首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human chymase is a protease involved in physiological processes ranging from inflammation to hypertension. As are all proteases of the trypsin fold, chymase is synthesized as an inactive "zymogen" with an N-terminal pro region that prevents the transition of the zymogen to an activated conformation. The 1.8 A structure of pro-chymase, reported here, is the first zymogen with a dipeptide pro region (glycine-glutamate) to be characterized at atomic resolution. Three segments of the pro-chymase structure differ from that of the activated enzyme: the N-terminus (Gly14-Gly19), the autolysis loop (Gly142-Thr154), and the 180s loop (Pro185A-Asp194). The four N-terminal residues (Gly14-Glu15-Ile16-Ile17) are disordered. The autolysis loop occupies a position up to 10 A closer to the active site than is seen in the activated enzyme, thereby forming a hydrogen bond with the catalytic residue Ser195 and occluding the S1' binding pocket. Nevertheless, the catalytic triad (Asp102-His57-Ser195) is arrayed in a geometry close to that seen in activated chymase (all atom rmsd of 0.52 A). The 180s loop of pro-chymase is, on average, 4 A removed from its conformation in the activated enzyme. This conformation disconnects the oxyanion hole (the amides of Gly193 and Ser195) from the active site and positions only approximately 35% of the S1-S3 binding pockets in the active conformation. The backbone of residue Asp194 is rotated 180 degrees when compared to its conformation in the activated enzyme, allowing a hydrogen bond between the main-chain amide of residue Trp141 and the carboxylate of Asp194. The side chains of residues Phe191 and Lys192 of pro-chymase fill the Ile16 binding pocket and the base of the S1 binding pocket, respectively. The zymogen positioning of both the 180s and autolysis loops are synergistic structural elements that appear to prevent premature proteolysis by chymase and, quite possibly, by other dipeptide zymogens.  相似文献   

2.
Site-directed mutagenesis on human cytidine deaminase (CDA) was employed to mutate specifically two highly conserved phenylalanine residues, F36 and F137, to tryptophan; at the same time, the unique tryptophan residue present in the sequence at position 113 was mutated to phenylalanine. These double mutations were performed in order to have for each protein a single tryptophan signal for fluorescence studies relative to position 36 or 137. The mutant enzymes thus obtained, W113F, F36W/W113F and F137W/W113F, showed by circular dicroism and thermal stability an overall structure not greatly affected by the mutations. The titration of Trp residues by N-bromosuccinimide (NBS) suggested that residue W113 of the wild-type CDA and W36 of mutant F36W/W113F are buried in the tertiary structure of the enzyme, whereas the residue W137 of mutant F137W/W113F is located near the surface of the molecule. Kinetic experiments and equilibrium experiments with FZEB showed that the residue W113 seems not to be part of the active site of the enzyme whereas the Phe/Trp substitution in F36W/W113F and F137W/W113F mutant enzymes had a negative effect on substrate binding and catalysis, suggesting that F137 and F36 of the wild-type CDA are involved in a stabilizing interaction between ligand and enzyme.  相似文献   

3.
The molecular mechanism of the autolysis of rat alpha-chymotrypsin B was investigated. In addition to the two already known autolytic sites, Tyr146 and Asn147, a new site formed by Phe114 was identified. The former two sites and the latter one are located in the autolysis and the interdomain loops, respectively. By eliminating these sites by site-directed mutagenesis, their involvement in the autolysis and autolytic inactivation processes was studied. Mutants Phe114-->Ile and Tyr146-->His/Asn147-->Ser, that had the same enzymatic activity and molecular stability as the wild-type enzyme, displayed altered routes of autolytic degradation. The Phe114-->Ile mutant also exhibited a significantly slower autolytic inactivation (its half-life was 27-fold longer in the absence and sixfold longer in the presence of Ca2+ ions) that obeyed a first order kinetics instead of the second order displayed by wild-type chymotrypsin inactivation. The comparison of autolysis and autolytic inactivation data showed that: (a) the preferential cleavage of sites followed the order of Tyr146-Asn147 --> Phe114 --> other sites; (b) the cleavage rates at sites Phe114 and Tyr146-Asn147 were independent from each other; and (c) the hydrolysis of the Phe114-Ser115 bond was the rate determining step in autolytic inactivation. Thus, it is the cleavage of the interdomain loop and not of the autolysis or other loops that determines the half-life of chymotrypsin activity.  相似文献   

