首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compound 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetra-(2-bromoethoxy)calix[4]arene has been prepared by first converting 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetra-(2-hydroxyethoxy)calix[4]arene into the tosylate, and then to the product by reaction with LiBr. The compound crystallizes in the trigonal space group P3221 with A = 13.160(2), C = 25.595(6) Å, A = 90.00(2), β = 90.00(1), γ = 120.000(9)0, Z = 3, calc = 1.40 g cm−3. The final R value for 2391 unique reflections was 0.061. The compound reacts with excess sodium N,N-dimethyldithiocarbamate to give 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetra-(2-N,N-dimethyldithiocarbamoylethoxy)calix[4]arene. This compound is an effective extractant for transferring palladium(II) from an aqueous to a chloroform phase. No extraction of PtCl42− is observed under thermal conditions. Under photochemical conditions using a mixture of PtCl42− and PtCl62−, extraction of platinum into the chloroform layer is observed. An explanation for this observation is given.  相似文献   

2.
A new method for N-deacetylation of chitin is proposed in which a polymer almost free of N-acetyl groups is obtained by flash treatment. The reaction is carried out in 40% NaOH solution for 30–270 s at 140–190°C, using saturated steam.

Flash treatment was found to proceed faster and with a higher activation energy for the deacetylation reaction (Ea = 36 kcal mol−1) compared with the traditional treatment (Ea = 11 kcal mol−1). X-Ray diffractometry, CP-MAS 13C-NMR and FTIR spectroscopy show that the flash treatment induces structure modifications; in particular, higher crystallinity indexes and specific area values are observed together with changes in the local and chain conformation.  相似文献   


3.
The mononuclear manganese(III) complexes [C5H10NH2][MnL2] [L2−=a substituted N-(2-hydroxybenzyl)glycinate (hbg2−) viz. 3,5-dibromo- (3,5-Br-hbg2−), 3,5-dichloro- (3,5-Cl-hbg2−), 3-methyl-5-chloro- (3,5-Me,Cl-hbg2−), 5-bromo- (5-Br-hbg2−), 5-chloro- (5-Cl-hbg2−), 5-nitro- (5-NO2-hbg2−) or N-(5-nitro-2-hydroxybenzyl)sarcosine (5-NO2-hbs2−)] have been synthesised by reaction of the appropriate ligand with manganese(II) perchlorate under ambient conditions in a 2:1 molar ratio using piperidine as base. The structures of three of these complexes, [C5H10NH2][Mn(3,5-Cl-hbg)2] (2), [C5H10NH2][Mn(5-NO2-hbg)2] (6) and [C5H10NH2][Mn(5-NO2-hbs)2] (7) have been elucidated by single-crystal X-ray crystallography and each displays two similar, independent [MnL2] ions in the asymmetric unit linked via piperidinium cations through hydrogen bonding. The ligands co-ordinate in a facial tridentate fashion with the three donor atoms being the phenolate and carboxylate oxygens and the amine nitrogen. The geometry at the Mn centres is compressed rhombic octahedral consistent with a pseudo-Jahn–Teller compression along the Mn–O(phenolate) axis. Mean bond lengths are in the ranges 1.886–1.889 Å for the Mn–O(phenolate), 2.062–2.125 Å for the Mn–O(carboxylate) and 2.091–2.184 Å for the Mn–N(amine) distances. The magnetic susceptibility and electronic and IR spectroscopic data are discussed with reference to the crystal structures.  相似文献   

4.
Graft copolymer of k-carrageenan and N,N-dimethylacrylamide has been synthesized by free radical polymerization using peroxymonosulphate/glycolic acid redox pair in an inert atmosphere. The grafting parameters i.e. grafting ratio, add on and efficiency decrease with increase in concentration of k-carrageenan from 0.6 to 1.4 g dm−3 and hydrogen ion from 3 × 10−3 to 7 × 10−3 mol dm−3, but these grafting parameters increase with increase in concentration of N,N-dimethylacrylamide from 16 × 10−2 to 32 × 10−2 mol dm−3, and peroxymonosulphate from 0.8 × 10−2 to 2.4 × 10−2 mol dm−3. The metal ion sorption, swelling behaviour and flocculation properties have been studied. The intrinsic viscosity of pure and grafted samples has been measured by using Ubbelohde capillary viscometer. Flocculation capability of k-carrageenan and k-carrageenan-g-N,N-dimethylacrylamide for both coking and non-coking coals has been studied for the treatment of coal mine waste water. The graft copolymer has been characterized by Infrared (IR) spectroscopy and thermogravimetric analysis.  相似文献   

