首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Plasmolytic disruption of plasmodesmata interconnecting metaphloemsieve element-companion cell complexes with small and largephloem parenchyma cells in the elongating region of internode2 ofPhaseolus vulgarisL. seedlings did not affect accumulationof phloem-imported14C-photosynthates and86rubidium. The membrane-impermeantdye, 5(6) carboxyfluorescein, loaded into leaf phloem as themembrane-permeant diacetate ester, was found not to move radiallyout of the importing sieve elements in the internode elongationregion. In contrast, the apoplasmic tracer, Calcuofluor White,rapidly moved laterally throughout all tissues of the elongationzone. Hexoses, sucrose and potassium were identified as themain osmotica in internode apoplasmic sap. Label asymmetry in[14C](fructosyl)sucrose was retained on accumulation by excisedstem segments. Uptake of [14C]sucrose and86rubidium by stemsegments exhibited saturation kinetics. Sucrose uptake was inhibitedby the slowly penetrating sulphydryl reagent, para-chloromercuribenzenesulphonicacid.In vitrorates of sucrose uptake, at apoplasmic concentrations,corresponded to its predictedin vivorate of delivery to thestem ground tissues from mature sieve elements when respiratorylosses were assumed to be confined to the stem phloem. For potassium,the total delivery rate could be accounted for by itsin vitrorateof uptake. Overall, it was concluded that radial transport,in the elongation zone of internode 2 ofPhaseolus vulgarisL.seedlings, follows an apoplasmic route from mature sieve elementsto stem ground tissues.Copyright 1998 Annals of Botany Company PhaseoluLes vulgaris, apoplasm, elongating stem, French bean, photosynthates, potassium, radial transfer, symplasm.  相似文献   

2.
Based on an uniform elongation growth pattern and cellular structure,the apical 0·5-2·5 cm elongation zone of internode2 of Phaseolus vulgaris L. seedlings was selected as an experimentalsystem to study the radial pathway of photosynthate and potassiumtransfer from the phloem. An histological examination of thephloem within the elongation zone of internode 2 showed thatboth proto- and meta- phloem sieve elements were present. Theformer were fully differentiated at the commencement of elongationand became crushed as elongation proceeded. In contrast, about50% of the final number of metaphloem sieve element-companioncell complexes differentiated during the same period. The phloemdelivered some 99% of the sucrose and 72-82% of the potassiumaccumulated by the elongation zone. Solute budgets showed that,of the photosynthates and potassium entering the elongationzone, approximately 40% were retained and 60% transferred tothe shoot apex. Thus, the elongating stem acts not only as asignificant sink for photosynthates and potassium, but alsoas an axial phloem transport system to supply the shoot apex.Within the elongation zone, the principal tissue sinks weredetermined by the cellular localisation of [14C] photosynthatesand potassium by microautoradiography and ion electron microprobeanalysis respectively. About 80% of the photosynthates and potassiumwere located outside the phloem. The cortex and pith exhibitedthe greatest accumulation for photosynthates and the pith forpotassium.Copyright 1994, 1999 Academic Press Phaseolus vulgaris, elongating stem, French bean, photosynthates, potassium, radial transfer, stem anatomy, transport  相似文献   

3.
At an early stage of secondary development, the metaphloem sieveelements appeared to be the only functional axial transportconduit in fully elongated stems of P. vulgaris plants. Thereis no apparent barrier to the radial transfer of solutes inthe stem apoplast. However, radial transfer through the stemsymplast could be limited by discontinuities resulting fromprotoplast degeneration of the protophloem fibres and developingsecondary xylem fibres. Estimates of possible sucrose fluxesthrough the apoplastic and symplastic routes indicated thatradial photosynthate transfer from the sieve element-companioncell (se-cc) complexes of the stem metaphloem could follow eithercellular route. In the case of apoplastic transfer, the plasmamembrane surface area of the se-cc complexes is only sufficientto support some form of facilitated movement of sucrose. Incontrast, the plasma membrane surface area of the phloem parenchymais sufficient to permit passive diffusion of sucrose to theapoplast. Plasmodesmatal frequencies suggest that any symplastictransfer to the phloem parenchyma from the sieve elements wouldbe via the companion cells. Phaseolus vulgaris, french bean, stem, photosynthate, radial transfer (photosynthates), cellular pathway  相似文献   

