首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Eight structurally modified peptidyl-tRNA(Phe),s were employed to study P-site binding and peptide bond formation in a cell-free system involving Escherichia coli ribosomes programmed with poly(uridylic acid). It was found that the two analogues (N-acetyl-D-phenylalanyl-tRNA(Phe) and N-acetyl-D-tyrosyl-tRNA(Phe] containing D-amino acids functioned poorly as donors in the peptidyltransferase reaction and that two N-acetyl-L-phenylalanyl-tRNA(Phe)'s differing from the prototype substrate in that they contained 2'- or 3'-deoxyadenosine at the 3'-terminus failed to form dipeptide at all when L-phenylalanyl-tRNA(Phe) was the acceptor tRNA. Interestingly, all four of these peptidyl-tRNA's bound to ribosomes to about the same extent as tRNA's that functioned normally as donors in the peptidyltransferase reaction, at least in the absence of competing peptidyl-tRNA species. Two peptidyl-tRNA's lacking an amino group were also tested. In comparison with N-acetyl-L-phenylalanyl-tRNA(Phe) it was found that trans-cinnamyl-tRNA(Phe) and 3-phenylpropionyl-tRNA(Phe)'s formed dipeptides to the extent of 53 and 80%, respectively, when L-phenylalanyl-tRNA(Phe)was used as the acceptor tRNA. N-Acetyl-beta-phenylalanyl-tRNA(Phe) was found to be the most efficient donor substrate studied. Both isomers transferred N-acetyl-beta-phenylalanine to L-phenylalanyl-tRNA(Phe); the nature of the dipeptides formed in each case was verified by HPLC in comparison with authentic synthetic samples. Further, the rate and extent of peptide bond formation in each case exceeded that observed with the control tRNA, N-acetyl-L-phenylalanyl-tRNA(Phe).  相似文献   

2.
The preceding paper (Gross, M., Starn, T.K., Rundquist, C., Crow, P., White, J., Olin, A., and Wagner, T. (1992) J. Biol. Chem. 267, 2073-2079) reported the purification and partial characterization of rabbit reticulocyte peptidyl-tRNA hydrolase. In this article we demonstrate that, unlike bacterial and yeast peptidyl-tRNA hydrolase which act by deacylation, the reticulocyte enzyme hydrolyzes N-acylaminoacyl-tRNA to N-acylaminoacyl-AMP. Reticulocyte lysate has a separate enzyme, that we have isolated and termed aminoacyl-AMP deacylase, which hydrolyzes N-acylaminoacyl-AMP and aminoacyl-AMP, recycling the amino acid and nucleotide components. The action of this enzyme is relatively specific for the N-acylaminoacyl-AMP generated by peptidyl-tRNA hydrolase, since it is much less active with N-acylaminoacyl-adenosine and inactive with N-acylaminoacyl-ACCAC, N-acylaminoacyl-tRNA, or aminoacyl-tRNA. The tRNA product of peptidyl-tRNA hydrolase action is tRNA missing only its 3'-AMP terminus (tRNA(c-c)), since reaminoacylation requires tRNA nucleotidyltransferase but not CTP. The 3' exonucleolytic action of reticulocyte peptidyl-tRNA hydrolase is specific to susceptible tRNA substrates, since it does not hydrolyze CACCA, CACCA-N-acylamino acid, polyuridylic acid, or the 3' polyadenylate tail of globin mRNA, and, since its ability to hydrolyze Escherichia coli f[3H]Met-tRNA(fMet) is not reduced by excess 5 S or 28 S ribosomal RNA and is reduced only slightly by excess tRNA(c-c). Reticulocyte peptidyl-tRNA hydrolase also hydrolyzes th 3'-AMP terminus of deacylated tRNA. This property may explain why the 3'-terminal AMP of tRNA undergoes turnover in reticulocytes and reticulocyte lysate, since we find that such turnover in gel-filtered reticulocyte lysate is increased under conditions where aminoacylation is reduced.  相似文献   

