共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Milène Catoire Marco Mensink Mark V. Boekschoten Roland Hangelbroek Michael Müller Patrick Schrauwen Sander Kersten 《PloS one》2012,7(11)
Regular physical activity positively influences whole body energy metabolism and substrate handling in exercising muscle. While it is recognized that the effects of exercise extend beyond exercising muscle, it is unclear to what extent exercise impacts non-exercising muscles. Here we investigated the effects of an acute endurance exercise bouts on gene expression in exercising and non-exercising human muscle. To that end, 12 male subjects aged 44–56 performed one hour of one-legged cycling at 50% Wmax. Muscle biopsies were taken from the exercising and non-exercising leg before and immediately after exercise and analyzed by microarray. One-legged cycling raised plasma lactate, free fatty acids, cortisol, noradrenalin, and adrenalin levels. Surprisingly, acute endurance exercise not only caused pronounced gene expression changes in exercising muscle but also in non-exercising muscle. In the exercising leg the three most highly induced genes were all part of the NR4A family. Remarkably, many genes induced in non-exercising muscle were PPAR targets or related to PPAR signalling, including PDK4, ANGPTL4 and SLC22A5. Pathway analysis confirmed this finding. In conclusion, our data indicate that acute endurance exercise elicits pronounced changes in gene expression in non-exercising muscle, which are likely mediated by changes in circulating factors such as free fatty acids. The study points to a major influence of exercise beyond the contracting muscle. 相似文献
3.
Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicate that muscle, in a non-autonomous manner, regulates adipose progenitor homeostasis, highlighting a role for muscle-derived secreted factors. These findings support a humoral link between skeletal muscle and adipose progenitors and indicate that manipulation of adipose stem cell function may help address obesity and diabetes. 相似文献
4.
胰岛素、氨基酸和力量运动刺激信号转导的共同终点是蛋白激酶mTOR.mTOR及其下游靶标在调控蛋白质合成过程中起着中枢作用.研究mTOR的上游和下游事件将有助于进一步了解骨骼肌内蛋白质合成及肥大的机制.更进一步详细研究不同组合(营养和力量运动)引起的骨骼肌内mTOR信号通路的变化特征有着更重要的实际意义. 相似文献
5.
Regulation of Taurine Transport in Rat Skeletal Muscle 总被引:1,自引:1,他引:1
Taurine concentration of soleus muscle (SL, slow-twitch) was initially about twofold higher than that of extensor digitorum longus muscle (EDL, fast-twitch). Taurine concentration in gastrocnemius muscle (GC) was intermediate between that of EDL and SL. Four days after sciatic nerve section, taurine concentration in the EDL but not in the SL was increased by 2.5-fold. The increase was not due to the muscle atrophy and was observed 28 days after denervation. Tenotomy did not increase the total taurine content of the EDL. The increase in taurine concentration of the denervated EDL was prevented by simultaneous ingestion of guanidinoethane sulfonate, a competitive inhibitor of taurine transport. The initial and the maximal rates of [3H]taurine uptake were significantly higher in SL than in EDL. Denervation dramatically accelerated the initial and the maximal rates of the transport in EDL, whereas it significantly reduced those in SL. In contrast, the electrical stimulation of sciatic nerve accelerated the uptake of taurine by EDL and SL of the control but not of the curare-treated rats. These results suggest that transport of taurine into rat skeletal muscles is regulated differently by neural information and by muscular activity, and that the regulation is dependent on the muscle phenotype. 相似文献
6.
通过对小鼠肌母细胞C2C12的培养,研究C2C12细胞的增殖与分化的关系以及胰岛素在细胞分化过程中的作用。在对照组中,C2C12细胞增殖占了明显的优势,细胞形态几乎没有发生变化;而在实验组中,C2C12细胞在换为分化培养基24小时后,就出现了部分细胞衰亡和死亡的现象,尤其是在48小时细胞的死亡率达到最高,存活细胞开始从增殖期进入分化期,72小时出现了少量肌管,在96小时细胞分化效果达到最好。而在添加了胰岛素的分化培养基中的细胞分化效果明显好于没有添加胰岛素的分化培养基中的细胞,结果表明,胰岛素促进C2C12细胞的分化。 相似文献
7.