4.
Streptomyces griseus trypsin (SGT) is a bacterial trypsin that lacks the conserved disulphide bond surrounding the autolysis loop. We investigated the molecular mechanism by which SGT is stabilized against autolysis. The autolysis loop connects to another surface loop via a salt bridge (Glu146-Arg222), and the Arg222 residue also forms a cation-pi interaction with Tyr217. Elimination of these bonds by site-directed mutagenesis showed that the surface salt bridge at Glu146-Arg222 is the main force stabilizing the enzyme against autolysis. The effect of the cation-pi interaction at Tyr217-Arg222 is small, however, its presence increases the half-life by about five hours and enhances the protein stability more than three-fold considering the catalytic activity in the presence of the salt bridge. The melting temperature also showed cooperation between the salt bridge and cation-pi interaction. These findings show that S. griseus trypsin is stabilized against autolysis through a cooperative network of a salt bridge and cation-pi interaction, which compensate for the absence of the conserved C136-C201 disulphide bond.  相似文献   

5.
Triosephosphate isomerase (TIM) has been the subject of many structural and mechanistic studies. At position 96, there is a highly conserved Ser residue, which is proximal to the catalytic site. Thus far, no specific role has been ascribed to this residue. Plasmodium falciparum TIM (PfTIM), a fully catalytically active enzyme, is unique in possessing a Phe residue at position 96. The structure of PfTIM complexed to phosphoglycolate (PG), a transition state analogue, has been determined in an effort to probe the effects of the mutation at residue 96 on the nature of inhibitor-enzyme interactions and the orientation of the critical catalytic loop (loop 6, residues 166-176) in TIM. Crystal structures of PfTIM complexed to phosphoglycolate in orthorhombic (P2(1)2(1)2(1)) and monoclinic (C2) forms were determined and refined at resolutions of 2.8 and 1.9 A, respectively. The P2(1)2(1)2(1) form contains two dimers in the asymmetric unit. In the C2 form, the molecular and crystal 2-fold axes are coincident, leading to a monomer in the asymmetric unit. The catalytic loop adopts the open state in the P2(1)2(1)2(1) form and the closed conformation in the C2 crystal. The open conformation of the loop in the P2(1)2(1)2(1) form appears to be a consequence of the Ser to Phe mutation at residue 96. The steric clash between Phe96 and Ile172 probably impedes loop closure in PfTIM-ligand complexes. The PfTIM-PG complex is the first example of a TIM-ligand complex being observed in both loop open and closed forms. In the C2 form (loop closed), Phe96 and Leu167 adopt alternative conformations that are different from the ones observed in the open form, permitting loop closure. These structures provide strong support for the view that loop closure is not essential for ligand binding and that dynamic loop movement may occur in both free and ligand-bound forms of the enzyme.  相似文献   

6.
Bian Y  Liang X  Fang N  Tang XF  Tang B  Shen P  Peng Z 《FEBS letters》2006,580(25):6007-6014
Thermophilic WF146 protease possesses four surface loop insertions and a disulfide bond, resembling its psychrophilic (subtilisins S41 and S39) and mesophilic (subtilisins SSII and sphericase) homologs. Deletion of the insertion 3 (positions 193-197) or insertion 4 (positions 210-221) of WF146 protease resulted in a significant decrease of the enzyme stability. In addition, substitution of the residues Pro211 and Ala212 or residue Glu221 which localized in the vicinity of a Ca(2+) binding site of the enzyme by the corresponding residues in subtilisin S41 remarkably reduced the half-life of the enzyme at 70 degrees C, suggesting that the three residues contributed to the thermostability of the enzyme, probably by enhancing the affinity of enzyme to Ca(2+). In the presence of dithiothreitol, the WF146 protease suffered excessive autolysis, indicating that the Cys52-Cys65 disulfide bond played a critical role in stabilizing the WF146 protease against autolysis. The autolytic cleavage sites of the WF146 protease were identified to locate between residues Asn63-Gly64 and Cys65-Ala66 by N-terminal amino acid analysis of the autolytic product. It was noticed that the effect of the autolytic cleavage at Asn63-Gly64 could be compensated by the disulfide bond Cys52-Cys65 under non-reducing condition, and the disulfide bond cross-linked autolytic product remained active. The apparent stabilization effect of the disulfide bond Cys52-Cys65 in the WF146 protease might provide a rational basis for improving the stability of subtilase against autolysis by protein engineering.  相似文献   