3.
Previous studies of the homologous aminoacylations of Escherichia coli and yeast tRNATrp's terminating in 2'- and 3'-deoxyadenosine established that E. coli tryptophanyl-tRNA synthetase activates its cognate tRNA preferentially on the 2' position, while the corresponding yeast enzyme utilizes the 3' position on its homologous substrate tRNA. As this seemed to be the only change in positional specificity during evolution, the heterologous activations were investigated in an effort to determine the basis for this change. Remarkably, E. coli tRNATrp terminating in 3'-deoxyadenosine was found to be the preferred substrate for both the E. coli and yeast activating enzymes, while the same tryptophanyl-tRNA synthetase preparations both activated the isomeric yeast tRNATrp's preferentially on the 3' position. Thus, the preferred position of activation was found to be specified by the tRNA rather than the activating enzyme and, additionally, to be due to some process not reflected in initial velocity measurements. The variable utilization of individual modified aminoacyl-tRNA's as substrates in an enzyme-catalyzed deacylation process appears to provide the most likely explanation for the experimental observations.  相似文献   

4.
We have identified an activity in rabbit reticulocyte lysate as peptidyl-tRNA hydrolase, based upon its ability to hydrolyze native reticulocyte peptidyl-tRNA, isolated from polyribosomes, and N-acylaminoacyl-tRNA, and its inability to hydrolyze aminoacyl-tRNA, precisely the same substrate specificity previously reported for peptidyl-tRNA hydrolase from bacteria or yeast. The physiological role of the reticulocyte enzyme may be to hydrolyze and recycle peptidyl-tRNA that has dissociated prematurely from elongating ribosomes, as suggested for the bacterial and yeast enzymes, since reticulocyte peptidyl-tRNA hydrolase is completely incapable of hydrolyzing peptidyl-tRNA that is still bound to polyribosomes. We have purified reticulocyte peptidyl-tRNA hydrolase over 5,000-fold from the postribosomal supernatant with a yield of 14%. The purified product shows a 72-kDa band upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis that has co-purified with enzyme activity and comprises about 90% of the total stained protein, strongly suggesting that the 72-kDa protein is the enzyme. Sucrose density gradient analysis indicates an apparent molecular mass for the native enzyme of 65 kDa, implying that it is a single polypeptide chain. The enzyme is almost completely inactive in the absence of a divalent cation: Mg2+ (1-2 mM) promotes activity best, Mn2+ is partly effective, and Ca2+ and spermidine are ineffective. The hydrolase shows a Km of 0.60 microM and Vmax of 7.1 nmol/min/mg with reticulocyte peptidyl-tRNA, a Km of 60 nM and Vmax of 14 nmol/min/mg with Escherichia coli fMet-tRNA(fMet), and a Km of 100 nM and Vmax of 2.2 nmol/min/mg with yeast N-acetyl-Phe-tRNA(Phe). The enzyme has a pH optimum of 7.0-7.25, it is inactivated by heat (60 degrees C for 5 min), and its activity is almost completely inhibited by pretreatment with N-ethylmaleimide or incubation with 20 mM phosphate. The fact that the enzyme hydrolyzes E. coli but not yeast or reticulocyte fMet-tRNA(fMet) may be explained, at least in part, by structural similarities between prokaryotic tRNA(fMet) and eukaryotic elongator tRNA that are not shared by eukaryotic tRNA(fMet).  相似文献   

5.
Goodall JJ  Chen GJ  Page MG 《Biochemistry》2004,43(15):4583-4591
The peptidyl-tRNA hydrolase (Pth) enzyme plays an essential role in recycling tRNA from peptidyl-tRNA that has prematurely dissociated from the ribosome. In this study of Escherichia coli Pth, the critical role of histidine 20 was investigated by site-directed mutagenesis, stopped-flow kinetic measurements, and chemical modification. The histidine residue at position 20 is known to play an important role in the hydrolysis reaction, but stopped-flow fluorescence measurements showed that, although the His20Asn Pth mutant enzyme was unable to hydrolyze the substrate, the enzyme retained the ability to bind peptidyl-tRNA. Chemical modification of Pth with diethyl pyrocarbonate (DEPC) showed that a residue, with a pK(a) value of 6.3, was essential for substrate hydrolysis and that the stoichiometry of inhibition was 0.70 +/- 0.06 mol of DEPC/mol of enzyme, indicating that modification of only a single residue by DEPC was responsible for the loss of activity. Parallel chemical modification studies with the His20Asn and Asp93Asn mutant enzymes showed that this essential residue was His20. These studies indicate that histidine 20 acts as the catalytic base in the hydrolysis of peptidyl-tRNA by Pth.  相似文献   

