首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Key message

Next-generation sequencing enabled a fast discovery of a major QTL controlling early flowering in cucumber, corresponding to the FT gene conditioning flowering time in Arabidopsis.

Abstract

Next-generation sequencing technologies are making it faster and more efficient to establish the association of agronomic traits with molecular markers or candidate genes, which is the requirement for marker-assisted selection in molecular breeding. Early flowering is an important agronomic trait in cucumber (Cucumis sativus L.), but the underlying genetic mechanism is unknown. In this study, we identified a candidate gene for early flowering QTL, Ef1.1 through QTL-seq. Segregation analysis in F2 and BC1 populations derived from a cross between two inbred lines “Muromskij” (early flowering) and “9930” (late flowering) suggested quantitative nature of flowering time in cucumber. Genome-wide comparison of SNP profiles between the early and late-flowering bulks constructed from F2 plants identified a major QTL, designated Ef1.1 on cucumber chromosome 1 for early flowering in Muromskij, which was confirmed by microsatellite marker-based classical QTL mapping in the F2 population. Joint QTL-seq and traditional QTL analysis delimited Ef1.1 to an 890 kb genomic region. A cucumber gene, Csa1G651710, was identified in this region, which is a homolog of the FLOWERING LOCUS T (FT), the main flowering switch gene in Arabidopsis. Quantitative RT-PCR study of the expression level of Csa1G651710 revealed significantly higher expression in early flowering genotypes. Data presented here provide support for Csa1G651710 as a possible candidate gene for early flowering in the cucumber line Muromskij.  相似文献   

2.
3.
黄瓜复雌花等6对基因间连锁遗传关系的研究   总被引:2,自引:0,他引:2  
刘进生  T.C.Wehner 《遗传》2000,22(3):137-140
为探索黄瓜复雌花基因mp、有限生长基因de、叶片皱缩基因cr、叶片无毛基 因gl-2、果皮多刺基因ns和果实有棱基因Tu间的独立或连锁遗传关系,试验选用了带上述6对基因的黄瓜纯合亲本NCG128、NCG 157、WI 275 7和NCG 042,以这些亲本配制4个杂交组合,获得F1,F2,BC1a和BC1b代群体,采用孟得尔遗传公式和计算机程序分析参试性状在各杂交后代中的基因型分离情况。结果表明:基因mp和de,cr和gl-2,cr和Tu,Tu和gl-2,Tu和ns间存在连锁遗传关系,它们的基因间距离分别为0.21,0.12,0.38,0.24,0.32cM(厘摩)。 Abstract:To study the linkage inheritance among gene mp for multi-pistillate flowering,de for determinate growth type,cr for crinkled leaf,gl-2 for glabrous leaf,ns for numerous spine,and Tu for tuberculate fruit in cucumber,the inbred NCG128,NCG157,WI2757 and NCG 042 were used as parents for 4 coombinations in the experiment.The traits of these genes were measured in field and the data was analyzed with a computer program SASGENE.The result indicated that the gene mp and de,cr and gl-2,cr and Tu,Tu and gl-2,Tu and ns had linkage relationship,and the distance between them was 0.21,0.12,0.38,0.24,0.32cM,respectively.  相似文献   

4.
5.

Key message

The cucumber male sterility gene ms - 3 was fine mapped in a 76 kb region harboring an MMD1 -like gene Csa3M006660 that may be responsible for the male sterile in cucumber.

