首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
假单胞菌F12能够将DL-2-氨基-△~2-噻唑啉4-羧酸(DL-2-amino-△~2-thiazoline-4-carboxylic acid,DL-ATC)转化为L-半胱氨酸。将该微生物转化过程分为以乙酸和氨为碳源和氮源的菌体生长阶段和利用DL-ATC诱导L-半胱氨酸合成酶产生阶段。考察了乙酸对菌体生长的影响以及菌体比生长速率对L-半胱氨酸合成酶诱导的影响。结果表明,当乙酸浓度大于4 g/L时对菌体生长有显著抑制作用,乙酸的存在对L-半胱氨酸合成酶的诱导有抑制作用,菌体比生长速率较高时更有利于酶系的产生。在5 L罐中进行的两阶段培养,最高体积酶活达到283 U/mL,比优化前提高了150%,比分批培养提高了130%。  相似文献   

2.
目的:找到能够高效合成L-半胱氨酸合成酶的培养基。方法:研究进行了假单胞菌F12在复合培养基和简单培养基合成L-半胱氨酸能力的对比及产酶过程分析。结果:简单培养基生长的菌体合成L-半胱氨酸能力较高,单位菌体产生L-半胱氨酸能力比复合培养基增大1倍;DL-2-氨基-△2-噻唑啉-4-羧酸(DL-ATC)诱导L-半胱氨酸合成酶的产生;葡萄糖的存在不利于产酶,后期酶的比生产速率为-0.11 U/mg DCW·h,对照中为4.04 U/mg DCW·h。结论:以DL-ATC为碳氮源的基本培养基最有利于产酶。  相似文献   

3.
微生物酶法合成L-半胱氨酸和L-胱氨酸   总被引:12,自引:2,他引:12  
从土壤中分离到一株假单胞菌Pseudomonas sp.TS1138菌株,其胞内含有DL-2-氨基-Δ2-噻唑啉-4-羧酸(DL-2-Amino-Δ2-Thiazoling-4-Carboxylic Acid,缩写为DL-ATC)水解酶,以培养16h的细胞为酶源,可转化DL-ATC合成L-半胱氨酸。该菌株生长及产酶的最佳碳、氮源为葡萄糖和尿素,DL-ATC对酶的产生具有诱导作用。酶促反应后的产物经薄层层析、旋光度法和高效液相色谱鉴定为L-半胱氨酸。  相似文献   

4.
将来源于Pseudomonas putida ACCC 10185的ADI编码基因克隆到表达载体p ET-24a(+)中,转化Escherichia coli BL21(DE3),通过超声波破碎得到粗酶液,酶活检测ADI酶活为26 U/m L发酵液。对酶转化L-精氨酸盐酸盐生成L-瓜氨酸的反应条件进行了优化,结果表明,当底物L-精氨酸盐酸盐浓度650 g/L,反应初始p H6.0,温度37℃,加酶量24 U/g底物,转速100-200 r/min,转化时间7 h,L-瓜氨酸转化率达到100%,是目前国内外报道的酶法制备L-瓜氨酸的最高水平。  相似文献   

5.
假单胞菌酶法转化DL-ATC合成L-半胱氨酸   总被引:2,自引:0,他引:2  
采用微生物酶转化法制备L-半胱氨酸具有周期短、成本低、区域和立体选择性强、反应条件容易控制、环境友好等特点,与传统的毛发水解以及化学合成工艺相比显示出明显的优越性。本文从假单胞菌产酶条件和酶学性质、DL-ATC生物转化途径、固定化细胞转化工艺、基因工程菌的研究、以及L-半胱氨酸脱巯基酶的研究等5个方面介绍了国内外关于生物转化DL-2-氨基-Δ2-噻唑啉-4-羧酸(DL-ATC)合成L-半胱氨酸的研究进展。  相似文献   

6.
酶法转化DL-ATC合成L-半胱氨酸的酶促反应条件研究   总被引:1,自引:0,他引:1  
目的:考察酶源保存方式、酶促反应时间、底物pH值、底物浓度、酶浓度、金属离子等因素对酶活力的影响。方法:以假单胞菌(Pseudomonassp.)TS1138为供试菌株,采用酸式茚三酮法测定L-半胱氨酸含量,研究了酶法转化DL-ATC合成L-半胱氨酸的酶促反应条件。结果:TS1138菌株中L-半胱氨酸脱巯基酶具有较高的活性,而且Mg2 、Mn2 、Fe2 、Zn2 、Cu2 等5种金属离子对DL-ATC水解酶酶系有不同程度的抑制,其中Cu2 对该酶系的抑制作用很大。结论:确定了TS1138菌株酶法转化DL-ATC合成L-半胱氨酸的最适酶促反应条件,为酶促反应动力学的研究奠定了基础。  相似文献   