7.
Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase catalyzes the reversible formation of oxaloacetate and adenosine triphosphate from PEP, adenosine diphosphate and carbon dioxide, and uses Mn(2+) as the activating metal ion. Comparison with the crystalline structure of homologous Escherichia coli PEP carboxykinase [Tari et al. Nature Struct. Biol. 4 (1997) 990-994] shows that Lys(213) is one of the ligands to Mn(2+) at the enzyme active site. Coordination of Mn(2+) to a lysyl residue is infrequent and suggests a low pK(a) value for the epsilon-NH(2) group of Lys(213). In this work, we evaluate the role of neighboring Phe(416) in contributing to provide a low polarity microenvironment suitable to keep the epsilon-NH(2) of Lys(213) in the unprotonated form. Mutation Phe416Tyr shows that the introduction of a hydroxyl group in the lateral chain of the residue produces a substantial loss in the enzyme affinity for Mn(2+), suggesting an increase of the pK(a) of Lys(213). A study of the effect of pH on K(m) for Mn(2+) indicate that the affinity of recombinant wild type enzyme for the metal ion is dependent on deprotonation of a group with pK(a) of 7.1+/-0.2, compatible with the low pK(a) expected for Lys(213). This pK(a) value increases at least 1.5 pH units upon Phe416Tyr mutation, in agreement with the expected effect of an increase in the polarity of Lys(213) microenvironment. Theoretical calculations of the pK(a) of Lys(213) indicate a value of 6.5+/-0.9, and it increases to 8.2+/-1.6 upon Phe416Tyr mutation. Additionally, mutation Phe416Tyr causes a loss of 1.3 kcal mol(-1) in the affinity of the enzyme for PEP, an effect perhaps related to the close proximity of Phe(416) to Arg(70), a residue previously shown to be important for PEP binding.  相似文献   

8.
C Bernard  G Corzo  A Mosbah  T Nakajima  H Darbon 《Biochemistry》2001,40(43):12795-12800
Ptu1 is a toxin from the assassin bug Peirates turpis which has been demonstrated to bind reversibly the N-type calcium channels and to have lower affinity than the omega-conotoxin MVIIA. We have determined the solution structure of Ptu1 by use of conventional two-dimensional NMR techniques followed by distance-geometry and molecular dynamics. The calculated structure of Ptu1 belongs to the inhibitory cystin knot structural family (ICK) that consists of a compact disulfide-bonded core from which four loops emerge. Analysis of the 25 converged solutions indicates that the molecular structure of Ptu1 contains a 2-stranded antiparallel beta-sheet (residues 24-27 and 31-34) as the only secondary structure. The loop 2 that has been described to be critical for the binding of the toxin on the channel is similar in Ptu1 and MVIIA. In this loop, the critical residue, Tyr13, in MVIIA is retrieved in Ptu1 as Phe13, but the presence of an acidic residue (Asp16) in Ptu1 could disturb the binding of Ptu1 on the channel and could explain the lower affinity of Ptu1 toward the N-type calcium channel compared to the one of MVIIA. Analysis of the electrostatic charge's repartition gives some insights about the importance of the basic residues, which could interact with acidic residues of the channel and then provide a stabilization of the toxin on the channel.  相似文献   

