS to the culture medium increased the efficiency of IVP of bovine embryos.  相似文献   

13.
In vitro-matured bovine oocytes do not tolerate vitrification as well as mature murine or human oocytes. Delayed first cleavage in vitrified and in vitro-fertilized bovine oocytes may be responsible for the decreased yield of blastocysts in vitro. Because formation of sperm-aster and the subsequent assembly of microtubule network play an important role for migration and fusion of both pronuclei, aster formation in vitrified-warmed oocytes was analyzed by confocal laser-scanning microscopy. At 10 h post-insemination (hpi), proportions of oocytes fertilized normally were comparable between the vitrified and fresh control groups (67 and 70%, respectively). Proportions of oocytes that exhibited microtubule assembly were similar between the two groups (95% each), but the proportion of oocytes with multiple asters was higher in the vitrified group when compared with the fresh control group (68 vs 29%, P < 0.05). Both migration and development of two pronuclei were adversely affected by multiple aster formation. In the next experiment, multiple asters observed in 5.5 vs 8 hpi pronuclear zygotes were located near the male pronucleus, suggesting that those multiple asters were not the cytoplasmic asters of maternal origin. In conclusion, multiple aster formation frequently observed in vitrified-warmed bovine oocytes may be related to loss of ooplasmic function responsible for normal microtubule assembly from the sperm-aster.  相似文献   

14.
Embryo aggregation has been demonstrated to improve cloning efficiency in mammals. However, since no more than three embryos have been used for aggregation, the effect of using a larger number of cloned zygotes is unknown. Therefore, the goal of the present study was to determine whether increased numbers of cloned aggregated zygotes results in improved in vitro and in vivo embryo development in the equine. Zona-free reconstructed embryos (ZFRE''s) were cultured in the well of the well system in four different experimental groups: I. 1x, only one ZFRE per microwell; II. 3x, three per microwell; III. 4x, four per microwell; and IV. 5x, five ZFRE''s per microwell. Embryo size was measured on day 7, after which blastocysts from each experimental group were either a) maintained in culture from day 8 until day 16 to follow their growth rates, b) fixed to measure DNA fragmentation using the TUNEL assay, or c) transferred to synchronized mares. A higher blastocyst rate was observed on day 7 in the 4x group than in the 5x group. Non-aggregated embryos were smaller on day 8 compared to those aggregated, but from then on the in vitro growth was not different among experimental groups. Apoptotic cells averaged 10% of total cells of day 8 blastocysts, independently of embryo aggregation. Only pregnancies resulting from the aggregation of up to four embryos per microwell went beyond the fifth month of gestation, and two of these pregnancies, derived from experimental groups 3x and 4x, resulted in live cloned foals. In summary, we showed that the in vitro and in vivo development of cloned zona-free embryos improved until the aggregation of four zygotes and declined when five reconstructed zygotes were aggregated.  相似文献   

15.
Progesterone enhances in vitro development of bovine embryos   总被引:1,自引:0,他引:1  
Increased pregnancy rates in cattle given progesterone (P4) prior to 5 d after breeding have recently been reported. The objective was to determine if this increase in pregnancy rate could be attributed to a direct positive effect of P4 on the developing embryo. In Experiment 1, 280 bovine oocytes were inseminated in vitro and at Day 3 (insemination = Day 0), good quality 8 cell embryos (n = 206) were randomly allocated to be cultured in either CR1aa+serum with 0 or ∼15 ng/mL (n = 102 and n = 104, respectively). In Experiment 2, 881 bovine oocytes were used; on Day 3, good quality 8 cell embryos (n = 511) were randomly allocated to either the control (CR1aa+FCS, n = 168), vehicle (CR1aa + FCS + ethanol, n = 170), or P4 treatment (CR1aa + FCS + ∼15 ng/mL P4 in ethanol, n = 173). On Day 7, in both experiments, there were increased numbers of blastocysts developing in the P4 group (Experiment 1, 59% and Experiment 2, 71%) compared to the vehicle (Experiment 2, 53%) or control (40 and 62% in Experiments 1 and 2, respectively). The addition of P4 (8%) stimulated the rate of embryo development (early blastocysts or more advanced stages on Day 6) compared to vehicle (3%) and control (0%) and the P4 group had more hatched or hatching blastocysts (33%) on Day 9 compared to the control or vehicle group (21 or 22%). Additionally, the P4 group had greater embryo diameter and significantly more Grade 1 blastocysts on Day 7. In conclusion, P4 had a direct, positive effect on developing bovine embryos cultured in vitro.  相似文献   