4.
Further evidence that sucrose is passively leaked from the sievetubes directly into the apoplast of bean stems and activelyreloaded is reported. The stem apoplast is identified as thepool of sucrose outside the sieve tubes which buffers againstsudden changes in sieve tube sucrose concentration, caused bysudden changes in sink demand or source supply. Key words: Sucrose transport, Phaseolus vulgaris, Apoplast, Phloem unloading  相似文献   

5.
The in vivo significance of turgor-dependent unloading was evaluated by examining assimilate transport to and within intact developing seeds of Phaseolus vulgaris (cv. Redland Pioneer) and Vicia faba (cv. Coles Prolific). The osmotic potentials of the seed apoplast were low. As a result, the osmotic gradients to the seed coat symplast were relatively small (i.e. 0.1 to 0.3 MPa). Sap concentrations of sucrose and potassium in the seed apoplast and coat symplast accounted for some 45 to 60% of the osmotic potentials of these compartments. Estimated turnover times of potassium and sucrose in the seed apoplast of < 1 h were some 5 to 13 times faster than the respective turnover times in the coat symplast pools. The small osmotic gradient between the seed apoplast and coat symplast combined with the relatively rapid turnover of solutes in the apoplast pool, confers the potential for a small change in assimilate uptake by the cotyledons to be rapidly translated into an amplified shift in the cell turgor of the seed coat. Observed adjustments in the osmotic potentials of solutions infused between the coat and cotyledons of intact seed were consistent with the in vivo operation of turgor-dependent unloading of solutes from the coat. Homeostatic regulation of turgor-dependent unloading was indicated by the maintenance of apoplast osmotic potentials of intact seeds when assimilate balance was manipulated by partial defoliation or elevating pod temperature. In contrast, osmotic potentials of the coat symplast adjusted upward to new steady values over a 2 to 4 h period. The resultant downward shift in coat cell turgor could serve to integrate phloem import into the seed coat with the new rates of efflux to the seed apoplast. Circumstantial evidence for this linkage was suggested by the approximate coincidence of the turgor changes with those in stem levels of 32P used to monitor phloem transport. The results obtained provide qualified support for the in vivo operation of a turgor homeostat mechanism. It is proposed that the homeostat functions to integrate assimilate demand by the cotyledons with efflux from and phloem import into the coats of developing legume seed.  相似文献   

6.
[14C]Sucrose was found to be the predominant component of the14C-photosynthates that accumulated in the free space of decapitatedstems of P. vulgaris plants. The 14C-photosynthates appearedto occupy the entire free-space volume of the stems at totalsugar concentrations in the range of 3–12 mM. The free-spacesugar levels were found to rapidly decline once photosynthatetransfer to the stems was halted. Moreover, it was found thatestimates of the rate of in vitro sucrose uptake by the stemscould account fully for the decline in free-space sugar levels.Overall, the evidence indicated that at least part of the radialpathway of photosynthate transfer in bean stems involved thestem apoplast. It is tentatively proposed that, based on celland tissue distribution of 14C-photosynthates, the apoplasticpathway extends from the membrane boundary of the sieve element/companion-cellcomplex to all other cells of the stem. Apoplast, Phaseolus vulgaris L., bean, phloem unloading, photosynthates, symplast  相似文献   

7.
为了探讨灵武长枣果实光合同化物韧皮部卸载和运输的途径,该研究采用透射电镜技术,对不同发育时期灵武长枣果实维管束韧皮部及其周围薄壁细胞的超微结构特征进行了分析.结果表明:筛管/伴胞复合体及其周围韧皮薄壁细胞间在果实膨大前期富含胞间连丝,而韧皮薄壁细胞与周围库细胞以及相邻库细胞间几乎不存在胞间连丝,形成共质体隔离;筛管/伴...  相似文献   

