首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alpha satellite DNA is a family of tandemly repeated DNA found at the centromeres of all primate chromosomes. Different human chromosomes 17 in the population are characterized by distinct alpha satellite haplotypes, distinguished by the presence of variant repeat forms that have precise monomeric deletions. Pairwise comparisons of sequence diversity between variant repeat units from each haplotype show that they are closely related in sequence. Direct sequencing of PCR-amplified alpha satellite reveals heterogeneous positions between the repeat units on a chromosome as two bands at the same position on a sequencing ladder. No variation was detected in the sequence and location of these heterogeneous positions between chromosomes 17 from the same haplotype, but distinct patterns of variation were detected between chromosomes from different haplotypes. Subsequent sequence analysis of individual repeats from each haplotype confirmed the presence of extensive haplotype-specific sequence variation. Phylogenetic inference yielded a tree that suggests these chromosome 17 repeat units evolve principally along haplotypic lineages. These studies allow insight into the relative rates and/or timing of genetic turnover processes that lead to the homogenization of tandem DNA families. Correspondence to: H.F. Willard  相似文献   

2.
The pericentromeric region of the human X chromosome is characterized by a tandemly repeated family of 2.0 kilobasepair (kb) DNA fragments, initially revealed by cleavage of human DNA with the restriction enzyme BamHI. We report here the complete nucleotide sequence of a cloned member of the repeat family and establish that this X-linked DNA family consists entirely of alpha satellite DNA. Our data indicate that the 2.0 kb repeat consists of twelve alpha satellite monomers arranged in imperfect, direct repeats. Each of the alpha X monomers is approximately 171 basepairs (bp) in length and is 60-75% identical in sequence to previously described primate alpha satellite DNAs. The twelve alpha X monomers are 65-85% identical in sequence to each other and are organized as two adjacent, related blocks of five monomers, plus an additional two monomers also related to monomers within the pentamer blocks. Partial nucleotide sequence of a second, independent copy of the 2.0 kb BamHI fragment established that the 2.0 kb repeat is, in fact, the unit of amplification on the X. Comparison of the sequences of the twelve alpha X monomers allowed derivation of a 171 bp consensus sequence for alpha satellite DNA on the human X chromosome. These sequence data, combined with the results of filter hybridization experiments of total human DNA and X chromosome DNA, using subregions within the 2.0 kb repeat as probes, provide strong support for the hypothesis that individual human chromosomes are characterized by different alpha satellite families, defined both by restriction enzyme periodicity and by chromosome-specific primary sequence.  相似文献   

3.
The human alpha satellite DNA family is composed of diverse, tandemly reiterated monomer units of approximately 171 basepairs localized to the centromeric region of each chromosome. These sequences are organized in a highly chromosome-specific manner with many, if not all human chromosomes being characterized by individually distinct alphoid subsets. Here, we compare the nucleotide sequences of 153 monomer units, representing alphoid components of at least 12 different human chromosomes. Based on the analysis of sequence variation at each position within the 171 basepair monomer, we have derived a consensus sequence for the monomer unit of human alpha satellite DNA which we suggest may reflect the monomer sequence from which different chromosomal subsets have evolved. Sequence heterogeneity is evident at each position within the consensus monomer unit and there are no positions of strict nucleotide sequence conservation, although some regions are more variable than others. A substantial proportion of the overall sequence variation may be accounted for by nucleotide changes which are characteristic of monomer components of individual chromosomal subsets or groups of subsets which have a common evolutionary history.  相似文献   