7.
对以DL-2-氨基-?2-噻唑啉-4-羧酸(DL-2-amino-?2-thiazoline-4-carboxylic acid, DL-ATC)为底物原料, 经微生物酶法催化合成L-半胱氨酸, 并进一步氧化和分离纯化产物L-胱氨酸的生产工艺和条件进行了研究。建立了以恶臭假单胞菌TS1138 (Pseudomonas putida TS1138)全细胞为酶源, 反复多次催化底物合成L-半胱氨酸, 并以2.0%二甲基亚砜(DMSO)为氧化剂氧化生成L-胱氨酸, 进而通过001×7型阳离子交换树脂纯化胱氨酸的新工艺。采用高效液相色谱法考察该方法L-胱氨酸的总收率可以达到78.55%, 纯度为99.12%。该方法简单高效, 解决了酶稳定性差不能重复使用, 而固定化酶方法繁琐成本高的问题, 为我国L-半胱氨酸和L-胱氨酸的生产开辟一条新途径。  相似文献   

8.
恶臭假单胞菌TS1138转化生产L-胱氨酸的工艺研究   总被引:3,自引:1,他引:3  
对以DL-2-氨基-△2-噻唑啉-4-羧酸(DL-2-amino-△2-thiazoline-4-carboxylic acid,DL-ATC)为底物原料,经微生物酶法催化合成L-半胱氨酸,并进一步氧化和分离纯化产物L-胱氨酸的生产工艺和条件进行了研究.建立了以恶臭假单胞菌TS1138(Pseudomonas putida TS1138)全细胞为酶源,反复多次催化底物合成L-半胱氨酸,并以2.0%二甲基亚砜(DMSO)为氧化剂氧化生成L-胱氨酸,进而通过001×7型阳离子交换树脂纯化胱氨酸的新工艺.采用高效液相色谱法考察该方法L-胱氨酸的总收率可以达到78.55%,纯度为99.12%.该方法简单高效,解决了酶稳定性差不能重复使用,而固定化酶方法繁琐成本高的问题,为我国L-半胱氨酸和L-胱氨酸的生产开辟一条新途径.  相似文献   

9.
和斐  杨套伟  徐美娟  张显  饶志明  唐蕾 《微生物学报》2016,56(10):1595-1605
【目的】构建Bacillus subtilis来源的γ-谷氨酰转肽酶蛋白(GGT)的Corynebacterium glutamicum SYPA5-5表达系统,验证该蛋白信号肽片段在宿主表达体系中的作用,并将该体系应用于高效合成茶氨酸的研究。【方法】将该ggt基因和切除信号肽的片段基因(?sp ggt)在C.glutamicum SYPA5-5中克隆表达。以C.glutamicum SYPA5-5高产L-精氨酸培养基为基础进行重组菌产酶优化。最优转化条件为:L-谷氨酰胺∶乙胺为1∶3,酶量为0.06 U/mL。采用底物流加策略高产L-茶氨酸,40 mL的转化体系包含:终浓度为0.9 U/mL的GGT,pH 10,37℃,从0 h开始每隔2 h补加20 mmol/L的L-谷氨酰胺,60 mmol/L的乙胺。【结果】C.glutamicum SYPA5-5/pXMJ19-ggt发酵上清液中GGT酶活达到(4.69±0.34)U/mL,C.glutamicum SYPA5-5/pXMJ19-?sp ggt只检测到胞内酶活(0.99±0.17)U/mL,说明利用B.subtilis来源的信号肽可以实现GGT在C.glutamicum体系中分泌表达。最适产酶培养基条件为:葡萄糖浓度为10%;IPTG最适添加时间为0 h。批次流加在12 h时达到最大茶氨酸产量104.36 mmol/L,转化率为86.9%。【讨论】本文首次实现B.subtilis来源的γ-谷氨酰转肽酶基因(ggt)在C.glutamicum SYPA5-5中分泌表达,通过分批流加底物获得目前报道的利用重组C.glutamicum合成L-茶氨酸的最高产量。  相似文献   

10.
对清酒酵母高密度发酵生产S-腺苷-L-蛋氨酸(SAM)代谢过程中的相关氨基酸进行了考察。分别考察了十二种氨基酸对生物量和SAM产量的影响。实验发现L-胱氨酸、L-半胱氨酸、L-赖氨酸、L-组氨酸和L-蛋氨酸对SAM的积累有利,其中L-赖氨酸和L-组氨酸可以提高生物量,进而提高SAM的产量;L-胱氨酸、L-半胱氨酸和L-蛋氨酸可以提高SAM的含量,但是会抑制生物量的增长。通过3种补加方式的比较,得到最优的补加方式为:L-赖氨酸和L-组氨酸在培养基中加入,L-胱氨酸,L-半胱氨酸和L-蛋氨酸采取在发酵过程前24h流加。通过正交实验确定补加量为:L-赖氨酸为1g/L,L-组氨酸为1g/L,L-胱氨酸为1.5g/L,L-半胱氨酸为1g/L,L-蛋氨酸为1g/L。将此结果应用于5L发酵罐培养,SAM最高产量为5.53g/L,生物量为128g/L。  相似文献   