Abstract

A cucumber (Cucumis sativus L.) male sterile mutant (ms-3) in an advanced-generation inbred line was identified, and genetic analysis revealed that the male sterility trait was controlled by a recessive nuclear gene, ms-3, which was stably inherited. Histological studies suggested that the main cause of the male sterility was defective microsporogenesis, resulting in no tetrad or microspores being formed. Bulked segregant analysis (BSA) and genotyping of an F2 population of 2553 individuals were employed used to fine map ms-3, which was delimited to a 76 Kb region. In this region, a single non-synonymous SNP was found in the Csa3M006660 gene locus, which was predicted to result in an amino acid change. Quantitative RT-PCR analysis of Csa3M006660 was consistent with the fact that it plays a role in the early development of cucumber pollen. The protein encoded by Csa3M006660 is predicted to be homeodomain (PHD) finger protein, and the high degree of sequence conservation with homologs from a range of plant species further suggested the importance of the ms-3 non-synonymous mutation. The data presented here provide support for Csa3M006660 as the most likely candidate gene for Ms-3.
  相似文献   

6.
7.
Dull/glossy fruit skin is a highly valuable external quality trait that affects the market value of cucumbers. In this study, genetic analysis showed that one single dominant gene, D (dull fruit skin), determines the dull fruit skin trait in cucumber. By combining bulked segregant analysis with 11 published polymorphic molecular markers on chromosome 5, the D/d gene was preliminarily mapped between markers SCZ69 and SSR16203, at genetic distances of 0.3 and 0.6 cM, respectively. Subsequently, a larger F2 (S06 × S94) population (842 individuals in total) was used for high-resolution mapping of the D/d gene. Finally, the D/d gene was fine-mapped between markers SSR37 and SSR112, at a physical distance of 244.9 kb (containing 31 candidate genes), using eight newly developed polymorphic simple sequence repeat (SSR) markers between SCZ69 and SSR16203. Based on semi-quantitative RT-PCR analysis, the possible candidate gene D was identified as Csa016880 or Csa016887. Meanwhile, validity analysis of the markers SSR37 and SSR112 was performed with 72 dull/glossy fruit lines, and showed that the two co-dominant SSR markers could be used for marker-assisted selection of the dull/glossy fruit trait in cucumber breeding. Moreover, this study will be helpful for cloning of the D gene in cucumber.  相似文献   

8.
Scab, caused by Cladosporium cucumerinum, is an important disease of cucumber, Cucumis sativus. In this study, we conducted fine genetic mapping of the single dominant scab resistance gene, Ccu, with 148 F9 recombinant inbred lines (RILs) and 1,944 F2 plants derived from the resistant cucumber inbred line 9110Gt and the susceptible line 9930, whose draft genome sequence is now available. A framework linkage map was first constructed with simple sequence repeat markers placing Ccu into the terminal 670 kb region of cucumber Chromosome 2. The 9110Gt genome was sequenced at 5× genome coverage with the Solexa next-generation sequencing technology. Sequence analysis of the assembled 9110Gt contigs and the Ccu region of the 9930 genome identified three insertion/deletion (Indel) markers, Indel01, Indel02, and Indel03 that were closely linked with the Ccu locus. On the high-resolution map developed with the F2 population, the two closest flanking markers, Indel01 and Indel02, were 0.14 and 0.15 cM away from the target gene Ccu, respectively, and the physical distance between the two markers was approximately 140 kb. Detailed annotation of the 180 kb region harboring the Ccu locus identified a cluster of six resistance gene analogs (RGAs) that belong to the nucleotide binding site (NBS) type R genes. Four RGAs were in the region delimited by markers Indel01 and Indel02, and thus were possible candidates of Ccu. Comparative DNA analysis of this cucumber Ccu gene region with a melon (C. melo) bacterial artificial chromosome (BAC) clone revealed a high degree of micro-synteny and conservation of the RGA tandem repeats in this region.  相似文献   

9.

Key message

Candidate genes associated with in vitro regeneration were identified in cucumber.