4.
Tandemly repeated DNA can comprise several percent of total genomic DNA in complex organisms and, in some instances, may play a role in chromosome structure or function. Alpha satellite DNA is the major family of tandemly repeated DNA found at the centromeres of all human and primate chromosomes. Each centromere is characterized by a large contiguous array of up to several thousand kb which can contain several thousand highly homogeneous repeat units. By using a novel application of the polymerase chain reaction (repPCR), we are able to amplify a representative sampling of multiple repetitive units simultaneously, allowing rapid analysis of chromosomal subsets. Direct sequence analysis of repPCR amplified alpha satellite from chromosomes 17 and X reveals positions of sequence heterogeneity as two bands at a single nucleotide position on a sequencing ladder. The use of TdT in the sequencing reactions greatly reduces the background associated with polymerase pauses and stops, allowing visualization of heterogeneous bases found in as little as 10% of the repeat units. Confirmation of these heterogeneous positions was obtained by comparison to the sequence of multiple individual cloned copies obtained both by PCR and non-PCR based methods. PCR amplification of alpha satellite can also reveal multiple repeat units which differ in size. Analysis of repPCR products from chromosome 17 and X allows rapid determination of the molecular basis of these repeat unit length variants, which appear to be a result of unequal crossing-over. The application of repPCR to the study of tandemly repeated DNA should allow in-depth analysis of intra- and interchromosomal variation and unequal crossing-over, thus providing insight into the biology and genetics of these large families of DNA.  相似文献   

5.
Lee C  Critcher R  Zhang JG  Mills W  Farr CJ 《Chromosoma》2000,109(6):381-389
The bulk of the DNA found at human centromeres is composed of tandemly arranged repeats, the most abundant of which is alpha satellite. Other human centromeric repetitive families have been identified, one of the more recent being gamma satellite. To date, gamma satellite DNAs have been reported at the centromeres of human chromosomes 8 and X. Here, we show that gamma-X satellite DNA is not interspersed with the major DZX1 alpha-X block, but rather is organised as a single array of approximately 40-50 kb on the short-arm side of the alpha satellite domain. This repeat array is absent on two mitotically stable Xq isochromosomes. Furthermore, a related repeat DNA has been identified on the human Y chromosome. Fluorescence in situ hybridisation has localised this satellite DNA to the long arm side of the major DYZ3 alpha-Y domain, outside the region previously defined as that required for mitotic centromere function. Together, these data suggest that while blocks of highly related gamma satellite DNAs are present in the pericentromeric regions of both human sex chromosomes, this repeated DNA is not required for mitotic centromere function.  相似文献   

6.
To understand evolutionary events in the formation of higher-order repeat units in alpha satellite DNA, we have examined gorilla sequences homologous to human X chromosome alpha satellite. In humans, alpha satellite on the X chromosome is organized as a tandemly repeated, 2.0 x 10(3) base-pairs (bp) higher-order repeat unit, operationally defined by the restriction enzyme BamHI. Each higher-order repeat unit is composed of 12 tandem approximately 171 base-pair monomer units that have been classified into five distinct sequence homology groups. BamHI-digested gorilla genomic DNA hybridized with the cloned human 2 x 10(3) bp X alpha satellite repeat reveals three bands of sizes approximately 3.2 x 10(3), 2.7 x 10(3) and 2 x 10(3) bp. Multiple copies of all three repeat lengths have been isolated and mapped to the centromeric region of the gorilla X chromosome by fluorescence in situ hybridization. Long-range restriction mapping using pulsed-field gel electrophoresis shows that the 2.7 x 10(3) and 3.2 x 10(3) bp repeat arrays exist as separate but likely neighboring arrays on the gorilla X, each ranging in size from approximately 200 x 10(3) to 500 x 10(3) bp, considerably smaller than the approximately 2000 x 10(3) to 4000 x 10(3) bp array found on human X chromosomes. Nucleotide sequence analysis has revealed that monomers within all three gorilla repeat units can be classified into the same five sequence homology groups as monomers located within the higher-order repeat unit on the human X chromosome, suggesting that the formation of the five distinct monomer types predates the divergence of the lineages of contemporary humans and gorillas. The order of 12 monomers within the 2 x 10(3) and 2.7 x 10(3) bp repeat units from the gorilla X chromosome is identical with that of the 2 x 10(3) bp repeat unit from the human X chromosome, suggesting an ancestral linear arrangement and supporting hypotheses about events largely restricted to single chromosome types in the formation of alpha satellite higher-order repeat units.  相似文献   