8.
Photosynthate movement within the coat of the developing seedof Vicia faba occurs radially inward from the restricted vascularsystem and laterally through the non-vascularized region ofthe seed coat prior to exchange to the seed apoplast. Thin-walledparenchyma/transfer cells line the entire inner surface of theseed coat and thus are located at the terminus of the photosynthatetransfer pathway. The principal cellular route of transfer withinthe seed coat and the role of the thin-walled parenchyma/transfercells in membrane exchange to the seed apoplast has been investigated.Sucrose fluxes, computed from estimates of the plasma membranesurface areas of the cell types of the pathway, the plasmodesmatalcross-sectional areas interconnecting contiguous cells and theobserved rate of sucrose delivery to the embryo indicate thatsieve element unloading and subsequent transfer to the thin-walledparenchyma/transfer cells is through the symplast. For the cellsof the ground tissue, plasmodesmatal density is consistentlyhigher on their anticlinal walls. This observation supportsthe reported pattern of lateral transfer through these tissuesin the non-vascular regions of the seed coat. Wall ingrowthsare initiated sequentially in the thin-walled parenchyma cellsto maintain 1–3 rows of thin-walled parenchyma/transfercells. The development of these wall ingrowths results in a58% increase in the plasma membrane surface area of these cellsand provides them with the capacity to act as the principalcellular site for membrane exchange of sucrose to the seed apoplast.This cellular route of symplastic transfer from the sieve elementsto the ground tissues where membrane exchange to the seed apoplastoccurs is consistent with that reported for Phaseolus vulgaris Key words: Cellular pathway, photosynthate transfer, transfer cell, Vicia seed coat  相似文献   

9.
Cellular plasmolysis with l M solutions of mannitol appearedto sever plasmodesmatal interconnections between all cells ofthe stems of Phaseolus vulgaris plants except the sieve element-companioncell (se—cc) complexes. Phloem loading and uptake of [14C]sucroseby the storage cells of the stems was unimpaired by cellularplasmolysis followed by rehydration of the stem tissues. Accumulationof phloem-transported 14C-photosynthates of the treated stemswas inhibited in summer-grown plants and unaffected in winter-grownplants indicating that phloem unloading follows a symplasticand a free-space route respectively depending on growth season.At a concentration that did not interfere with cellular metabolism,p-chloromercuribenzene sulphonic acid (PCMBS) applied to thestems blocked [14C]sucrose loading into the phloem and storagecells of the stem, but had no effect on the pool size of free-spacesugars. This latter response is consistent with a facilitatedmechanism of sugar unloading to the stem free-space. Accumulationof phloem-transported 14C-photosynthates was stimulated by PCMBSand this effect was most pronounced in winter-grown plants.Cellular plasmolysis followed by rehydration abolished the PCMBSaction on 14C-photosynthate accumulation. This effect is consistentwith a PCMBS induction of phloem unloading through the stemsymplast. It is proposed that phloem unloading in bean stemsmay follow either a free-space or symplastic route and thatthe latter route is entrained under sink-limited conditions. Phaseolus vulgaris, french bean, stem, phioem unloading, free-space, symplast  相似文献   