9.
Site-directed mutagenesis has been used to produce two mutant forms of yeast phosphoglycerate kinase in which the interdomain residue Phe194 has been replaced by a leucine or tryptophan residue. Using 1H-NMR spectroscopy, it was found that the mutations at position 194 induce both local and long-range conformational changes in the protein. It was also found that 3-phosphoglycerate binding to the mutant proteins induces somewhat different conformational effects to those observed for wild-type phosphoglycerate kinase. The affinity of mutant Phe194----Trp for 3-phosphoglycerate was found by NMR studies to be unaffected, while the affinity of Phe194----Leu mutant is reduced by about threefold relative to the wild-type enzyme. The binding of ATP at the electrostatic site of the mutant proteins is also seen to be about three times weaker for the Phe194----Leu mutant when compared to wild-type or Phe194----Leu mutant. These results are discussed in the light of the kinetic studies on the mutants which show that for Phe194----Leu mutant the Km values for both 3-phosphoglycerate and ATP, as well as the Vmax, are decreased relative to the wild-type enzyme, while for mutant Phe194----Trp, the Km values for 3-phosphoglycerate and ATP are unaffected and the Vmax is decreased when compared to wild-type enzyme. Kinetic studies in the presence of sulphate reveal that the anion activation is greater for mutant Phe194----Trp and less for mutant Phe194----Leu, relative to that observed for wild-type phosphoglycerate kinase. The NMR data, taken together with the kinetic data, are consistent with the on and off rates of 3-phosphoglycerate being affected by the mutations at position 194. It is suggested that Phe194 is important for the mobility of the interdomain region and the relative movement of the 3-phosphoglycerate binding site which allows the optimum conformation for catalysis to be attained. Apparently Trp194 reduces the mobility of the interdomain region of the protein, while Leu194 increases it.  相似文献   

10.
Familial Amyloidotic Polyneuropathy (FAP) is caused by the assembly of TTR into an insoluble beta-sheet. The TTR tetramer is thought to dissociate into monomeric intermediates and subsequently polymerise into the pathogenic amyloid form. The biochemical mechanism behind this transformation is unknown. We characterised intermediate TTR structures in the in vitro amyloidogenesis pathway by destabilising the AB loop through substitution of residue 78. Changes at this residue, should destabilise the TTR tetrameric fold, based on the known crystallographic structure of a Leu55Pro transthyretin variant. We generated a soluble tetrameric form of TTR that is recognised by a monoclonal antibody, previously reported to react only with highly amyloidogenic mutant proteins lacking the tetrameric native fold and with amyloid fibrils. BIAcore system analysis showed that Tyr78Phe had similar binding properties as synthetic fibrils. The affinity of this interaction was 10(7) M(-1). We suggest that the tetrameric structure of Tyr78Phe is altered due to the loosening of the AB loops of the tetramer, leading to a structure that might represent an early intermediate in the fibrillogenesis pathway.  相似文献   

11.
In a previous work, chemical modification of Cys-238 of Escherichia coli Pfk-2 raised concerns on the importance of the dimeric state of Pfk-2 for enzyme activity, whereas modification of Cys-295 impaired the enzymatic activity and the MgATP-induced tetramerization of the enzyme. The results presented here demonstrate that the dimeric state of Pfk-2 is critical for the stability and the activity of the enzyme. The replacement of Cys-238 by either Ala or Phe shows no effect on the kinetic parameters, allosteric inhibition, dimer stability and oligomeric structure of Pfk-2. However, the mutation of Cys-295 by either Ala or Phe provokes a decrease in the k(cat) value and an increment in the K(m) values for both substrates. We suggest that the Cys-295 residue participates in intersubunit interactions in the tetramer since the Cys-295-Phe mutant exhibits higher tetramer stability, which in turn results in an increase in the fructose-6-P concentration required for the reversal of the MgATP inhibition relative to the wild type enzyme.  相似文献   