11.
为实现基因工程菌Bacillus subtilis WSHB06-07生产角质酶的高产,在3L发酵罐中考察了不同初糖浓度对菌体生长和产酶的影响,并在选择38 g/L初始蔗糖浓度的基础上,进行碳源的分批流加和恒速流加,结果表明发酵16 h开始流加碳源,采用总补糖量60g/L,蔗糖平均流速为4g/(L·h)的恒速补料方式,角质酶酶活在31h可达到最大545.87U/ml,比分批发酵酶活提高67.8%,并获得较高的角质酶生产强度,满足工业化生产要求。  相似文献   

12.
谷氨酸脱羧酶,一种磷酸吡哆醛(PLP)依赖性酶,能专一、不可逆地催化L-谷氨酸脱羧得到γ-氨基丁酸(GABA)。构建了产Lactobacillus brevis WJH3谷氨酸脱羧酶重组大肠杆菌E.coli BL21(DE3)/p ET-24a-gad,以此作为菌种进行摇瓶发酵诱导培养,发酵过程中一次性添加0.05 mmol/L PLP培养24 h,破壁上清酶活达81.7 U/m L,是不添加PLP对照酶活的1.8倍。对酶转化L-谷氨酸钠生成GABA反应条件进行了优化,结果表明,在转化体系不添加PLP的情况下,底物谷氨酸钠浓度为250 g/L,反应初始p H5.0,温度37℃,加酶量60 U/g底物,转速200 r/min,在此条件下反应18 h,GABA转化率达到100%,为γ-氨基丁酸的工业化生产奠定基础。  相似文献   

13.
利用L-谷氨酸氧化酶(LGOX),对酶法转化L-谷氨酸生产α-酮戊二酸(α-KG)的工艺条件进行了研究。首先对野生菌链霉菌Streptomyces sp.FMME066进行亚硝基胍诱变,获得一株遗传性状稳定的突变株Streptomyces sp.FMME067;突变株在最优培养基(g/L):果糖10,蛋白胨7.5,KH2PO4 1,CaCl2 0.05条件下,LGOX酶活为0.14 U/mL。LGOX的生化特征为最适pH 8.5、温度35℃,Mn2+是激活剂。对LGOX转化L-谷氨酸生产α-KG的条件进行优化,在最优条件下转化24 h,α-KG产量为38.1 g/L,转化率为81.4%。研究结果为开发LGOX酶法转化生产α-KG的工业化奠定了坚实的基础。  相似文献   

14.
利用L-谷氨酸氧化酶(LGOX),对酶法转化L-谷氨酸生产α-酮戊二酸(α-KG)的工艺条件进行了研究。首先对野生菌链霉菌Streptomyces sp.FMME066进行亚硝基胍诱变,获得一株遗传性状稳定的突变株Streptomyces sp.FMME067;突变株在最优培养基(g/L):果糖10,蛋白胨7.5,KH2PO4 1,CaCl2 0.05条件下,LGOX酶活为0.14 U/mL。LGOX的生化特征为最适pH 8.5、温度35℃,Mn2+是激活剂。对LGOX转化L-谷氨酸生产α-KG的条件进行优化,在最优条件下转化24 h,α-KG产量为38.1 g/L,转化率为81.4%。研究结果为开发LGOX酶法转化生产α-KG的工业化奠定了坚实的基础。  相似文献   

15.
构建Mn2+转运蛋白MntH与来源于Thermus thermophilus HB27的含锰过氧化氢酶的共表达基因工程菌,并进行了发酵培养基及培养环境条件的优化,确定培养基中最佳的碳氮源种类及其浓度分别为:甘油7.0 g/L,酵母粉3.75 g/L和蛋白胨11.25 g/L;当培养基中的Mn2+浓度为1 mmol/L时,最佳的IPTG诱导浓度为0.05 mmol/L。此外,最佳的培养基初始p H值及培养温度分别为:p H 8.0和37℃,在最优发酵条件下工程菌摇瓶发酵培养24 h,过氧化氢酶活最高可达476 U/m L是未优化前3倍。在5 L发酵罐的验证实验中,过氧化氢酶的酶活进一步提高至1 094 U/m L。  相似文献   