5.
The ligand N, N′-bis[2,2-dimethyl-4-(2-hydroxyphenyl)-3-aza-3-buten] oxamide with two identical coordination sites reacts with copper ions in its tetradeprotonated form to yield the dinuclear complex [Cu2(C24H26N4O4)]·H2O. The structure of this compound has been determined by the X-ray diffraction method. The crystals are orthorhombic with a = 11.744(1), B = 16.369(2), C = 26.340(3) Å, V = 5064(1) Å3, Z = 8, space group Pbca. The oxamide is in a trans conformation with two different environments for the copper centres, a (4 + 1) coordination mode for the first one and a square planar environment for the other one. The water molecule is not directly bound to a copper centre, but involved in hydrogen bonding with the two oxygen atoms of an N2O2 coordination site. Indeed, extra coordination comes from a phenolic oxygen atom belonging to an adjacent dinuclear unit. Static susceptibility measurements point to a strong intrapair antiferromagnetic exchange interaction of 2J = −520(±4) cm−1 and possibly an interpair ferromagnetic exchange interaction of 10(±5) cm−1.  相似文献   

6.
The X-ray structure is reported for the complex Cu2(medpco-2H)Cl2, (medpco = N,N′-bis-N,N-dimethylaminoethyl)pyridine-2,6-dicarboxamide 1-oxide. The complex is triclinic, , a=8.313(4), B=11.403(5), C=11.611(3) Å, =91.66(3), β=108.99(4), γ=109.60(3)° and Z=2. The deprotonated ligand (medpco-2H)2− acts as a binulceating ligand, producing an N-oxide-bridged complex. Each copper in Cu2(medpco-2H)Cl2 is five-coordinate, being coordinated by a bridging N-oxide oxygen, a deprotonated amide nitrogen, a tertiary amine nitrogen and two bridging chlorides. The complex does not exhibit significant magnetic interaction, and this may be the result of distortion of the bridging geometry from planarity. A range of other, apparently N-oxide-bridged, complexes of the type Cu2(medpco-2H)X2 is reported. The complex Cu2(medpco-2H)Br2·H2O is strongly antiferromagnetic, with magnetic data closely fitting the expected binuclear structure.  相似文献   

7.
The chlorocadmate(II) systems of (H2me2pipz)[Cd2Cl6(H2O)2] (1) and (H2mepipz)2[Cd3Cl10(H2O)] (2) (L = me2pipz = N,N′-dimethylpiperazine; L′ = mepipz = N-methylpiperazine) were prepared and their structural and thermal properties investigated. Compound 1 is monoclinic, space group P21/c, A = 7.664(1), B = 7.472(4), C = 15.347(1) Å, β = 99.468(7)°, Z = 2, R = 0.024. The crystal structure consists of organic cations and infinite one-dimensional chains of [CdCl3(H2O)]n3− anions. Each Cd atom is octahedrally surrounded by bridged and terminal chlorine atoms and by a water molecule, which is in trans position with respect to the terminal chlorine atom. Inter- and intrachain hydrogen bond interactions between the terminal chlorine atoms and the water molecules contribute to the crystal packing. Compound 2 is orthorhombic, space group Cmc21, A = 15.286(3), B = 13.354(3), C = 13.154(3) Å, R = 0.023. The crystal structure consists of organic dications and infinite chains of [Cd2Cl6(CdCl4H2O]n4− units running along the [001] axis. Each unit is formed of regularly alternate six-coordinated Cd atoms, one of them linking one pentacoordinated Cd atom which completes its coordination througha water molecule. A strong hydrogen bond interaction involving the organic dication and the inorganic chain contributes to the crystal packing. Differential hydrogen bond interaction involving the organic dication and the inorganic chain contributes to the crystal packing. Differential scanning calorimetry measurements did not show the presence of any structural phase transitions. The structures are compared with those of (H2pipz)[Cd2Cl6(H2O)2] (3), (H2mepipz)[Cd2Cl6(H2O)2]·H2O (4) and (H2mepipz)[Cd2Cl6] (5) (L = pipz = piperazine, L′ = mepipz = N-ethylpiperazine).  相似文献   