Abstract

The ability to regenerate shoots or whole plants from differentiated plant tissues is essential for plant transformation. In cucumber (Cucumis sativus L.), regeneration ability varies considerably across accessions, but the genetic mechanism has not yet been demonstrated. In the present study, 148 recombinant inbred lines and a core collection were examined to identify candidate genes involved in cucumber regeneration. Four QTL for cotyledon regeneration that explained 9.7–16.6% of the phenotypic variation in regeneration were identified on cucumber chromosomes 1, 3, and 6. The loci Fcrms1.1 and Fcrms+1.1 were consistently detected in the same genetic interval on two regeneration media. A genome-wide association study revealed 18 SNPs (??log(p)?>?5) significantly associated with cotyledon regeneration. Three candidate genes in this region were identified. RT-PCR analyses revealed that Csa1G642540 was significantly more highly expressed in genotypes with high cotyledon regeneration rates than in those with low regeneration. The Csa1G642540 CDS driven by its native promoter was transformed into cucumber line 9110Gt; molecular analyses showed that the T-DNA had integrated into the genomes of 8.6% of regenerated plantlets. The seeds from T0 plants expressing Csa1G642540 were tested for regeneration from cotyledon explants, and the segregate ratio in regeneration frequency is 3:1. The AT3G44110.1, the homologue gene of Csa1G642540 in Arabidopsis, has been reported as PM H+-ATPase activity regulation, integrating flowering signals and enlarging meristem function. These results demonstrate that Csa1G642540 might play an important role in regeneration in cucumber and could serve as a selectable marker for regeneration from cotyledons.
  相似文献   

10.
One of the most important cucumber diseases is bacterial angular leaf spot (ALS), whose increased occurrence in open-field production has been observed over the last years. To map ALS resistance genes, a recombinant inbred line (RIL) mapping population was developed from a narrow cross of cucumber line Gy14 carrying psl resistance gene and susceptible B10 line. Parental lines and RILs were tested under growth chamber conditions as well as in the field for angular leaf spot symptoms. Based on simple sequence repeat and DArTseq, genotyping a genetic map was constructed, which contained 717 loci in seven linkage groups, spanning 599.7 cM with 0.84 cM on average between markers. Monogenic inheritance of the lack of chlorotic halo around the lesions, which is typical for ALS resistance and related with the presence of recessive psl resistance gene, was confirmed. The psl locus was mapped on cucumber chromosome 5. Two major quantitative trait loci (QTL) psl5.1 and psl5.2 related to disease severity were found and located next to each other on chromosome 5; moreover, psl5.1 was co-located with psl locus. Identified QTL were validated in the field experiment. Constructed genetic map and markers linked to ALS resistance loci are novel resources that can contribute to cucumber breeding programs.  相似文献   

11.

Key message

Map-based cloning identified a candidate gene for resistance to the anthracnose fungal pathogen Colletotrichum orbiculare in cucumber, which reveals a novel function for the highly conserved STAYGREEN family genes for host disease resistance in plants.

Abstract

Colletotrichum orbiculare is a hemibiotrophic fungal pathogen that causes anthracnose disease in cucumber and other cucurbit crops. No host resistance genes against the anthracnose pathogens have been cloned in crop plants. Here, we reported fine mapping and cloning of a resistance gene to the race 1 anthracnose pathogen in cucumber inbred lines Gy14 and WI 2757. Phenotypic and QTL analysis in multiple populations revealed that a single recessive gene, cla, was underlying anthracnose resistance in both lines, but WI2757 carried an additional minor-effect QTL. Fine mapping using 150 Gy14?×?9930 recombinant inbred lines and 1043 F2 individuals delimited the cla locus into a 32 kb region in cucumber Chromosome 5 with three predicted genes. Multiple lines of evidence suggested that the cucumber STAYGREEN (CsSGR) gene is a candidate for the anthracnose resistance locus. A single nucleotide mutation in the third exon of CsSGR resulted in the substitution of Glutamine in 9930 to Arginine in Gy14 in CsSGR protein which seems responsible for the differential anthracnose inoculation responses between Gy14 and 9930. Quantitative real-time PCR analysis indicated that CsSGR was significantly upregulated upon anthracnose pathogen inoculation in the susceptible 9930, while its expression was much lower in the resistant Gy14. Investigation of allelic diversities in natural cucumber populations revealed that the resistance allele in almost all improved cultivars or breeding lines of the U.S. origin was derived from PI 197087. This work reveals an unknown function for the highly conserved STAYGREEN (SGR) family genes for host disease resistance in plants.
  相似文献   

12.