7.
In an attempt to combine a cloned genomic copy of a selectable gene with different cloned centromeric sequences to develop mammalian artificial chromosomes (MAC) we used site specific recombination mediated by purified Cre recombinase acting on the loxP sequence in PAC vector DNA. A new method was required to purify highly concentrated, virtually 100% intact PAC DNA which could be stored for a long period. Here we show the efficient linking of linearized PACs containing alpha satellite DNA from chromosomes X and 17 with sizes of 125 and 140 kb, respectively, to a 95 kb restriction fragment derived from a 175 kb PAC containing the intact human HPRT gene locus.  相似文献   

8.
Chromosome-specific organization of human alpha satellite DNA   总被引:23,自引:3,他引:20       下载免费PDF全文
Restriction endonuclease analysis of human genomic DNA has previously revealed several prominent repeated DNA families defined by regularly spaced enzyme recognition sites. One of these families, termed alpha satellite DNA, was originally identified as tandemly repeated 340- or 680-base pair (bp) EcoRI fragments that hybridize to the centromeric regions of human chromosomes. We have investigated the molecular organization of alpha satellite DNA on individual human chromosomes by filter hybridization and in situ hybridization analysis of human DNA and DNA from rodent/human somatic cell hybrids, each containing only a single human chromosome. We used as probes a cloned 340-bp EcoRI alpha satellite fragment and a cloned alpha satellite-containing 2.0-kilobase pair (kbp) BamHI fragment from the pericentromeric region of the human X chromosome. In each somatic cell hybrid DNA, the two probes hybridized to a distinct subset of DNA fragments detected in total human genomic DNA. Thus, alpha satellite DNA on each of the human chromosomes examined--the X and Y chromosomes and autosomes 3, 4, and 21--is organized in a specific and limited number of molecular domains. The data indicate that subsets of alpha satellite DNA on individual chromosomes differ from one another, both with respect to restriction enzyme periodicities and with respect to their degree of sequence relatedness. The results suggest that some, and perhaps many, human chromosomes are characterized by a specific organization of alpha satellite DNA at their centromeres and that, under appropriate experimental conditions, cloned representatives of alpha satellite subfamilies may serve as a new class of chromosome-specific DNA markers.  相似文献   

9.
The timing of replication of centromere-associated human alpha satellite DNA from chromosomes X, 17, and 7 as well as of human telomeric sequences was determined by using density-labeling methods and fluorescence-activated cell sorting. Alpha satellite sequences replicated late in S phase; however, the alpha satellite sequences of the three chromosomes studied replicated at slightly different times. Human telomeres were found to replicate throughout most of S phase. These results are consistent with a model in which multiple initiations of replication occur at a characteristic time within the alpha satellite repeats of a particular chromosome, while the replication timing of telomeric sequences is determined by either telomeric origins that can initiate at different times during S phase or by replication origins within the flanking chromosomal DNA sequences.  相似文献   

10.
The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.  相似文献   

11.
The centromeric regions of human chromosomes contain long tracts of tandemly repeated DNA, of which the most extensively characterized is alpha satellite. In a screen for additional centromeric DNA sequences, four phage clones were obtained which contain alpha satellite as well as other sequences not usually found associated with tandemly repeated alpha satellite DNA, including L1 repetitive elements, an Alu element, and a novel AT-rich repeated sequence. The alpha satellite DNA contained within these clones does not demonstrate the higher-order repeat structure typical of tandemly repeated alpha satellite. Two of the clones contain inversions; instead of the usual head-to-tail arrangement of alpha satellite monomers, the direction of the monomers changes partway through each clone. The presence of both inversions was confirmed in human genomic DNA by polymerase chain reaction amplification of the inverted regions. One phage clone contains a junction between alpha satellite DNA and a novel low-copy repeated sequence. The junction between the two types of DNA is abrupt and the junction sequence is characterized by the presence of runs of A's and T's, yielding an overall base composition of 65% AT with local areas > 80% AT. The AT-rich sequence is found in multiple copies on chromosome 7 and homologous sequences are found in (peri)centromeric locations on other human chromosomes, including chromosomes 1, 2, and 16. As such, the AT-rich sequence adjacent to alpha satellite DNA provides a tool for the further study of the DNA from this region of the chromosome. The phage clones examined are located within the same 3.3-Mb SstII restriction fragment on chromosome 7 as the two previously described alpha satellite arrays, D7Z1 and D7Z2. These new clones demonstrate that centromeric repetitive DNA, at least on chromosome 7, may be more heterogeneous in composition and organization than had previously been thought.  相似文献   