8.
The modification reaction of sago starch with succinic anhydride (SA) using pyridine (PY) and/or 4-dimethyaminopyridine (DMAP) as catalyst and N,N-dimethylacetamide (DMA)/lithium chloride (LiCl) system as solvent was studied. A series of succinylated starch derivatives were prepared with a degree of substitution (DS) ranging from 0.14 to 1.54. The structure of the resulting polymers determined by means of 13C NMR spectroscopy indicated that substitution preferably occurs at the C2 and C6 hydroxyl groups. The thermal stability of the material was decreased by chemical modification. Effects of reactant molar ratio, reaction time, and the concentrations of DMAP and LiCl on the reaction efficiency are discussed.  相似文献   

9.
[MnL](ClO4)2 (L = N,N′,N″-tris(2-hydroxypropyl)-1,4,7-triazacyclononane) has been tested for catalyzing sulfide oxidation. In the presence of this complex, ethyl phenyl sulfide, butyl sulfide and phenyl sulfide are completely oxidized to the corresponding sulfoxides and sulfones with H2O2 as the oxidant. 2-Chloroethyl phenyl sulfide oxidation yield 2-chloroethyl phenyl sulfone and phenyl vinyl sulfone. In ethyl phenyl sulfide oxidation, effects of complex and H2O2 concentration and temperature on the reaction rate have been discussed. Through controlling reaction conditions, ethyl phenyl sulfoxide and ethyl phenyl sulfone may be produced selectively. The UV–Vis and electron paramagnetic resonance (EPR) studies on catalyst solution indicate that metal centre of the complex is transformed from Mn(II) to Mn(IV) after the addition of H2O2. At 25 °C, rate constant for ethyl phenyl sulfide oxidation is 4.38 × 10−3 min−1.  相似文献   

10.
The interaction between Ac-AMP2, a lectin-like small protein with antimicrobial and antifungal activity isolated from Amaranthus caudatus, and N,N′,N″-triacetyl chitotriose was studied using 1H NMR spectroscopy. Changes in chemical shift and line width upon increasing concentration of N,N′,N″-triacetyl chitotriose to Ac-AMP2 solutions at pH 6.9 and 2.4 were used to determine the interaction site and the association constant Ka. The most pronounced shifts occur mainly in the C-terminal half of the sequence. They involve the aromatic residues Phe18, Tyr20 and Tyr27 together with their surrounding residues, as well as the N-terminal Val-Gly-Glu segment. Several NOEs between Ac-AMP2 and the N,N′,N″-triacetyl chitotriose resonances are reported.  相似文献   

11.
Chitin regenerated from LiCl-N,N-dimethylacetamide (DMA) was found to dissolve in 10 g/dL LiBr-DMA. The bromination of the regenerated chitin proceeded to a large extent (DS by bromine up to 0.94) with equimolar amounts of N-bromosuccinimide and triphenylphosphine under homogeneous conditions in LiBr-DMA at 50–90°C. 13C NMR spectroscopy of brominated products and GLC-MS analysis of their hydrolyzates showed that the bromine substitution took place regioselectively at C-6 of the chitin repeating units. Polymer chain scission occurred to some extent during the bromination, more extensively at higher temperatures with higher concentrations of reagents.  相似文献   

12.
Oxygenation of [CuII(fla)(idpa)]ClO4 (fla=flavonolate; IDPA=3,3′-iminobis(N,N-dimethylpropylamine)) in dimethylformamide gives [CuII(idpa)(O-bs)]ClO4 (O-bs=O-benzoylsalicylate) and CO. The oxygenolysis of [CuII(fla)(idpa)]ClO4 in DMF was followed by electronic spectroscopy and the rate law −d[{CuII(fla)(idpa)}ClO4]/dt=kobs[{CuII(fla)(idpa)}ClO4][O2] was obtained. The rate constant, activation enthalpy and entropy at 373 K are kobs=6.13±0.16×10−3 M−1 s−1, ΔH=64±5 kJ mol−1, ΔS=−120±13 J mol−1 K−1, respectively. The reaction fits a Hammett linear free energy relationship and a higher electron density on copper gives faster oxygenation rates. The complex [CuII(fla)(idpa)]ClO4 has also been found to be a selective catalyst for the oxygenation of flavonol to the corresponding O-benzoylsalicylic acid and CO. The kinetics of the oxygenolysis in DMF was followed by electronic spectroscopy and the following rate law was obtained: −d[flaH]/dt=kobs[{CuII(fla)(idpa)}ClO4][O2]. The rate constant, activation enthalpy and entropy at 403 K are kobs=4.22±0.15×10−2 M−1 s−1, ΔH=71±6 kJ mol−1, ΔS=−97±15 J mol−1 K−1, respectively.  相似文献   