16.
This study was designed to evaluate the efficacy of Buffalo Rat Liver cells (BRLC) monolayers in supporting the development of in vitro matured and fertilized (IVM/IVF) bovine oocytes through to the hatched blastocyst stage compared to the commonly used co-culture system of bovine oviduct epithelial cells (BOEC). Cumulus oocyte complexes (COCs) obtained from 2- to 6-mm ovarian follicles at slaughter were matured for 24 h in TCM-199 supplemented with FBS and hormones (FSH, LH and estradiol 17-beta). In vitro fertilization (IVF) was performed using 1 x 10(6) percoll separated frozen-thawed spermatozoa in 1 ml of IVF-TL medium containing 18 to 20 matured oocytes. After 20 to 22 h of sperm exposure, 584 presumptive zygotes in 2 separate trials were randomly assigned to 3 treatment groups (BRLC co-culture, BOEC co-culture and control, consisting of medium alone). Zygotes were cultured in CZB media, a simple semi-defined medium, without glucose for the first 2 d, transferred to M199/FBS (TCM-199-HEPES supplemented with 20% HTFBS, 1 mM Sodium pyruvate), and cultured for an additional 8 days. Cleavage and development to morula and various blastocyst stages were recorded between d 3 and 11 after the start of IVF. Overall average cleavage rate was 75% (440 584 ) and did not vary across the treatments or trials. The proportion of embryos that reached the morula stage in both co-culture systems did not differ (P > 0.05) and was significantly higher (P > 0.05) compared to the control group. However, the percentage of the number of blastocysts, expanded blastocysts and hatched blastocysts varied across the treatment groups (P < 0.05), with the highest results obtained in the BRLC co-culture system. The production of blastocysts in BOEC co-culture was inconsistent between the 2 trials where a significant difference (40.6 vs 53.0%; P > 0.05) was observed. Rate of development to the blastocyst stage was similar between the 2 co-culture systems, with most of the embryos reaching the blastocyst stage by d 8 post insemination. The results of this study show that BRLC from a commercially available established cell line offer a more reliable alternative to a BOEC co-culture system for in vitro maturation, fertilization and culture of bovine embryos.  相似文献   

17.
18.
The purpose of this work was to assess commercially available Cryotech Vitrification Kit, in terms of survival, in vitro development and pregnancy rate for bovine embryos. Cumulus-oocyte complexes (COCs) were recovered from ovaries obtained from slaughtered cows and then matured in vitro for 22 h. COCs were fertilized by sex-sorted sperm in IVF-mSOF and cultured in IVC-mSOF for 7 days to the blastocyst stage. Blastocysts were vitrified with the Cryotech Vitrification Kit® and then either warmed to check viability or transferred to synchronized heifers. We observed 100% survival of the in vitro produced blastocysts and obtained the same pregnancy rate (46.8%) as that obtained using fresh in vitro produced blastocysts. We thus conclude that the Cryotech vitrification method is a valid alternative to other vitrification or slow-cooling methods in the bovine species and that it is ready for livestock production.  相似文献   

19.
The customary practice in bovine in vitro embryo production (IVP) is to handle oocytes and embryos in groups; although there are several reasons for establishing an IVP system for individual embryos that allows for following a single oocyte from retrieval through development to the blastocyst stage. To date, reports of individual IVP are inconsistent, and in most cases, resulted in unsatisfactory blastocyst rates. The objective of this study was to develop an efficient system for routine in vitro culture of individual bovine embryos. Single culture of zygotes in 2 different culture volumes (20 and 500 μL) yielded less than 3% blastocysts in experiment 1. In an attempt to improve these results, cumulus cells were added to the culture medium in experiment 2, after which blastocyst rates increased from 2.9 to 21.8% (P < 0.05). The third experiment revealed that an atmospheric oxygen tension, which is commonly used with somatic cell coculture, was not beneficial during individual embryo-cumulus cell coculture, because it resulted in lower blastocyst rates (Odds ratio 0.57, P < 0.001) and in lower blastocyst cell numbers (P < 0.05), when compared to culture in 5% oxygen. Grouped vs. single culture and reduced oxygen tension did not have a significant effect on cleavage and hatching rates. In experiment 4, three different cumulus cell coculture conditions during individual culture were tested and compared with the cleavage, blastocyst and hatching rates, and cell number of group culture (73.2%, 36.4%, 66.7% and, 155.1 ± 7.26, respectively). The outcome variables after individual embryo culture on a 5-day-old cumulus cell monolayer (74.1%, 38.2%, 71.9% and 133.4 ± 9.16, respectively), and single culture in the presence of added cumulus cells (69.9%, 31.9%, 66.7% and 137.3 ± 8.01, respectively) were not significantly different from those obtained after group culture (P < 0.05). Though, individual culture in a cumulus cell conditioned medium significantly reduced both the cleavage (59.0%) and blastocyst rates (6.3%). These results demonstrate that single culture of bovine zygotes can be fully sustained by coculture with cumulus cells in a low oxygen environment; implementation of these findings in our IVP system produced blastocysts comparable in quantity and quality to those obtained by group culture. These results were consistently achieved after acquiring experience and expertise in the handling of single zygotes.  相似文献   

20.
Oviductal factors may be obtained by ultrafiltration of conditioned medium, added to a simple media and used in bovine embryo culture. In this study, we aimed to analyze the development of bovine embryos produced with oviductal factors compared to those cultured in the presence of BSA or serum, the effects of glucose in presence of these protein supplements, and the ability of oviductal factors to support embryo development during the entire culture period. In vitro produced bovine zygotes from slaughterhouse ovaries were cultured in modified-synthetic oviduct fluid (mSOF) alone or supplemented with (1) oviductal factors, (2) BSA and (3) FCS. Oviductal factors showed embryotrophic activity, although with blastocyst rates lower than those in BSA and FCS. Glucose (1.5 mM) added at Day 2 of culture did not affect development in the presence of oviductal factors. The number of cells in expanded blastocysts was unaffected by the presence of glucose or any of the protein supplements used. Both BSA and FCS, respectively, improved blastocyst rates of Day 6 embryos produced with oviductal factors. The effect of oviductal factors was masked by the presence of BSA during the entire culture. FCS promoted an earlier appearance of blastocysts. It is concluded that the effect of glucose on in vitro embryo development depends upon the source of protein. Oviductal factors are not an appropriate supplement for embryos beyond Day 6 of culture in SOF, although blastocyst rates of such embryos may be increased by culturing them in the presence of FCS or BSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号