6.
Peptidyl-tRNA hydrolase from Mycobacterium smegmatis is a single domain 21 kDa protein involved in the hydrolysis of prematurely produced peptidyl-tRNAs to ensure the viability of cells in bacteria, thus making it a potentially important drug target. In order to aid the development of potent drugs for controlling bacterial infections, the three-dimensional structure of peptidyl-tRNA hydrolase from Mycobacterium smegmatis has been determined. The protein adopts a compact α/β globular fold with a twisted β-sheet surrounded by α-helices. The functionally important C-terminal stretch has been unambiguously modeled for the first time in the unliganded structure of peptidyl-tRNA hydrolase. The segment, Gly138 - Val150 is mobile because it lacks significant interactions with the rest of the protein molecule. This conformational flexibility is reflected through different values of distances between a reference atom Ala147 Cα of the segment Gly138 - Val150 to Gly114 Cα from another segment from opposite side of the substrate binding channel in Mycobacterium smegmatis (7.8 Ǻ), Mycobacterium tuberculosis (9.5 Ǻ) and Escherichia coli (11.8 Ǻ). Similarly, the conformation of loop Gly109 - Gly117 with respect to another loop Asp95 - Asp100 also shows variability of the substrate binding cleft as the distance between Asp98 Oδ2 to Gly113 Cα in Mycobacterium smegmatis is 4.5 Ǻ while the corresponding distances in Mycobacterium tuberculosis and Escherichia coli are 3.1 Ǻ and 6.7 Ǻ respectively. The hydrogen bonded interactions between Asn116, His22 and Asp95 indicate a stereochemically favorable arrangement of these residues for catalytic action.  相似文献   

7.
Fromant M  Plateau P  Blanquet S 《Biochemistry》2000,39(14):4062-4067
Among elongator tRNAs, tRNA specific for histidine has the peculiarity to possess one extra nucleotide at position -1. This nucleotide is believed to be responsible for recognition by histidyl-tRNA synthetase. Here, we show that, in fact, it is the phosphate 5' to the extra nucleotide which mainly supports the efficiency of the tRNA aminoacylation reaction catalyzed by Escherichia coli histidyl-tRNA synthetase. In the case of the reaction of E. coli peptidyl-tRNA hydrolase, this atypical phosphate is dispensable. Instead, peptidyl-tRNA hydrolase recognizes the phosphate of the phosphodiester bond between residues -1 and +1 of tRNA(His). Recognition of the +1 phosphate of tRNA(His) by peptidyl-tRNA hydrolase resembles, therefore, that of the 5'-terminal phosphate of other elongator tRNAs.  相似文献   

8.
The positional specificity in the aminoacylation of Escherichia coli tRNAGly by its cognate aminoacyl-tRNA synthetase has been studied using tRNAGlys terminating in 2'- or 3'-deoxyadenosine under conditions believed to alter tRNA conformation. Although E. coli tRNAGly terminating in 3'-deoxyadenosine has been reported not to be a good substrate for activation by the homologous glycyl-tRNA synthetase, by systematic variation of the conditions employed for aminoacylation it was possible to activate this tRNA to essentially the same extent as unmodified tRNAGly. Activation of tRNAGly terminating in 3'-deoxyadenosine was carried out optimally at 45 degrees C in an incubation mixture containing 0.3-0.4 M NaCl; 10% methanol, ethanol, and dimethyl sulfoxide were found to facilitate activation of the modified tRNA. Interestingly, the conditions employed to enhance activation of this modified tRNAGly had no effect on the activation of unmodified tRNAGly or tRNAGly terminating in 2'-deoxyadenosine. These experiments afford insight into the activation of tRNAGly by glycyl-tRNA synthetase and provide facile access to positionally defined, isomeric glycl-tRNAGlys.  相似文献   

9.
The dependence of the Vmax and Km on the length of the peptide moiety in the peptidyl-tRNA series (Gly)n-Val tRNA, was measured in the system peptidyl-tRNA hydrolase-peptidyl-tRNA. It was found that the Km value decreases from 7.2 X 10-7 M for Gly-Val-tRNA to 4.6 X 10-7 M FOR (Gly)2-Val-tRNA and to 1.7 X 10-7M for (Gly)3-Val-tRNA; further increase of the peptide chain is not followed by decrease of the Km. The Vmax values are 5.7 pmole/min/EU for Gly-Val-tRNA and 42 pmole/min/EU for (Gly)3-Val-tRNA. The enzyme activity is inhibited competitively by uncharged tRNA with a KI value of about 10-5M. The significance of these results described in this paper, in relation to the fact that peptides and peptide esters do not inhibit the enzyme activity, and in relation to the proposed physiological role of the enzyme, is discussed.  相似文献   