Davide Basco Bert Blaauw Francesco Pisani Angelo Sparaneo Grazia Paola Nicchia Maria Grazia Mola Carlo Reggiani Maria Svelto Antonio Frigeri 《PloS one》2013,8(3)
In this study we assess the functional role of Aquaporin-4 (AQP4) in the skeletal muscle by analyzing whether physical activity modulates AQP4 expression and whether the absence of AQP4 has an effect on osmotic behavior, muscle contractile properties, and physical activity. To this purpose, rats and mice were trained on the treadmill for 10 (D10) and 30 (D30) days and tested with exercise to exhaustion, and muscles were used for immunoblotting, RT-PCR, and fiber-type distribution analysis. Taking advantage of the AQP4 KO murine model, functional analysis of AQP4 was performed on dissected muscle fibers and sarcolemma vesicles. Moreover, WT and AQP4 KO mice were subjected to both voluntary and forced activity. Rat fast-twitch muscles showed a twofold increase in AQP4 protein in D10 and D30 rats compared to sedentary rats. Such increase positively correlated with the animal performance, since highest level of AQP4 protein was found in high runner rats. Interestingly, no shift in muscle fiber composition nor an increase in AQP4-positive fibers was found. Furthermore, no changes in AQP4 mRNA after exercise were detected, suggesting that post-translational events are likely to be responsible for AQP4 modulation. Experiments performed on AQP4 KO mice revealed a strong impairment in osmotic responses as well as in forced and voluntary activities compared to WT mice, even though force development amplitude and contractile properties were unvaried. Our findings definitively demonstrate the physiological role of AQP4 in supporting muscle contractile activity and metabolic changes that occur in fast-twitch skeletal muscle during prolonged exercise. 相似文献
8.
Kristin I. Stanford Matthew D. Lynes Hirokazu Takahashi Lisa A. Baer Peter J. Arts Francis J. May Adam C. Lehnig Roeland J.W. Middelbeek Jeffrey J. Richard Kawai So Emily Y. Chen Fei Gao Niven R. Narain Giovanna Distefano Vikram K. Shettigar Michael F. Hirshman Mark T. Ziolo Michael A. Kiebish Laurie J. Goodyear 《Cell metabolism》2018,27(5):1111-1120.e3
9.
《Electromagnetic biology and medicine》2013,32(3):165-175
The second generation of female OF1 mice exposed chronically to a magnetic field of 50 Hz and 15 μT (rms) was studied to find out the possible alterations in the skeletal muscle caused by this exposure. Animals were sacrificed at the age of 14 weeks, and their skeletal muscle studied by spectrophotometric and histopathological techniques. Calcium concentration was found to be significantly decreased in the experimental animals, while H2O content, Na, K, Fe, Ni, Mg, and Zn concentrations were not significantly different from those of control animals. Histologically, we found variation in fiber size, rounded and widely separated fibers, centrally located nuclei, and intermyofibrillar lipids. We could not find necrosis, inflammatory infiltrate, or loss of either the filaments or the cross-striation. 相似文献
10.
Dysferlin is a type II transmembrane protein implicated in surface membrane repair in muscle. Mutations in dysferlin lead to limb girdle muscular dystrophy 2B, Miyoshi Myopathy and distal anterior compartment myopathy. Dysferlin''s mode of action is not well understood and only a few protein binding partners have thus far been identified. Using affinity purification followed by liquid chromatography/mass spectrometry, we identified alpha-tubulin as a novel binding partner for dysferlin. The association between dysferlin and alpha-tubulin, as well as between dysferlin and microtubules, was confirmed in vitro by glutathione S-transferase pulldown and microtubule binding assays. These interactions were confirmed in vivo by co-immunoprecipitation. Confocal microscopy revealed that dysferlin and alpha-tubulin co-localized in the perinuclear region and in vesicular structures in myoblasts, and along thin longitudinal structures reminiscent of microtubules in myotubes. We mapped dysferlin''s alpha-tubulin-binding region to its C2A and C2B domains. Modulation of calcium levels did not affect dysferlin binding to alpha-tubulin, suggesting that this interaction is calcium-independent. Our studies identified a new binding partner for dysferlin and suggest a role for microtubules in dysferlin trafficking to the sarcolemma. 相似文献
11.