10.
In the developing wheat grain, photosynthate is transferred longitudinally along the crease phloem and then laterally into the endosperm cavity through the crease vascular parenchyma, pigment strand and nucellar projection. In order to clarify this cellular pathway of photosynthate unloading, and hence the controlling mechanism of grain filling, the potential for symplastic and apoplastic transfer was examined through structural and histochemical studies on these tissue types. It was found that cells in the crease region from the phloem to the nucellar projection are interconnected by numerous plasmodesmata and have dense cytoplasm with abundant mitochondria. Histochemical studies confirmed that, at the stage of grain development studied, an apoplastic barrier exists in the cell walls of the pigment strand. This barrier is composed of lignin, phenolics and suberin. The potential capacity for symplastic transfer, determined by measuring plasmodesmatal frequencies and computing potential sucrose fluxes through these plasmodesmata, indicated that there is sufficient plasmodesmatal cross-sectional area to support symplastic unloading of photosynthate at the rate required for normal grain growth. The potential capacity for membrane transport of sucrose to the apoplast was assessed by measuring plasma membrane surface areas of the various cell types and computing potential plasma membrane fluxes of sucrose. These fluxes indicated that the combined plasma membrane surface areas of the sieve element–companion cell (se–cc) complexes, vascular parenchyma and pigment strand are not sufficient to allow sucrose transfer to the apoplast at the observed rates. In contrast, the wall ingrowths of the transfer cells in the nucellar projection amplify the membrane surface area up to 22-fold, supporting the observed rates of sucrose transfer into the endosperm cavity. We conclude that photosynthate moves via the symplast from the se–cc complexes to the nucellar projection transfer cells, from where it is transferred across the plasma membrane into the endosperm cavity. The apoplastic barrier in the pigment strand is considered to restrict solute movement to the symplast and block apoplastic solute exchange between maternal and embryonic tissues. The implications of this cellular pathway in relation to the control of photosynthate transfer in the developing grain are discussed.  相似文献   

11.
应用透射电镜技术研究了宁夏枸杞果实韧皮部细胞的超微结构变化。结果表明:(1)随着枸杞果实的发育成熟,果实维管组织中的韧皮部筛分子筛域逐渐变宽,筛孔大而多,通过筛孔的物质运输十分活跃;筛分子和伴胞间有胞间连丝联系,伴胞属传递细胞类型,与其相邻韧皮薄壁细胞和果肉薄壁细胞连接处的细胞界面发生质膜内突,整个筛分子/伴胞复合体与韧皮薄壁细胞之间形成共质体隔离,韧皮部糖分的卸载方式主要以质外体途径进行。(2)韧皮薄壁细胞间的胞间连丝较多,而韧皮薄壁细胞与果肉薄壁细胞的胞间连丝相对较少,但果肉薄壁细胞间几乎无胞间连丝;果肉薄壁细胞之间胞间隙较大,细胞壁和质膜内突间形成较大的质外体空间,为质外体的糖分运输创造了条件。(3)筛管、伴胞、韧皮薄壁细胞和果肉薄壁细胞中丰富的囊泡以及活跃的囊泡运输现象,暗示囊泡也参与了果实糖分的运输过程。研究推测,枸杞果实韧皮部同化物的卸载方式以及卸载后的同化物运输主要以质外体途径为主。  相似文献   

12.
In minor veins of leaves of Beta vulgaris L. (sugar beet) yellows virus particles were found both in parenchyma cells and in mature sieve elements. In parenchyma cells the particles were usually confined to the cytoplasm, that is, they were absent from the vacuoles. In the sieve elements, which at maturity have no vacuoles, the particles were scattered throughout the cell. In dense aggregations the particles tended to assume an orderly arrangement in both parenchyma cells and sieve elements. Most of the sieve elements containing virus particles had mitochondria, plastids, endoplasmic reticulum, and plasma membrane normal for mature sieve elements. Some sieve elements, however, showed evidence of degeneration. Virus particles were present also in the pores of the sieve plates, the plasmodesmata connecting the sieve elements with parenchyma cells, and the plasmodesmata between parenchyma cells. The distribution of the virus particles in the phloem of Beta is compatible with the concept that plant viruses move through the phloem in the sieve tubes and that this movement is a passive transport by mass flow. The observations also indicate that the beet yellows virus moves from cell to cell and in the sieve tube in the form of complete particles, and that this movement may occur through sieve-plate pores in the sieve tube and through plasmodesmata elsewhere.  相似文献   

13.
The ultrastructure of minor veins of Beta vulgaris was examined with reference to possible models for vein loading of translocate. Structural evidence was reviewed in the light of recent physiological observations as a basis for proposed mechanisms. Features which appeared to be of significance in formulating a model included the open, differentiated sieve plates, the predominance of organelle-rich parenchyma cells, and the branched plasmodesmata connecting sieve tubes and parenchyma cells. The resulting model views cell to cell movement of photosynthate via the symplast to the specialized parenchyma cells. The actively accumulated sucrose appears to move from the specialized parenchyma cells into the sieve tubes via plasmodesmata in the lateral and end walls.  相似文献   