10.
11.
12.
In a cell, peptidyl-tRNA molecules that have prematurely dissociated from ribosomes need to be recycled. This work is achieved by an enzyme called peptidyl-tRNA hydrolase. To characterize the RNA-binding site of Escherichia coli peptidyl-tRNA hydrolase, minimalist substrates inspired from tRNA(His) have been designed and produced. Two minisubstrates consist of an N-blocked histidylated RNA minihelix or a small RNA duplex mimicking the acceptor and TψC stem regions of tRNA(His). Catalytic efficiency of the hydrolase toward these two substrates is reduced by factors of 2 and 6, respectively, if compared with N-acetyl-histidyl-tRNA(His). In contrast, with an N-blocked histidylated microhelix or a tetraloop missing the TψC arm, efficiency of the hydrolase is reduced 20-fold. NMR mapping of complex formation between the hydrolase and the small RNA duplex indicates amino acid residues sensitive to RNA binding in the following: (i) the enzyme active site region; (ii) the helix-loop covering the active site; (iii) the region including Leu-95 and the bordering residues 111-117, supposed to form the boundary between the tRNA core and the peptidyl-CCA moiety-binding sites; (iv) the region including Lys-105 and Arg-133, two residues that are considered able to clamp the 5'-phosphate of tRNA, and (v) the positively charged C-terminal helix (residues 180-193). Functional value of these interactions is assessed taking into account the catalytic properties of various engineered protein variants, including one in which the C-terminal helix was simply subtracted. A strong role of Lys-182 in helix binding to the substrate is indicated.  相似文献   

13.
Cyclophilin (163 residues, Mr 17737), a peptidyl prolyl cis-trans isomerase, is a cytosolic protein that specifically binds the potent immunosuppressant cyclosporin A (CsA). The native form of the major bovine thymus isoform has been analyzed by 2D NMR methods, COSY, HOHAHA, and NOESY, in aqueous media. The 156 main-chain amides in CyP yield 126 observable NH/alpha CH couplings (81%, Gly pairs counted as 1). Following exhaustive D2O exchange, 44 amide resonances remain visible. Further analysis of the NH/NH, NH/alpha CH, and alpha CH/alpha CH regions of the COSY and NOESY data sets indicates that the residual amides in D2O form a coherent hydrophobic domain which yields 2D NMR features suggestive of a beta-sheet. Many (43/126) of the amide resonances have been classified according to amino acid type. In the aromatic region of the spectra, the assignment of the ring spin systems is nearly complete (12/15 Phe, 2/2 Tyr, 1/1 Trp, and 3/4 His). This has successfully lead to the complete assignment of all of their beta CH's, main-chain alpha CH resonances, and many of the backbone amide resonances (8/12 Phe, 2/2 Tyr, 1/1 Trp, and 2/3 His). In other regions of the spectrum, the side-chain and main-chain resonances for 10/23 Gly, 9/9 Ala, 5/11 Thr, 5/9 Val, and 1/6 Leu have been completely assigned. The drug-free cyclophilin and CsA-bound cyclophilin form two discrete protein structures that are in slow exchange on the NMR time scale. Comparison of the fingerprint regions from the COSY spectra obtained from the two forms of the protein reveals a minimum of 16 cross-peaks which are clearly shifted upon complexation. In fact, on the basis of chemical shift changes observed in assigned side-chain and main-chain resonances, only a relatively few of the amino acid residues identified to date are perturbed by complex formation. These include 3 Phe (8, 12, and 14) and the Trp in the aromatic region and 2 Ala (7 and 8) in the Ala/Thr region. In the upfield-shifted methyl region, an assigned Leu and Val spin system and a spin system labeled X10 (an Ile or Leu) are affected by complex formation. In addition, a new aliphatic spin system, labeled X11, which shows a close spatial relationship to the perturbed Phe12, is observed in this region of the spectrum. In summary, the regions of the protein altered by complex formation can be divided into two categories: a hydrophobic and a H2O-accessible domain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Previous work by Schulman and Pelka (1975) J. Biol. Chem. 250, 542-547, indicated that the absence of a pairing between the bases 1 and 72 in initiator tRNA(fMet) explained the relatively small activity of peptidyl-tRNA hydrolase towards N-acetyl-methionyl-tRNA(fMet). In the present study, the structural requirements for the sensitivity of an N-acetyl-aminoacyl-tRNA to Escherichia coli peptidyl-tRNA hydrolase activity have been further investigated. Ten derivatives of tRNA(fMet) with various combinations of bases at positions 1 and 72 in the acceptor stem have been produced, aminoacylated and chemically acetylated. The release of the aminoacyl moiety from these tRNA derivatives was assayed in the presence of peptidyl-tRNA hydrolase purified from an overproducing strain. tRNA(fMet) derivatives with either C1A72, C1C72, U1G72, U1C72 or A1C72 behaved as poor substrates of the enzyme, as compared to those with C1G72, U1A72, G1C72, A1U72 or G1U72. With the exception of U1G72, it could be therefore concluded that the relative resistance of tRNA(fMet) to peptidyl-tRNA hydrolase did not depend on a particular combination of nucleotides at positions 1 and 72, but rather reflected the absence of a base pairing at these positions. In a second series of experiments, the unpairing of the 1 and 72 bases, created with C-A or A-C bases, instead of G-C in methionyl-tRNA(mMet) or in valyl-tRNA(Val1), was shown to markedly decrease the rate of hydrolysis catalysed by peptidyl-tRNA hydrolase. Altogether, the data indicate that the stability of the 1-72 pair governs the degree of sensitivity of a peptidyl-tRNA to peptidyl-tRNA hydrolase.  相似文献   