13.
C. Görlach  M. Wahl 《Peptides》1996,17(8):1373-1378
Ring segments of rat middle cerebral artery (MCA) were prepared for measurement of isometric force and precontracted with 10−4 M uridine triphosphate (UTP). Concentration-effect curves (CEC) were constructed for bradykinin (BK, 10−8–10−5 M) in segments with functionally intect (E+) or denuded (E−) endothelium. E− segments did not dilate to BK. The BK receptor was characterized by application of specific B1 or B2 antagonists [des-Arg9-Leu8] BK (10−5 M) and [ -Arg0-Hyp3-Thi5- -Tic7-Oic8] BK (HOE140,3 × 10−7 M), respectively, or B1 agonist [des-Arg9] BK (10−8–10−4 M). Involvement of nitric oxide (NO) was tested with NG-nitro- -arginine (LNNA, 10−4 M). BK induced concentration-dependent relaxation with a maximal effect (Emax) of 40.86 ± 1.50% at 10−6 M and a pD2 (−log10 EC50) of 6.818 ± 0.044. This relaxation could be prevented with HOE140 or LNNA, but was not influenced by [des-Arg9-Leu8] BK. [des-Arg9] BK did not induce any effect. These results demonstrate that BK induced relaxation via endothelial B2 receptors and release of NO in isolated rat MCA.  相似文献   

14.
The seagrass Halophila decipiens Ostenfeld was grown axenically in a culture medium consisting of 20% artificial seawater, f/4 nutrients (except that glutamic acid was the nitrogen source), and 1% sucrose (w:v). The culture medium was adjusted to pH 5.0. A root–rhizome layer was created by solidifying a portion of the medium with 0.9% agar (w:v) and 1% activated charcoal (w:v). The rhizome layer also contained the following vitamins: 0.5 mg l−1 nicotinic acid, 0.5 mg l−1 pyridoxine, 0.5 mg l−1 biotin, 0.5 mg l−1 cyanocobalamin and 0.1 mg l−1 of thiamine HCl. The liquid overlay (without vitamins or charcoal) was poured onto the agar-solidified root–rhizome layer. Growth of H. decipiens was not improved by the addition of the auxins indoleacetic acid (IAA), indolebutyric acid (IBA) or naphthaleneacetic acid (NAA) at either of the tested concentrations (10 and 50 μM). At a concentration of 10 μM, the cytokinins 6-(γ,γ-dimethylallylamino) purine (2iP) and benzylaminopurine (BA) stimulated shoot and branch production compared to controls with no cytokinins. Among the tested nitrogen sources, growth was best on 1.7 mM glutamic acid. Cultures grown on 1.7 mM NH4Cl showed the same growth rates as those grown on glutamic acid, but the leaves were smaller and curled, suggesting incipient ammonium toxicity. Use of nitrate or urea led to mortality of the cultures. Long term axenic culture of H. decipiens appears to require the added vitamins. Hence, H. decipiens is the first seagrass known to need exogenous vitamins. Cultures of H. decipiens died when grown suspended in liquid cultures or in a biphasic medium system without activated charcoal in the root–rhizome layer. The use of more highly charged κ-carrageenan could not replace the use of activated charcoal and agar in the root–rhizome layer.  相似文献   

15.
In this work, the chitin was treated by 0.1 N HCl, 0.5 N NaOH, and 8% sodium hypochlorite. The change of the molecular structure was studied by Fourier Transform Infrared Spectroscopy (FTIR) in the wavenumber range (400–4000 cm−1). The absorption bands were assigned and the crystallinity index was calculated from the ratio of the absorbance C–N band at 1378 cm−1 and CH at 2925 cm−1. The data indicated that, the crystallinity index of chitin is higher than that of treated chitin which is due to the hydrolysis of some acetamide group. Also, treating with alkali causes a swelling of chitin chains. The dielectric properties such as dielectric constant (ε′), dielectric loss (ε″) and AC electrical conductivity were measured and discussed as a function of frequencies (0.1 kHz–3 MHz). The dielectric constant (ε′) was decreased with increasing frequencies due to the dielectric dispersion. β-relaxation was observed and discussed from the dielectric loss (ε″). The results of AC conductivity showed that, at high frequency, the conductivity increased with increasing frequencies and its interpreted in term of hopping conduction.  相似文献   