12.
The Na(+)-Ca2+ exchanger contains internal regions of sequence homology known as the alpha repeats. The first region (alpha-1 repeat) includes parts of transmembrane segments (TMSs) 2 and 3 and a linker modeled to be a reentrant loop. To determine the involvement of the reentrant loop and TMS 3 portions of the alpha-1 repeat in exchanger function, we generated a series of mutants and examined ion binding and transport and regulatory properties. Mutations in the reentrant loop did not substantially modify transport properties of the exchanger though the Hill coefficient for Na+ and the rate of Na(+)-dependent inactivation were decreased. Mutations in TMS 3 had more striking effects on exchanger activity. Of mutations at 10 positions, 3 behaved like the wild-type exchanger (V137C, A141C, M144C). Mutants at two other positions expressed no activity (Ser139) or very low activity (Gly138). Six different mutations were made at position 143; only N143D was active, and it displayed wild-type characteristics. The highly specific requirement for an asparagine or aspartate residue at this position may indicate a key role for Asn143 in the transport mechanism. Mutations at residues Ala140 and Ile147 decreased affinity for intracellular Na+, whereas mutations at Phe145 increased Na+ affinity. The cooperativity of Na+ binding was also altered. In no case was Ca2+ affinity changed. TMS 3 may form part of a site that binds Na+ but not Ca2+. We conclude that TMS 3 is involved in Na+ binding and transport, but previously proposed roles for the reentrant loop need to be reevaluated.  相似文献   

13.
It was previously shown that the Cro repressor from phage lambda, which is a dimer, can be converted into a stable monomer by a five-amino acid insertion. Phe58 is the key residue involved in this transition, switching from interactions which stabilize the dimer to those which stabilize the monomer. Structural studies, however, suggested that Phe58 did not penetrate into the core of the monomer as well as it did into the native dimer. This was strongly supported by the finding that certain core-repacking mutations, including in particular, Phe58-->Trp, increased the stability of the monomer. Unexpectedly, the same substitution also increased the stability of the native dimer. At the same time it decreased the affinity of the dimer for operator DNA. Here we describe the crystal structures of the Cro F58W mutant, both as the monomer and as the dimer. The F58W monomer crystallized in a form different from that of the original monomer. In contrast to that structure, which resembled the DNA-bound form of Cro, the F58W monomer is closer in structure to wild-type (i.e. non-bound) Cro. The F58W dimer also crystallizes in a form different from the native dimer but has a remarkably similar overall structure which tends to confirm the large changes in conformation of Cro on binding DNA. Introduction of Trp58 perturbs the position occupied by the side-chain of Arg38, a DNA-contact residue, providing a structural explanation for the reduction in DNA-binding affinity.The improved thermal stability is seen to be due to the enhanced solvent transfer free energy of Trp58 relative to Phe58, supplemented in the dimer structure, although not the monomer, by a reduction in volume of internal cavities.  相似文献   

14.
Bromodomain-containing protein 9 (BRD9) has been employed as a potential target for anticancer drugs in recent years. In this work, molecular docking, molecular dynamics (MD) simulations, binding free energy calculations, and per residue energy decomposition approaches were performed to elucidate the different binding modes between four pyridinone-like scaffold inhibitors and BRD9 bromodomain. Analysis results indicate that non-polar contribution mainly deriving from van der Waals energy is a critical impact on binding affinity of inhibitors against BRD9. Some key residues Phe44, Phe47, Val49, and Ile53 (at ZA loop) enhance the binding energy of inhibitors in BRD9 by means of providing hydrophobic interactions. Moreover, it is observed that BRD9 is anchored by the formation of a stable hydrogen bond between the carbonyl of the inhibitors and the residue Asn100 (at BC loop), and a strong π–π stacking interaction formed between the residue Tyr106 (at BC loop) and the inhibitors. The existence of dimethoxyphenyl structure and the aromatic ring merged to pyridinone scaffold are useful to enhance the BRD9 binding affinity. These findings should guide the rational design of more prospective inhibitors targeting BRD9.