15.
Eubacterial peptidyl-tRNA hydrolase (PTH) recycles all N-blocked aminoacyl-tRNA molecules but initiator formyl-methionyl-tRNAfMet, the acceptor helix of which is characterized by a 1-72 mismatch. Positive selection by PTH of noninitiator tRNA molecules with a full 1-72 base pair is abolished, however, upon the removal of the 5'-phosphate. The tRNA 5'-phosphate plays therefore the role of a relay between the enzyme and the status of the 1-72 base pair. In this study, the receptor site for the 5'-phosphate of elongator peptidyl-tRNAs and the position at the surface of PTH of the 3'-end of complexed peptidyl-tRNA are identified by site-directed mutagenesis experiments. The former site comprehends two cationic side chains (K105 and R133) which are likely to clamp the phosphate. The second corresponds to a four asparagine cluster (N10, N21, N68, and N114). By using these two positional constraints, the acceptor arm of elongation factor Tu-bound Phe-tRNAPhe could be docked to PTH. Contacts involve the acceptor and TPsiC stems. By comparing the obtained 3D model to that of EF-Tu:Phe-tRNAPhe crystalline complex in which the 5'-phosphate of the ligand also lies between a K and an R side chain, we propose that, in both systems, the capacity of the 5'-phosphate of a tRNA to reach or not a receptor site is the main identity element governing generic selection of elongator tRNAs. On the other hand, while the 1-72 mismatch acts as an antideterminant for PTH or EF-Tu recognition, it behaves as a positive determinant for the formylation of initiator Met-tRNAfMet.  相似文献   

16.
Jackman JE  Phizicky EM 《Biochemistry》2008,47(16):4817-4825
The yeast tRNA(His) guanylyltransferase (Thg1) is an essential enzyme in yeast. Thg1 adds a single G residue to the 5' end of tRNA(His) (G(-1)), which serves as a crucial determinant for aminoacylation of tRNA(His). Thg1 is the only known gene product that catalyzes the 3'-5' addition of a single nucleotide via a normal phosphodiester bond, and since there is no identifiable sequence similarity between Thg1 and any other known enzyme family, the mechanism by which Thg1 catalyzes this unique reaction remains unclear. We have altered 29 highly conserved Thg1 residues to alanine, and using three assays to assess Thg1 catalytic activity and substrate specificity, we have demonstrated that the vast majority of these highly conserved residues (24/29) affect Thg1 function in some measurable way. We have identified 12 Thg1 residues that are critical for G(-1) addition, based on significantly decreased ability to add G(-1) to tRNA(His) in vitro and significant defects in complementation of a thg1Delta yeast strain. We have also identified a single Thg1 alteration (D68A) that causes a dramatic decrease in the rigorous specificity of Thg1 for tRNA(His). This single alteration enhances the k(cat)/K(M) for ppp-tRNA(Phe) by nearly 100-fold relative to that of wild-type Thg1. These results suggest that Thg1 substrate recognition is at least in part mediated by preventing recognition of incorrect substrates for nucleotide addition.  相似文献   