12.
M Gomez-Pedrozo  W S Hu    C K Shen 《Nucleic acids research》1988,16(23):11237-11247
Human alpha-thalassemia-2 genotype -alpha 4.2 is the result of meiotic recombination between two 1.3 kb long, homologous DNA segments, X(alpha 2) and X(alpha 1), located in the adult alpha globin locus. The two segments can also undergo intramolecular recombination on extrachromosomal vectors transfected into mitotically dividing primate cells (COS 7). The existence of a gradient of sequence divergence between X(alpha 2) and X(alpha 1) makes them an interesting system to study the relationship between efficiencies of homologous DNA recombination and the extent of dispersed and localized base mismatches. By partial restriction mapping and DNA sequencing of plasmids recombined in COS 7 cells and rescued from bacteria HB 101, we have determined the distribution of recombinational resolution sites along the two X blocks. Most, if not all, of the homologous recombination events between the two X blocks appear to be single crossing-over without efficient gene correction or repair of base mismatches. The distribution of the sites of recombinational resolution is inversely correlated with that of the gradient of sequence divergence, with only approximately 7% of the X recombinants resolved within the 3' third of the X blocks where two diverged Alu family repeats reside. The Alu sequence within which one of the X recombinants resolved is homologous to a previously characterized alpha thalassemia deletion point.  相似文献   

13.
Summary Using Southern and in situ hybridization analyses, we have earlier defined four different subfamilies of alpha satellite DNA (designated pTRA-1, -2, -4, and -7), each of which has a unique higher order structure represented almost identically on human chromosomes 13, 14, and 21. Here we present the complete sequence of single isolates of these four subfamilies, representing approximately 12 kb of sequence information. Sequences of the individual 171-bp monomers that constitute these four subfamilies (and a fifth subfamily, Alpha-R1, that is known to be present on chromosomes 13 and 21) were compared both within and between the different clones. The results indicate that, at the level of their primary sequence, the five alpha subfamilies are characterized by structures that are as unrelated to each other as the different alpha subfamilies from other chromosomes. However, sequence comparisons between monomers of these clones indicate the possibility that pTRA-2, -4, and-1 may have arisen, at least in part, from a common ancestral alphoid sequence. We also provide evidence that exchange of pTRA-1 between nonhomologous centromeres and its homogenization throughout the population, perhaps by unequal exchange mechanisms, could have occurred after the divergence of humans and chimpanzees. The evolution of multiple alphoid subfamilies within a single centromere suggests that unequal exchange mechanisms may be restricted to specific domains. This may in turn contribute to some requirement for subregional pairing of sequences along the length of the centromeres of these chromosomes. Offprint requests to: K.H.A. Choo  相似文献   

14.
Amplification of monomer sequences into long contiguous arrays is the main feature distinguishing satellite DNA from other tandem repeats, yet it is also the main obstacle in its investigation because these arrays are in principle difficult to assemble. Here we explore an alternative, assembly‐free approach that utilizes ultra‐long Oxford Nanopore reads to infer the length distribution of satellite repeat arrays, their association with other repeats and the prevailing sequence periodicities. Using the satellite DNA‐rich legume plant Lathyrus sativus as a model, we demonstrated this approach by analyzing 11 major satellite repeats using a set of nanopore reads ranging from 30 to over 200 kb in length and representing 0.73× genome coverage. We found surprising differences between the analyzed repeats because only two of them were predominantly organized in long arrays typical for satellite DNA. The remaining nine satellites were found to be derived from short tandem arrays located within LTR‐retrotransposons that occasionally expanded in length. While the corresponding LTR‐retrotransposons were dispersed across the genome, this array expansion occurred mainly in the primary constrictions of the L. sativus chromosomes, which suggests that these genome regions are favourable for satellite DNA accumulation.  相似文献   