Eun-Jeong Lee Josine M. De Winter Danielle Buck Jeffrey R. Jasper Fady I. Malik Siegfried Labeit Coen A. Ottenheijm Henk Granzier 《PloS one》2013,8(2)
The effect of the fast skeletal muscle troponin activator, CK-2066260, on calcium-induced force development was studied in skinned fast skeletal muscle fibers from wildtype (WT) and nebulin deficient (NEB KO) mice. Nebulin is a sarcomeric protein that when absent (NEB KO mouse) or present at low levels (nemaline myopathy (NM) patients with NEB mutations) causes muscle weakness. We studied the effect of fast skeletal troponin activation on WT muscle and tested whether it might be a therapeutic mechanism to increase muscle strength in nebulin deficient muscle. We measured tension–pCa relations with and without added CK-2066260. Maximal active tension in NEB KO tibialis cranialis fibers in the absence of CK-2066260 was ∼60% less than in WT fibers, consistent with earlier work. CK-2066260 shifted the tension-calcium relationship leftwards, with the largest relative increase (up to 8-fold) at low to intermediate calcium levels. This was a general effect that was present in both WT and NEB KO fiber bundles. At pCa levels above ∼6.0 (i.e., calcium concentrations <1 µM), CK-2066260 increased tension of NEB KO fibers to beyond that of WT fibers. Crossbridge cycling kinetics were studied by measuring ktr (rate constant of force redevelopment following a rapid shortening/restretch). CK-2066260 greatly increased ktr at submaximal activation levels in both WT and NEB KO fiber bundles. We also studied the sarcomere length (SL) dependence of the CK-2066260 effect (SL 2.1 µm and 2.6 µm) and found that in the NEB KO fibers, CK-2066260 had a larger effect on calcium sensitivity at the long SL. We conclude that fast skeletal muscle troponin activation increases force at submaximal activation in both wildtype and NEB KO fiber bundles and, importantly, that this troponin activation is a potential therapeutic mechanism for increasing force in NM and other skeletal muscle diseases with loss of muscle strength. 相似文献
12.
VEGFR surface localization plays a critical role in converting extracellular VEGF signaling towards angiogenic outcomes, and the quantitative characterization of these parameters is critical for advancing computational models; however the levels of these receptors on blood vessels is currently unknown. Therefore our aim is to quantitatively determine the VEGFR localization on endothelial cells from mouse hindlimb skeletal muscles. We contextualize this VEGFR quantification through comparison to VEGFR-levels on cells in vitro. Using quantitative fluorescence we measure and compare the levels of VEGFR1 and VEGFR2 on endothelial cells isolated from C57BL/6 and BALB/c gastrocnemius and tibialis anterior hindlimb muscles. Fluorescence measurements are calibrated using beads with known numbers of phycoerythrin molecules. The data show a 2-fold higher VEGFR1 surface localization relative to VEGFR2 with 2,000–3,700 VEGFR1/endothelial cell and 1,300–2,000 VEGFR2/endothelial cell. We determine that endothelial cells from the highly glycolytic muscle, tibialis anterior, contain 30% higher number of VEGFR1 surface receptors than gastrocnemius; BALB/c mice display ∼17% higher number of VEGFR1 than C57BL/6. When we compare these results to mouse fibroblasts in vitro, we observe high levels of VEGFR1 (35,800/cell) and very low levels of VEGFR2 (700/cell), while in human endothelial cells in vitro, we observe that the balance of VEGFRs is inverted, with higher levels VEGFR2 (5,800/cell) and lower levels of VEGFR1 (1,800/cell). Our studies also reveal significant cell-to-cell heterogeneity in receptor expression, and the quantification of these dissimilarities ex vivo for the first time provides insight into the balance of anti-angiogenic or modulatory (VEGFR1) and pro-angiogenic (VEGFR2) signaling. 相似文献
13.
Szu-Hsien Yu Chih-Yang Huang Shin-Da Lee Ming-Fen Hsu Ray-Yau Wang Chung-Lan Kao Chia-Hua Kuo 《PloS one》2014,9(12)
Dammarane steroids (DS) are a class of chemical compounds present in Panax ginseng. Here, we evaluated the effect of 10 weeks of DS supplementation on inflammatory modulation in the soleus muscle following eccentric exercise (EE)-induced muscle damage (downhill running). Eighty rats were randomized into 4 groups of DS supplementation (saline, 20, 60, 120 mg/kg body weight). Inflammatory markers were measured at rest and again 1 h after EE. At rest, NFκB signaling, TNF-alpha and IL-6 mRNAs, 3-nitrotyrosine, glutathione peroxidase, and GCS (glutamylcysteine synthetase) levels were significantly elevated in the skeletal muscle of DS-treated rats in a dose-dependent manner. Additionally, there were no detectable increases in the number of necrotic muscle fibers or CD68+ M1 macrophages. However, muscle strength, centronucleation, IL-10 mRNA expression, and the number of CD163+ M2 macrophages increased significantly over controls with DS treatment in rat soleus muscle. Under EE-challenged conditions, significant increases in muscle fiber necrosis, CD68+ M1 macrophage distribution, and 3-nitrotyrosine were absent in rats that received low and medium doses (20 and 60 mg/kg) of DS treatment, suggesting that DS possess anti-inflammatory action protecting against a muscle-damaging challenge. However, this protective activity was diminished when a high dose of DS (120 mg/kg) was administered, suggesting that DS possess hormetic properties. In conclusion, our study provides new evidence suggesting that DS is an ergogenic component of ginseng that potentiate inflammation at baseline but that produce anti-inflammatory effects on skeletal muscle following muscle-damaging exercise. Furthermore, high doses should be avoided in formulating ginseng-based products. 相似文献
14.