14.
MURPHY  RICARDO 《Annals of botany》1989,63(5):571-579
In the present paper, the theory developed in Part I of thisseries is applied to seed coats of Phaseolus vulgaris and somecombined data on root tips of Hordeum distichum and Hordeumvulgare. Because of the large back-pressures implied, it isconcluded that phloem transport into these primary sinks wouldbe physiologically impossible in the absence of a symplasticpathway for the unloading of water from sieve elements. In thiscase, unloading of water and sucrose will occur predominantlyas a pressure-driven flow of solution through plasmodesmata,although diffusion can contribute significantly to the plasmodesmatalsucrose flux. At least 20% of the plasmodesmata connecting sieveelements and adjacent cells must be unobstructed if large changesin turgor and osmotic pressure are to be avoided. Dependingon the membrane area available for water fluxes, it is possiblethat the difference in water potential across the sieve-tubeplasmalemma can lead to significant errors when axial turgorgradients are estimated from gradients of osmotic pressure andexternal water potential. The magnitude and even the sign ofthese errors is uncertain, but it is possible that sieve-tubeturgor pressures will be significantly underestimated in primarysinks Phloem, turgor, osmotic pressure, plasmodesmata, Munch hypothesis, Phloem unloading  相似文献   

15.
Coupling of Solute Transport and Cell Expansion in Pea Stems   总被引:5,自引:3,他引:2       下载免费PDF全文
As cells expand and are displaced through the elongation zone of the epicotyl of etiolated pea (Pisum sativum L. var Alaska) seedlings, there is little net dilution of the cell sap, implying a coordination between cell expansion and solute uptake from the phloem. Using [14C]sucrose as a phloem tracer (applied to the hypogeous cotyledons), the pattern of label accumulation along the stem closely matched the growth rate pattern: high accumulation in the growing zone, little accumulation in nongrowing regions. Several results suggest that a major portion of phloem contents enters elongating cells through the symplast. We propose that the coordination between phloem transport and cell expansion is accomplished via regulatory pathways affecting both plasmodesmata conductivity and cell expansion.  相似文献   

16.
Turgeon R  Medville R 《Protoplasma》2011,248(1):173-180
Phloem loading is the process by which photoassimilates synthesized in the mesophyll cells of leaves enter the sieve elements and companion cells of minor veins in preparation for long distance transport to sink organs. Three loading strategies have been described: active loading from the apoplast, passive loading via the symplast, and passive symplastic transfer followed by polymer trapping of raffinose and stachyose. We studied phloem loading in Amborella trichopoda, a premontane shrub that may be sister to all other flowering plants. The minor veins of A. trichopoda contain intermediary cells, indicative of the polymer trap mechanism, forming an arc on the abaxial side and subtending a cluster of ordinary companion cells in the interior of the veins. Intermediary cells are linked to bundle sheath cells by highly abundant plasmodesmata whereas ordinary companion cells have few plasmodesmata, characteristic of phloem that loads from the apoplast. Intermediary cells, ordinary companion cells, and sieve elements form symplastically connected complexes. Leaves provided with 14CO2 translocate radiolabeled sucrose, raffinose, and stachyose. Therefore, structural and physiological evidence suggests that both apoplastic and polymer trapping mechanisms of phloem loading operate in A. trichopoda. The evolution of phloem loading strategies is complex and may be difficult to resolve.  相似文献   