17.
The ribosome catalyzes peptide bond formation between peptidyl-tRNA in the P site and aminoacyl-tRNA in the A site. Here, we show that the nature of the C-terminal amino acid residue in the P-site peptidyl-tRNA strongly affects the rate of peptidyl transfer. Depending on the C-terminal amino acid of the peptidyl-tRNA, the rate of reaction with the small A-site substrate puromycin varied between 100 and 0.14 s(-1), regardless of the tRNA identity. The reactivity decreased in the order Lys = Arg > Ala > Ser > Phe = Val > Asp > Pro, with Pro being by far the slowest. However, when Phe-tRNA(Phe) was used as A-site substrate, the rate of peptide bond formation with any peptidyl-tRNA was approximately 7 s(-1), which corresponds to the rate of binding of Phe-tRNA(Phe) to the A site (accommodation). Because accommodation is rate-limiting for peptide bond formation, the reaction rate is uniform for all peptidyl-tRNAs, regardless of the variations of the intrinsic chemical reactivities. On the other hand, the 50-fold increase in the reaction rate for peptidyl-tRNA ending with Pro suggests that full-length aminoacyl-tRNA in the A site greatly accelerates peptide bond formation.  相似文献   

18.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leu(m)-Pro-Glu-Ala-Leu(n) (m = 0-4, n = 0-3). Neither Pro-Glu-Ala-Leu (m = 0) nor Leu-Pro-Glu-Ala (n = 0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leu(m)-Pro-Glu-Ala-Leu increased with the increase of m = 1 to 2 and 3, but was however, essentially same with the increase of m = 3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leu(n) increased with the increase of n = 0 to 1 and 2, but was essentially same with the increase of n = 2 to 3. Then, it was concluded that cucumisin has a S5-S3' subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1' position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1' positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

19.
The existence of a conditional lethal temperature-sensitive mutant affecting peptidyl-tRNA hydrolase in Escherichia coli suggests that this enzyme is essential to cell survival. We report here the isolation of both chromosomal and multicopy suppressors of this mutant in pth, the gene encoding the hydrolase. In one case, the cloned gene responsible for suppression is shown to be lysV, one of three genes encoding the unique lysine acceptor tRNA; 10 other cloned tRNA genes are without effect. Overexpression of lysV leading to a 2- to 3-fold increase in tRNA(Lys) concentration overcomes the shortage of peptidyl-tRNA hydrolase activity in the cell at non-permissive temperature. Conversely, in pth, supN double mutants, where the tRNA(Lys) concentration is reduced due to the conversion of lysV to an ochre suppressor (supN), the thermosensitivity of the initial pth mutant becomes accentuated. Thus, cells carrying both mutations show practically no growth at 39 degrees C, a temperature at which the pth mutant grows almost normally. Growth of the double mutant is restored by the expression of lysV from a plasmid. These results indicate that the limitation of growth in mutants of E.coli deficient in Pth is due to the sequestration of tRNA(Lys) as peptidyl-tRNA. This is consistent with previous observations that this tRNA is particularly prone to premature dissociation from the ribosome.  相似文献   

20.
Poly(2'-deoxyadenosine) and poly(thymidine) constructed of carbonate linkages were synthesized by polycondensation between silyl ether and carbonylimidazolide at the 3'- and 5'-positions of the 2'-deoxyribonucleoside monomers. The N-benzoyl-2'-deoxyadenosine monomer afforded the corresponding polycarbonate together with the cyclic oligomers. However, the deprotection of the N-benzoyl group resulted in the scission of the polymer main chain. Thus, the N-unprotected 2'-deoxyadenosine monomers were examined for polycondensation. However, there was involved the undesired reaction between the adenine amino group and the carbonylimidazolide to form the carbamate linkage. In order to exclude this unfavorable reaction, dynamic protection was employed. Strong hydrogen bonding was used in place of the usual covalent bonding for reducing the nucleophilicity of the adenine amino group. Herein, 3',5'-O-diacylthymidines that form the complementary hydrogen bonding with the adenine amino group were added to the polymerization system of the N-unprotected 2'-deoxyadenosine monomer. Consequently, although the oligomers (M(n) = 1000-1500) were produced, the contents of the carbamate group were greatly reduced. The dynamic protection reagents were easily and quantitatively recovered as the MeOH soluble parts from the polymerization mixtures. In the polycondensation of the thymidine monomer, there tended to be involved another unfavorable reaction of carbonate exchange, which consequently formed the irregular carbonate linkages at not only the 3'-5' but also the 3'-3' and 5'-5' positions. Employing the well-designed monomer suppressed the carbonate exchange reaction to produce poly(thymidine) with the almost regular 3'-5'carbonate linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号