15.
肌肉生长抑制因子(MSTN)是动物肌肉生长发育的一个重要的负调控主效基因。它的表达受其他肌肉发育的调控因子如MyoD,FoxO等的调控。MSTN原蛋白经蛋白酶修饰变成的活性蛋白存在于血液循环系统中,它可以结合到细胞膜表面受体,激活细胞内信号通路,与其他因子的协同作用对肌肉发育和脂肪生成产生不同生理效应。本文将对MSTN基因及其蛋白的结构特点,表达调控因子,细胞内信号传导,及其对组织发育的影响进行探讨。 相似文献
16.
Laszlo Csernoch Sandrine Pouvreau Michel Ronjat Vincent Jacquemond 《The Journal of membrane biology》2008,226(1-3):43-55
The elementary Ca2+-release events underlying voltage-activated myoplasmic Ca2+ transients in mammalian muscle remain elusive. Here, we looked for such events in confocal line-scan (x,t) images of fluo-3 fluorescence taken from isolated adult mouse skeletal muscle fibers held under voltage-clamp conditions. In response to step depolarizations, spatially segregated fluorescence signals could be detected that were riding on a global increase in fluorescence. These discrete signals were separated using digital filtering in the spatial domain; mean values for their spatial half-width and amplitude were 1.99 ± 0.09 μm and 0.16 ± 0.005 ΔF/F 0 (n = 151), respectively. Under control conditions, the duration of the events was limited by the pulse duration. In contrast, in the presence of maurocalcine, a scorpion toxin suspected to disrupt the process of repolarization-induced ryanodine receptor (RyR) closure, events uninterrupted by the end of the pulse were readily detected. Overall results establish these voltage-activated low-amplitude local Ca2+ signals as inherent components of the physiological Ca2+-release process of mammalian muscle and suggest that they result from the opening of either one RyR or a coherently operating group of RyRs, under the control of the plasma membrane polarization. 相似文献
17.
Anna Wibberley Caroline A. Staunton Claire H. Feetham Alexey A. Vereninov Richard Barrett-Jolley 《PloS one》2015,10(6)
Introduction
Hypertonic media causes cells to shrink due to water loss through aquaporin channels. After acute shrinkage, cells either regulate their volume or, alternatively, undergo a number of metabolic changes which ultimately lead to cell death. In many cell types, hypertonic shrinkage is followed by apoptosis. Due to the complex 3D morphology of skeletal muscle and the difficulty in obtaining isolated human tissue, we have begun skeletal muscle volume regulation studies using the human skeletal muscle cell line TE671RD. In this study we investigated whether hypertonic challenge of the human skeletal muscle cell line TE671RD triggered cell death or evoked a cell volume recovery response.Methods
The cellular volume of TE671RD cells was calculated from the 2D surface area. Cell death was assessed by both the trypan blue live/dead assay and the TUNEL assay.Results
Medium osmolality was increased by addition of up to 200mM sucrose. Addition of 200mM sucrose resulted in mean cell shrinkage of 44±1% after 30mins. At later time points (2 and 4 hrs) two separate cell subpopulations with differing mean cell volume became apparent. The first subpopulation (15±2% of the total cell number) continued to shrink whereas the second subpopulation had an increased cell volume. Cell death was observed in a small proportion of cells (approximately 6-8%).Conclusion
We have established that a substantial proportion of TE671RD cells respond to hypertonic challenge with RVI, but that these cells are resistant to hypertonicity triggered cell death. 相似文献18.
《Cell cycle (Georgetown, Tex.)》2013,12(13):1391-1396
Mechanical stimuli play a major role in the regulation of skeletal muscle mass, and themaintenance of muscle mass contributes significantly to disease prevention and the quality oflife. Although a link between mechanical stimuli and the regulation of muscle mass has beenrecognized for decades, the mechanisms involved in converting mechanical information into themolecular events that control this process have not been defined. Nevertheless, significantadvancements are being made in this field, and it has recently been established that signalingthrough a rapamycin-sensitive pathway is necessary for mechanically induced growth of skeletalmuscle. Since rapamycin is a highly specific inhibitor of a protein kinase called the mammaliantarget of rapamycin (mTOR), many investigators have concluded that mTOR signaling isnecessary for the mechanically induced growth of skeletal muscle. In this review, we havesummarized the current knowledge regarding how mechanical stimuli activate mTOR signaling,discussed the newly discovered role of phospholipase D (PLD) and phosphatidic acid (PA) inthis pathway, and considered the potential roles of PLD and PA in the mechanical regulation ofskeletal muscle mass. 相似文献
19.