17.
Sucrose has been found in the apoplast of bean stems at a concentrationof 25–60 mM with an axial concentration gradient in theappropriate direction for Munch translocation. Removal of theepidermis from a 50 mm length of stem enabled the washout oflabelled photosynthate from the apoplast. The rate of labelwashout was strongly dependent on temperature, and the rateincreased on blockage of phloem pathways to the main sink forthat assimilate. Washout did not reduce when the bathed tissuewas plasmolyzed. We propose that sucrose is unloaded from thephloem into the apoplast, and a sucrose concentration is maintainedthere by a balance of sucrose uptake into sink tissue or reloadinginto the phloem. It is proposed that the apoplastic pool ofphotosynthate can act to buffer sudden changes in phloem contentswhen there are rapid changes in source-sink configuration. Key words: Sucrose, Phaseolus vulgaris, Apoplast, Phloem unloading  相似文献   

18.
Apoplastic Phloem Unloading in the Stem of Bean   总被引:3,自引:0,他引:3  
Sucrose has been found in the apoplast of bean stems at a concentrationof 25–60 mM with an axial concentration gradient in theappropriate direction for Munch translocation. Removal of theepidermis from a 50 mm length of stem enabled the washout oflabelled photosynthate from the apoplast. The rate of labelwashout was strongly dependent on temperature, and the rateincreased on blockage of phloem pathways to the main sink forthat assimilate. Washout did not reduce when the bathed tissuewas plasmolyzed. We propose that sucrose is unloaded from thephloem into the apoplast, and a sucrose concentration is maintainedthere by a balance of sucrose uptake into sink tissue or reloadinginto the phloem. It is proposed that the apoplastic pool ofphotosynthate can act to buffer sudden changes in phloem contentswhen there are rapid changes in source-sink configuration. Key words: Sucrose, Phaseolus vulgaris, Apoplast, Phloem unloading  相似文献   

19.
K. J. Oparka 《Protoplasma》1986,131(3):201-210
Summary Potential pathways for sucrose unloading in the potato tuber were examined by light and electron microscopy. Abundant plasmodesmata connected sieve elements with surrounding parenchyma elements and also sieve elements with companion cells. Plasmodesmata were rarer, however, between companion cells and parenchyma elements. These observations suggest that sucrose may leave the sieve elements and enter the storage parenchyma cells directly via the symplast and that transport through the companion cell may not be a prerequisite for unloading. Plasmodesmata, grouped together in primary pit fields, were also abundant between storage cells, and isolated storage cells, separated enzymically, showed considerable variation in plasmodesmatal distribution between cells and also on different faces of a single cell. Deposition of starch was found to occur in the tuber cortex while an endodermis with Casparian strip was present external to the phloem, suggesting that assimilates initially enter the cortical storage cells by an entirely symplastic pathway. The possible involvement of ATPase in the unloading process was examined cytochemically, using a lead-salt precipitation method. By contrast with previous findings for phloem no evidence was found for ATPase activity that was unique to the sieve element-companion cell complex. The present observations favour the view that phloem unloading in the potato tuber is a symplastic and passive process.  相似文献   

20.
章英才  景红霞 《西北植物学报》2014,34(12):2446-2452
采用ATPase超微细胞化学定位技术,研究灵武长枣果实不同发育阶段韧皮部和果肉库薄壁细胞ATPase分布特征,以明确灵武长枣果实ATPase超微细胞化学定位特征和功能。结果显示:(1)第一次快速生长期SE/CC复合体与周围的薄壁细胞有丰富的胞间连丝,形成共质体连续,韧皮部薄壁细胞之间有丰富的胞间连丝,ATPase反应物在韧皮部各细胞分布较少。(2)缓慢生长期ATPase反应物在韧皮部各细胞分布逐渐增加。(3)第二次快速生长期SE/CC复合体与周围的薄壁细胞缺乏胞间连丝,形成共质体隔离,韧皮薄壁细胞及果肉库薄壁细胞的胞间连丝较少,囊泡和膜泡在筛管、韧皮薄壁细胞和库薄壁细胞中很丰富,质膜、液泡膜、囊泡膜、细胞壁和胞间隙的ATPase活性较高。研究表明,果实在第一次快速生长期同化物从筛分子的卸出主要采取共质体途径,缓慢生长期同化物卸出时可能为共质体和质外体途径共存,第二次快速生长期则主要以质外体途径为主,证明果实不同发育阶段韧皮部同化物卸出路径存在差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号