Key message

Using a high-resolution mapping approach, we identified a candidate gene for ZYMV resistance in cucumber. Our findings should assist the development of high-versatility molecular markers for MAS for ZYMV resistance.

Abstract

Zucchini yellow mosaic virus (ZYMV) causes significant disease, which leads to fruit yield loss in cucurbit crops. Since ZYMV resistance is often inherited recessively in cucumber, marker-assisted selection (MAS) is a useful tool for the development of resistant cucumber cultivars. Using 128 families of an F2:3 population derived from a cross between susceptible ‘CS-PMR1’ and resistant ‘A192-18’ cucumber inbred lines, we confirmed that ZYMV resistance is conferred by a single recessive locus: zym A192-18 . We constructed a cucumber genetic linkage map that included 125 simple sequence repeat (SSR) markers segregating into 7 linkage groups (chromosomes). The zym A192-18 locus was mapped to chromosome 6, at genetic distances of 0.9 and 1.3 cM from two closely linked SSR markers. For high-resolution genetic mapping, we identified new molecular markers cosegregating with the zym A192-18 locus; using cucumber genomic and molecular marker resources and screening an F2 population of 2,429 plants, we narrowed down the zym A192-18 locus to a <50-kb genomic region flanked by two SSR markers, which included six candidate genes. Sequence analysis of the candidate genes’ coding regions revealed that the vacuolar protein sorting-associated protein 4-like (VPS4-like) gene had two SNPs between the parental lines. Based on SNPs of the VPS-4-like gene, we developed zym A192-18 -linked DNA markers and found that genotypes associated with these markers were correlated with the ZYMV resistance phenotype in 48 cucumber inbred lines. According to our data, the gene encoding VPS4-like protein is a candidate for the zym A192-18 locus. These results may be valuable for MAS for ZYMV resistance in cucumber.  相似文献   

13.
14.
Melon necrotic spot virus (MNSV) is a member of the genus Carmovirus, which produces severe yield losses in melon and cucumber crops. The nsv gene is the only known natural source of resistance against MNSV in melon, and confers protection against all widespread strains of this virus. nsv has been previously mapped in melon linkage group 11, in a region spanning 5.9 cM, saturated with RAPD and AFLP markers. To identify the nsv gene by positional cloning, we started construction of a high-resolution map for this locus. On the basis of the two mapping populations, F2 and BC1, which share the same resistant parent PI 161375 (nsv/nsv), and using more than 3,000 offspring, a high-resolution genetic map has been constructed in the region around the nsv locus, spanning 3.2 cM between CAPS markers M29 and M132. The availability of two melon BAC libraries allowed for screening and the identification of new markers closer to the resistance gene, by means of BAC-end sequencing and mapping. We constructed a BAC contig in this region and identified the marker 52K20sp6, which co-segregates with nsv in 408 F2 and 2.727 BC1 individuals in both mapping populations. We also identified a single 100 kb BAC that physically contains the resistance gene and covers a genetic distance of 0.73 cM between both BAC ends. These are the basis for the isolation of the nsv recessive-resistance gene.  相似文献   