15.
Wide arrays of repetitive DNA sequences form an important part of eukaryotic genomes. These repeats appear to evolve as coherent families, where repeats within a family are more similar to each other than to other orthologous representatives in related species. The continuous homogenization of repeats, through selective and non-selective processes, is termed concerted evolution. Ascertaining the level of variation between repeats is crucial to determining which evolutionary model best explains the homogenization observed for these sequences. Here, for the grasshopper Eyprepocnemis plorans, we present the analysis of intragenomic diversity for two repetitive DNA sequences (a satellite DNA (satDNA) and the 45S rDNA) resulting from the independent microdissection of several chromosomes. Our results show different homogenization patterns for these two kinds of paralogous DNA sequences, with a high between-chromosome structure for rDNA but no structure at all for the satDNA. This difference is puzzling, considering the adjacent localization of the two repetitive DNAs on paracentromeric regions in most chromosomes. The disparate homogenization patterns detected for these two repetitive DNA sequences suggest that several processes participate in the concerted evolution in E. plorans, and that these mechanisms might not work as genome-wide processes but rather as sequence-specific ones.  相似文献   

16.
A complete understanding of chromosomal disjunction during mitosis and meiosis in complex genomes such as the human genome awaits detailed characterization of both the molecular structure and genetic behavior of the centromeric regions of chromosomes. Such analyses in turn require knowledge of the organization and nature of DNA sequences associated with centromeres. The most prominent class of centromeric DNA sequences in the human genome is the alpha satellite family of tandemly repeated DNA, which is organized as distinct chromosomal subsets. Each subset is characterized by a particular multimeric higher-order repeat unit consisting of tandemly reiterated, diverged alpha satellite monomers of approximately 171 base pairs. The higher-order repeat units are themselves tandemly reiterated and represent the most recently amplified or fixed alphoid sequences. We present evidence that there are at least two independent domains of alpha satellite DNA on chromosome 7, each characterized by their own distinct higher-order repeat structure. We determined the complete nucleotide sequences of a 6-monomer higher-order repeat unit, which is present in approximately 500 copies per chromosome 7, as well as those of a less-abundant (approximately 10 copies) 16-monomer higher-order repeat unit. Sequence analysis indicated that these repeats are evolutionarily distinct. Genomic hybridization experiments established that each is maintained in relatively homogeneous tandem arrays with no detectable interspersion. We propose mechanisms by which multiple unrelated higher-order repeat domains may be formed and maintained within a single chromosomal subset.  相似文献   

17.
Alpha satellite domains that currently function as centromeres of human chromosomes are flanked by layers of older alpha satellite, thought to contain dead centromeres of primate progenitors, which lost their function and the ability to homogenize satellite repeats, upon appearance of a new centromere. Using cladistic analysis of alpha satellite monomers, we elucidated complete layer patterns on chromosomes 8, 17, and X and related them to each other and to primate alpha satellites. We show that discrete and chronologically ordered alpha satellite layers are partially symmetrical around an active centromere and their succession is partially shared in non-homologous chromosomes. The layer structure forms a visual representation of the human evolutionary lineage with layers corresponding to ancestors of living primates and to entirely fossil taxa. Surprisingly, phylogenetic comparisons suggest that alpha satellite arrays went through periods of unusual hypermutability after they became “dead” centromeres. The layer structure supports a model of centromere evolution where new variants of a satellite repeat expanded periodically in the genome by rounds of inter-chromosomal transfer/amplification. Each wave of expansion covered all or many chromosomes and corresponded to a new primate taxon. Complete elucidation of the alpha satellite phylogenetic record would give a unique opportunity to number and locate the positions of major extinct taxa in relation to human ancestors shared with extant primates. If applicable to other satellites in non-primate taxa, analysis of centromeric layers could become an invaluable tool for phylogenetic studies.  相似文献   