Communicated by Ramaswamy H. Sarma  相似文献   


15.
BACKGROUND: ATP-mediated cooperative assembly of a RecA nucleoprotein filament activates the protein for catalysis of DNA strand exchange. RecA is a classic allosterically regulated enzyme in that ATP binding results in a dramatic increase in ssDNA binding affinity. This increase in ssDNA binding affinity results almost exclusively from an ATP-mediated increase in cooperative filament assembly rather than an increase in the inherent affinity of monomeric RecA for DNA. Therefore, certain residues at the subunit interface must play an important role in transmitting allosteric information across the filament structure of RecA. RESULTS: Using electron microscopic analysis of RecA polymer formation in the absence of DNA, we show that while wild-type RecA undergoes a slight decrease in filament length in the presence of ATP, a Phe217Tyr substitution results in a dramatic ATP-induced increase in cooperative filament assembly. Biosensor DNA binding measurements reveal that the Phe217Tyr mutation increases ATP-mediated cooperative interaction between RecA subunits by more than 250-fold. CONCLUSIONS: These studies represent the first identification of a subunit interface residue in RecA (Phe217) that plays a critical role in regulating the flow of ATP-mediated information throughout the protein filament structure. We propose a model by which conformational changes that occur upon ATP binding are propagated through the structure of a RecA monomer, resulting in the insertion of the Phe217 side chain into a pocket in the neighboring subunit. This event serves as a key step in intersubunit communication leading to ATP-mediated cooperative filament assembly and high affinity binding to ssDNA.  相似文献   

16.
The hydrophobic core in Bcl-xL composed of Trp137, Ile140, Trp181, Ile182, Trp188 and Phe191 is highly conserved and essential for protein folding, protein stability and binding affinity with BH3-peptide. 9 mutants of Ile140 residue were constructed and characterized in order to get better understanding of the effect of the hydrophobic core. Binding assay demonstrated that binding affinities between 4 charged mutants and BH3-peptide were significantly weakened or lost, suggesting that the integrity of the hydrophobic core has close relationship with binding. The CD spectroscopy results indicated that disruption of the hydrophobic core may affect local conformation within the protein and result in intrinsic inactivity. Further chemical-induced protein folding results on these 4 mutants revealed that the conserved hydrophobic core is also important for the protein stability.  相似文献   

17.
A comparison of the crystal structure of the dimeric enzyme citrate synthase from the psychrophilic Arthrobacter strain DS2-3R with that of the structurally homologous enzyme from the hyperthermophilic Pyrococcus furiosus reveals a significant difference in the accessibility of their active sites to substrates. In this work, we investigated the possible role in cold activity of the greater accessibility of the Arthrobacter citrate synthase. By site-directed mutagenesis, we replaced two alanine residues at the entrance to the active site with an arginine and glutamate residue, respectively, as found in the equivalent positions of the Pyrococcus enzyme Also, we introduced a loop into the active site of the psychrophilic citrate synthase, again mimicking the situation in the hyperthermophilic enzyme. Analysis of the thermoactivity and thermostability of the mutant enzymes reveals that cold activity is not significantly compromised by the mutations, but rather the affinity for one of the substrates, acetyl-CoA, is dramatically increased. Moreover, one mutant (Loop insertion/K313L/A361R) has an increased thermostability but a reduced temperature optimum for catalytic activity. This unexpected relationship between stability and activity is discussed with respect to the nature of the dependence of catalytic activity on temperature.  相似文献   

18.
The crystal structure of recombinant human triosephosphate isomerase (hTIM) has been determined complexed with the transition-state analogue 2-phosphoglycolate at a resolution of 2.8 A. After refinement, the R-factor is 16.7% with good geometry. The asymmetric unit contains 1 complete dimer of 53,000 Da, with only 1 of the subunits binding the inhibitor. The so-called flexible loop, comprising residues 168-174, is in its "closed" conformation in the subunit that binds the inhibitor, and in the "open" conformation in the other subunit. The tips of the loop in these 2 conformations differ up to 7 A in position. The RMS difference between hTIM and the enzyme of Trypanosoma brucei, the causative agent of sleeping sickness, is 1.12 A for 487 C alpha positions with 53% sequence identity. Significant sequence differences between the human and parasite enzymes occur at about 13 A from the phosphate binding site. The chicken and human enzymes have an RMS difference of 0.69 A for 484 equivalent residues and about 90% sequence identity. Complementary mutations ensure a great similarity in the packing of side chains in the core of the beta-barrels of these 2 enzymes. Three point mutations in hTIM have been correlated with severe genetic disorders ranging from hemolytic disorder to neuromuscular impairment. Knowledge of the structure of the human enzyme provides insight into the probable effect of 2 of these mutations, Glu 104 to Asp and Phe 240 to Ile, on the enzyme. The third mutation reported to be responsible for a genetic disorder, Gly 122 to Arg, is however difficult to explain. This residue is far away from both catalytic centers in the dimer, as well as from the dimer interface, and seems unlikely to affect stability or activity. Inspection of the 3-dimensional structure of trypanosomal triosephosphate isomerase, which has a methionine at position 122, only increased the mystery of the effects of the Gly to Arg mutation in the human enzyme.  相似文献   