15.
Barley is the only crop in the Poaceae family with adhering husks at maturity. The color of husk at barely development stage could influence the agronomic traits and malting qualities of grains. A barley mutant with a white husk was discovered from the malting barley cultivar Supi 3 and designated wh (white husk). Morphological changes and the genetics of white husk barley were investigated. Husks of the mutant were white at the heading and flowering stages but yellowed at maturity. The diastatic power and α-amino nitrogen contents also significantly increased in wh mutant. Transmission electron microscopy examination showed abnormal chloroplast development in the mutant. Genetic analysis of F2 and BC1F1 populations developed from a cross of wh and Yangnongpi 5 (green husk) showed that the white husk was controlled by a single recessive gene (wh). The wh gene was initially mapped between 49.64 and 51.77 cM on chromosome 3H, which is syntenic with rice chromosome 1 where a white husk gene wlp1 has been isolated. The barley orthologous gene of wlp1 was sequenced from both parents and a 688 bp deletion identified in the wh mutant. We further fine-mapped the wh gene between SSR markers Bmac0067 and Bmag0508a with distances of 0.36 cM and 0.27 cM in an F2 population with 1115 individuals of white husk. However, the wlp1 orthologous gene was mapped outside the interval. New candidate genes were identified based on the barley genome sequence.  相似文献   

16.
The glabrous leaf and hull (gl1) mutants were isolated from M2 generation of indica cultivar 93-11. These mutants produced smooth leaves and hairless glumes under normal growth conditions. By analyzing through scanning electron microscope, it was revealed that the leaf trichomes, including macro and micro hairs, were deficient in these mutants. Genetic analysis indicated that the mutation was controlled by a single recessive gene. Using nine SSR markers and one InDel marker, the gl1 gene was mapped between RM1200 and RM2010 at the short arm of chromosome 5, which was consistent with the mapping of gl1 in previous studies. To facilitate the map-based cloning of the gl1 gene, 12 new InDel markers were developed. A high-resolution genetic and physical map was constructed by using 1,396 mutant individuals of F2 mapping population. Finally, the gl1 was fine mapped in 54-kb region containing 10 annotated genes. Cloning and sequencing of the target region from four gl1 mutants (gl1-1, gl1-2, gl1-3 and gl1-4) and four glabrous rice varieties (Jackson, Jefferson, Katy and Lemont) all showed that the same single point mutation (A→T) occurred in the 5′-untranslated region (UTR) of the locus Os05g0118900 (corresponding to the 3′-UTR of STAR2). RT-PCR analysis of the locus Os05g0118900 revealed that its mRNA expression level was normal in gl1 mutant. RNA secondary structure prediction showed that the single point mutation resulted in a striking RNA conformational change. These results suggest that the single point mutation is most likely responsible for the glabrous leaf and hull phenotypes in rice.  相似文献   

17.
The seed of an excellent indica restorer line Jinhui10 (Oryza sativa L. ssp. indica) was treated by ethyl methanesulfonate (EMS); a leaf-color mutant displaying distinct phenotype throughout development grown in paddy field was identified from the progeny. The mutant leaf showed white-yellow at seedling stage and then turned to yellow-green at tillering stage, after that, virescent color appeared until to maturity. The mutant was thus temporarily designed as wyv1. The chlorophyll contents decreased significantly and the changing was consistent with the chlorotic level of wyv1 leaves. Chlorophyll fluorescence kinetic parameters measured at the seedling stage showed that co-efficiency of photochemical quenching (qP), actual photosystem II efficiency (ΦPS II), electron transport rate (ETR) and initial chlorophyll fluorescence level (Fo), net photosynthetic rate (Pn) and maximum photochemical efficiency (Fv / Fm) significantly decreased in severe chlorotic leaf of the mutant compared with that of wild type. However, no significant differences were observed for Pn and Fv/Fm between virescent leaf and normal green leaf. Genetic analysis suggested that the mutant phenotype was controlled by a single recessive nuclear gene which was finally mapped between SSR marker Y7 and Y6 on rice chromosome 3 based on F2 population of Xinong1A / wyv1. Genetic distances were 0.06 cM and 0.03 cM respectively, and the physical distance was 84 kb according to the sequence of indica rice 9311. The results must facilitate map-based cloning and functional analysis of WYV1 gene.  相似文献   