18.
Tek AL  Song J  Macas J  Jiang J 《Genetics》2005,171(3):1231-1238
Highly repetitive satellite DNA sequences are main components of heterochromatin in higher eukaryotic genomes. It is well known that satellite repeats can expand and contract dramatically, which may result in significant genome size variation among genetically related species. The origin of satellite repeats, however, is elusive. Here we report a satellite repeat, Sobo, from a diploid potato species, Solanum bulbocastanum. The Sobo repeat is mapped to a single location in the pericentromeric region of chromosome 7. This single Sobo locus spans approximately 360 kb of a 4.7-kb monomer. Sequence analysis revealed that the major part of the Sobo monomer shares significant sequence similarity with the long terminal repeats (LTRs) of a retrotransposon. The Sobo repeat was not detected in other Solanum species and is absent in some S. bulbocastanum accessions. Sobo monomers are highly homogenized and share >99% sequence identity. These results suggest that the Sobo repeat is a recently emerged satellite and possibly originated by a sudden amplification of a genomic region including the LTR of a retrotransposon and its flanking genomic sequences.  相似文献   

19.
Houtchens K  Lyttle TW 《Genetica》2003,117(2-3):291-302
In D. melanogaster males carrying Segregation Distorter (SD) second chromosomes, sperm receiving sensitive alleles of the Responder (Rsp) locus are subject to high rates of dysfunction. The Rsp region is located in 2R immediately adjacent to the centromere in heterochromatic band 39, and covers roughly 600 kb of material, of which approximately 85 kb is comprised of several hundred copies of a 240-bp satellite DNA sequence. Cytological observations as well as molecular analysis of rearrangements which bisect h39 indicate that sensitivity of the Rsp target to SD action is also subdivisible, and sensitivities of the component pieces appear to be correlated with copy number of the 240 bp repeat. In an attempt to examine possible higher order sequence structure for these blocks, PCR using single primers derived from a canonical repeat was used to identify potential reversals of direction of tandem arrays; that is, head-to-head or tail-to-tail junctions. Surprisingly, for two different Rsp alleles, only a single such reversal product for each was identified, differing in size and sequence between alleles. Sequencing of PCR products identified diverged copies of the canonical repeats that would not have been found using the levels of DNA stringency employed in earlier studies. Examination of Southern digests and slot-blots for DNA quantification indicates that adding the estimated numbers of such diverged copies to the canonical repeat copies discovered earlier is potentially sufficient to account for the entire 600 kb Rsp region. This adds strength to the hypothesis that this extended family of repeats is in fact the target of SD-mediated sperm dysfunction. Implications of these results for understanding the evolution of repetitive DNA are also discussed.  相似文献   

20.
P K Wellauer  I B Dawid  K D Tartof 《Cell》1978,14(2):269-278
In Drosophila melanogaster, the genes coding for 18S and 28S ribosomal RNA (rDNA) are clustered at one locus each on the X and the Y chromosomes. We have compared the structure of rDNA at the two loci. The 18S and 28S rRNAs coded by the X and Y chromosomes are very similar and probably identical (Maden and Tartof, 1974). In D. melanogaster, many rDNA repeating units are interrupted in the 28S RNA sequence by a DNA region called the insertion. There are at least two sequence types of insertions. Type 1 insertions include the most abundant 5 kilobase (kb) class and homologous small (0.5 and 1 kb) insertions. Most insertions between 1.5 and 4 kb have no homology to the 5 kb class and are identified as type 2 insertions. In X rDNA, about 49% of all rDNA repeats have type 1 insertions, and another 16% have type 2 insertions. On the Y chromosome, only 16% of all rDNA repeats are interrupted, and most if not all insertions are of type 2.rDNA fragments derived from the X and Y chromosomes have been cloned in E. coli. The homology between the nontranscribed spacers in X and Y rDNA was studied with cloned fragments. Stable heteroduplexes were found which showed that these regions on the two chromosomes are very similar.The evolution of rDNA in D. melanogaster might involve genetic exchange between the X and Y chromosomal clusters with restrictions on the movement of type 1 insertions to the Y chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号