19.
The availability of subtype-specific agonists and antagonists for somatostatin (SS) receptors (SSTRs) will be important for elucidation of the function of each receptor isoform in vivo. A SS analog, des-AA1,2,5-[D-Trp8, IAmp9]SS (CH275), has been shown previously to bind preferentially to SSTR1. In this report, we identify structural determinants in the ligand and receptor responsible for the selective binding of CH275 to SSTR1 by modifying both the ligand and the receptor. We propose that IAmp9 in CH275, like Lys9 in SS, interacts with Asp137 in the middle of the third transmembrane domain of SSTR1 to form an ion pair, while other residues unique to SSTR1 conbribute to binding selectivity of CH275 for SSTR1. Replacement of Asp137 with Asn resulted in loss of binding of radiolabeled SS and decreased potencies of both SS and CH275 to induce a change in the extracellular acidification rate measured by microphysiometry. The structural determinants for specific binding to SSTR1 were mapped in chimeric SSTR1/SSTR2 receptors. One chimera, 2beta, with the N-terminus to second transmembrane domain (TM2) from SSTR2 and the remainder of the receptor from SSTR1, had low affinity for CH275. Furthermore, when a single residue, Leu107, in TM2 of SSTR1 was replaced with Phe, the corresponding residue in SSTR2, a 20-fold decrease in affinity for CH275 with no significant change in affinity for SS was observed. A reciprocal change from Phe to Leu in the chimeric receptor 2beta resulted in a 10-fold increase in affinity for CH275. Thus, Leu107 is an important determinant for CH275 binding to SSTR1. To identify the moiety in CH275 which could interact with Leu107, a new analog des-AA1,2,5-[D-Trp8, Amp9]SS was prepared. This analog bound to both SSTR1 and SSTR2 with similar affinities; thus, subtype selectivity was lost. Collectively, these data support a binding model for CH275 in which the positively charged IAmp interacts with the negatively charged Asp137 in TM3 of SSTR1 and the isopropyl group of IAmp forms a hydrophobic interaction with Leu107 in TM2.  相似文献   

20.
The human Rad51 protein, a eukaryotic ortholog of the bacterial RecA protein, is a key enzyme that functions in homologous recombination and recombinational repair of double strand breaks. The Rad51 protein contains two flexible loops, L1 and L2, which are proposed to be sites for DNA binding, based on a structural comparison with RecA. In the present study, we performed mutational and fluorescent spectroscopic analyses on the L1 and L2 loops to examine their role in DNA binding. Gel retardation and DNA-dependent ATP hydrolysis measurements revealed that the substitution of the tyrosine residue at position 232 (Tyr232) within the L1 loop with alanine, a short side chain amino acid, significantly decreased the DNA-binding ability of human Rad51, without affecting the protein folding or the salt-induced, DNA-independent ATP hydrolysis. Even the conservative replacement with tryptophan affected the DNA binding, indicating that Tyr232 is involved in DNA binding. The importance of the L1 loop was confirmed by the fluorescence change of a tryptophan residue, replacing the Asp231, Ser233, or Gly236 residue, upon DNA binding. The alanine replacement of phenylalanine at position 279 (Phe279) within the L2 loop did not affect the DNA-binding ability of human Rad51, unlike the Phe203 mutation of the RecA L2 loop. The Phe279 side chain may not be directly involved in the interaction with DNA. However, the fluorescence intensity of the tryptophan replacing the Rad51-Phe279 residue was strongly reduced upon DNA binding, indicating that the L2 loop is also close to the DNA-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号