18.
Clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (cas) genes constitute the adaptive immune system in bacteria and archaea. Although the CRISPR-Cas systems have been hypothesized to encode potential toxins, no experimental data supporting the hypothesis are available in the literature. In this work, we provide the first experimental evidence for the presence of a toxin gene in the type I-A CRISPR system of hyperthermophilic archaeon Sulfolobus. csa5, under the control of its native promoter in a shuttle vector, could not be transformed into CRISPR-deficient mutant Sulfolobus solfataricus Sens1, demonstrating a strong toxicity in the cells. A single-amino-acid mutation destroying the intersubunit bridge of Csa5 attenuated the toxicity, indicative of the importance of Csa5 oligomerization for its toxicity. In line with the absence of Csa5 toxicity in S. solfataricus InF1 containing functional CRISPR systems, the expression of csa5 is repressed in InF1 cells. Induced from the arabinose promoter in Sens1 cells, Csa5 oligomers resistant to 1% SDS co-occur with chromosome degradation and cell death, reinforcing the connection between Csa5 oligomerization and its toxicity. Importantly, a rudivirus was shown to induce Csa5 expression and the formation of SDS-resistant Csa5 oligomers in Sulfolobus cells. This demonstrates that the derepression of csa5 and the subsequent Csa5 oligomerization take place in native virus-host systems. Thus, csa5 is likely to act as a suicide gene under certain circumstances to inhibit virus spreading.  相似文献   

19.

Key message

Fine mapping permits the precise positioning of genes within chromosomes, prerequisite for positional cloning that will allow its rational use and the study of the underlying molecular action mechanism.

Abstract

Three leaf rust resistance genes were identified in the durable leaf rust resistant Argentinean wheat variety Sinvalocho MA: the seedling resistance gene Lr3 on distal 6BL and two adult plant resistance genes, LrSV1 and LrSV2, on chromosomes 2DS and 3BS, respectively. To develop a high-resolution genetic map for LrSV2, 10 markers were genotyped on 343 F2 individuals from a cross between Sinvalocho MA and Gama6. The closest co-dominant markers on both sides of the gene (3 microsatellites and 2 STMs) were analyzed on 965 additional F2s from the same cross. Microsatellite marker cfb5010 cosegregated with LrSV2 whereas flanking markers were found at 1 cM distal and at 0.3 cM proximal to the gene. SSR markers designed from the sequences of cv Chinese Spring BAC clones spanning the LrSV2 genetic interval were tested on the recombinants, allowing the identification of microsatellite swm13 at 0.15 cM distal to LrSV2. This delimited an interval of 0.45 cM around the gene flanked by the SSR markers swm13 and gwm533 at the subtelomeric end of chromosome 3BS.  相似文献   

20.

Key message

The genetic locus for leaf trichome was identified via marker-based mapping and SNP microarray assay, and a functional marker was developed to facilitate the breeding for hairiness in Brassica oleracea.

Abstract

Plant trichomes are involved in various functions particularly in protecting plants against some biotic and abiotic damages. In the present study, an F2 segregating population was developed from the cross between a glabrous cultivated B. oleracea (CC, 2n = 18) and a hairy wild relative, B. incana (CC, 2n = 18). A 1:3 segregation pattern between glabrous and hairy plants was detected among 1063 F2 genotypes, and the locus for hairiness was mapped in a 4.3-cM genetic region using 267 SSR markers among 149 F2 genotypes, corresponding to a 17.6-Mb genomic region on chromosome C01. To narrow the genetic region for hairiness, the Brassica 60 K SNP Bead Chip Arrays were applied to genotype 64 glabrous and 30 hairy F2 plants, resulting in a 1.04-Mb single peak region located in the 17.6-Mb interval. A candidate gene, BoTRY, was identified by qRT-PCR which revealed significant higher expression in glabrous F2 genotypes as compared with that in hairy plants. A cleaved amplified polymorphic site marker was successfully developed to distinguish the sequence variations of BoTRY between hairy and glabrous plants. Our study will be helpful for molecular breeding for hairiness in B. oleracea.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号