16.
通过化学方法合成嗜热网球菌(Dictyoglomus thermophilum)来源的纤维二糖差向异构酶基因ce,将其引入到载体pBSuL3-ce,构建重组质粒pBSuL3-ce并转化进枯草芽孢杆菌,发酵48h后测定胞内酶活为7. 5U/ml。酶学性质结果表明:该酶的最适pH为8. 5;最适温度为85℃,85℃的半衰期为120min。为降低发酵成本,对发酵培养基进行优化:以35g/L豆粕粉为氮源、5g/L甘油为碳源时,酶活力最高可达12. 3U/ml。依据摇瓶优化的条件在3L发酵罐中扩大培养,胞内酶活达到56U/ml,比摇瓶培养酶活提高了8倍。利用发酵所得酶制备乳果糖,在乳糖浓度为400g/L、反应温度为85℃、初始pH 8. 5、加酶量为20U/ml的条件下,乳果糖转化率可达51%。  相似文献   

17.
目的:考察不同细胞培养方式对Streptomyces sp. M-Z18转化前体L-赖氨酸合成ε-聚赖氨酸过程的影响。方法:利用两阶段细胞培养和发酵过程流加方式,建立了两阶段细胞培养转化前体L-赖氨酸合成ε-聚赖氨酸以及转化前体L-赖氨酸耦合甘油发酵生产ε-聚赖氨酸的策略。结果:(1)两阶段细胞培养转化前体L-赖氨酸合成ε-聚赖氨酸策略实现ε-PL积累15 g/L, 转化L-赖氨酸3 g/L;(2)转化前体L-赖氨酸耦合甘油发酵生产ε-聚赖氨酸策略使得ε-PL产量达到33.76 g/L,单位菌体的合成能力提高37.8%,转化L-赖氨酸4 g/L。这表明,上述两种方式下前体L-赖氨酸都能够被Streptomyces sp. M-Z18转化合成ε-聚赖氨酸,但转化效率还有待进一步提高。意义:揭示了Streptomyces sp. M-Z18合成ε-聚赖氨酸的限速步骤在于初级代谢产物L-赖氨酸的合成,这为后续利用代谢工程手段改造菌株提供了方向。  相似文献   

18.
左旋多巴是治疗帕金森氏病的首选药物,生物酶法合成左旋多巴具有工艺简单、条件温和、立体选择性高和环境友好等优点。本论文以实验室前期构建的表达具核梭杆菌(Fusobacterium nucleatum) TPL (Fn-TPL)的重组大肠杆菌为基础,采用单因素实验通过对5 L发酵罐发酵工艺优化以及补料策略的研究,确定了分批发酵的工艺参数:pH 6. 5,诱导温度30℃,诱导剂乳糖20 g/L。在5 L发酵罐中,进一步研究了10 mL/h、20 mL/h、30 mL/h三个速率的恒速流加对菌体生物量和TPL酶活的影响。结果表明,补料速率为20 mL/h时,生物量最高为30. 43 g dcw/L,体积酶活最高为9 420 U/L,较摇瓶发酵培养活力提高了3. 3倍。  相似文献   

19.
通过环氧树脂作为载体对经(NH4)2SO4盐析处理后的L-谷氨酸氧化酶(LGOX)进行固定化,优化固定化工艺条件,并利用固定化LGOX转化产α-酮戊二酸(α-KG)。结果表明:饱和度45%的(NH4)2SO4为最佳盐析浓度;当选用环氧树脂ES-105作为固定化载体、树脂加量为20 m L酶液(14 U/m L)加入3.5 g载体、固定化K3PO4缓冲液浓度为0.2 mol/L(p H 7.0)、固定化温度25℃、固定化时间24 h时,固定化LGOX酶活力最高,其酶活回收率为85.9%,比酶活55.7 U/g。利用该固定化酶转化L-谷氨酸产α-KG,当谷氨酸钠质量浓度为100 g/L,反应20 h,产物收率达98.2%。固定化酶重复使用14批次后,产物收率仍有90%以上;重复使用20批,收率有83.2%。因此,该固定化酶具有具良好的操作稳定性。  相似文献   

20.
从土壤中筛选获得高产(+)γ-内酰胺酶的微生物菌株,并鉴定和保藏为Delftia sp.CGMCC No.5755.对该Delfiia sp菌株的发酵产酶条件进行了研究,结果表明,最适发酵培养基为:蔗糖30 g/L,蛋白胨30 g/L,牛肉膏25 g/L,乙酰胺5 g/L,MgS04 1 g/L;最适发酵温度及初始pH分别为32℃和pH 7.0.该菌株在上述条件下发酵培养20 h,菌体生物量为16.0 g/L,(+)γ-内酰胺酶的酶活为692 U/L.采用Delftia sp.静息细胞对100 g/L的外消旋底物2-氮杂二环-[2.2.1]-庚烷-5-烯-3-酮(简称(±)γ-内酰胺)的水解拆分反应中,产物(-)γ-内酰胺光学纯度大于99.9%e.e.,转化率为53.7%.研究为生物催化法高效制备光学纯(+)γ-内酰胺提供了可行的途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号