16.
A detailed account of physical bulk gel and bead formation from various chitin solutions and nonsolvents is given. Instant gel formation occurs upon contact of chitin solutions in dimethylacetamide (DMAc)/lithium chloride (LiCl) or N-methyl-pyrrolidinone (NMP)/LiCl solvents and nonsolvents such as water, ethanol, or acetone. Ethanol was found to be the optimal nonsolvent for homogeneous spherical bead formation from chitin solutions. Similarly, DMAc-based chitin solutions proved to yield higher quality beads compared to NMP-based solutions. The differences in bead morphology, crystallinity, and thermal degradation are explained in light of the attainment of a balance between attractive hydrogen bonding in the chitin gel network and segment–nonsolvent interactions. The dependence of swelling of chitin gels on pH indicated a maximum of swelling ratio value of 4.3 at pH 11 in aqueous solutions while the equilibrium swelling ratio value of chitin beads formed with ethanol reached a maximum of 2.4. Bulk gels formed under favorable conditions were demonstrated to be recyclable after solvent separation and drying.  相似文献   

17.
The molecular structure of the title complexes [Fe(H2O)4][Fe(Hedta)(H2O)]2 · 4H2O (I) and [Fe(H[2edta)(H2O)] · 2H2O (II) have been determined by single-crystal X-ray analyses. The crystal data are as follows: I: monoclinic, P21/n, A = 11.794(2), B = 15.990(2), C = 9.206(2) Å, β = 90.33(1)°, V = 1736.1(5) Å3, Z = 2 and R = 0.030; II: monoclinic, C2/c, A = 11.074(2), B = 9.856(2), C = 14.399(2) Å, β = 95.86(1)°, V = 1563.3(4) Å3, Z = 4 and R = 0.025. I is found to be isomorphous with the MnII analog reported earlier and to contain a seven-coordinate and approximately pentagonal-bipyramidal (PB) [FeII(Hedta)(H2O] unit in which Hedta acts as a hexadentate ligand. The [FeII(H2edta)(H2O)] unit in II has also a seven-coordinate PB structure with the two protonated equatorial glycine arms both remaining coordinated, and thus bears a structural resemblance to the seven-coordinate [CoII(H2edta)(H2O)] reported previously.  相似文献   

18.
Single muscle fibers continue to twitch for up to 20 min when immersed in ethylene glycol bis(β-aminoethyl ether)-N,N′-tetraacetic acid (EGTA) solutions containing less than 10−8 M free calcium. Failure of the twitch results from reversible depolarization, which occurs after 15–20 min in EGTA. The results make it clear that external calcium or calcium in the transverse tubules play no essential part in action potential propagation or excitation-contraction coupling.  相似文献   

19.
Bernd Schmidt   《BBA》1976,449(3):516-524
In 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) poisoned chloroplasts, the restoration of the fluorescence induction is presumed to be due to a back reaction of the reduced primary acceptor (Q) and the oxidized primary donor (Z+) of Photosystem II. Carbonylcyanide m-chlorophenylhydrazone (CCCP) is known to inhibit this back reaction. The influence of reduced N-methylphenazonium methosulfate (PMS) in the absence of CCCP and of oxidized PMS in the presence of CCCP on the back reaction was investigated and the following results were obtained:

1. (1) Reduced PMS at the concentration of 1 μM inhibits the back reaction as effectively as hydroxylamine, suggesting an electron donating function of reduced PMS for System II.

2. (2) The inhibition of the back reaction by CCCP is regenerated to a high degree by oxidized PMS which led to assume a cyclic System II electron flow catalysed by PMS.

3. (3) At concentrations of reduced PMS higher than 1 μM it is shown that both the fast initial emission and more significantly the variable emission are quenched.

Abbreviations: PMS, N-methylphenazonium methosulfate; CCCP, carbonylcyanide m-chlorophenylhydrazone; FCCP, carbonylcyanide p-trifluoromethoxyphenylhydrazone; TMPD, N,N,N′,N′-tetramethyl-p-phenylendiamine; DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   


20.
DMAc/LiCl has become a favored solvent in the analysis of polysaccharides. Although much is understood about its interaction with carbohydrate molecules, a great deal remains to be known in order for a comprehensive mechanism of dissolution to be discerned. These limitations, however, have not precluded the extended use of DMAc/LiCl in the study of chitin, cellulose, etc. This article reviews the theory of DMAc/LiCl as a solvent and new developments in this area, as well as the variety of applications which have been found for it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号