首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since alkylating agents are widely present in the environment and constitute a continuous challenge to genome integrity, cells and organisms have developed defense mechanisms to remove such lesions. We monitored the response of human keratinocytes to a very low concentration of a methylating agent, namely 2.5 nM N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). The effect of a 60-min exposure of quiescent cells to 2.5 nM MNNG was studied in terms of DNA integrity, poly(ADP-ribose) metabolism, clonogenic survival and DNA synthesis. We observed two waves of DNA strand break formation and resealing. Interestingly, the amount of DNA strand breaks in exposed cells was lower than in unexposed control cells. This phenomenon was also observed when cells were exposed to MNNG in the presence of a protein synthesis inhibitor, or when they were maintained on ice during the treatment. A dose of 2.5 nM MNNG stimulated poly(ADP-ribose) turnover, reduced the intracellular NAD+ content, stimulated DNA synthesis and caused a remarkable increase in clonogenic survival. Thus, the cellular responses to extremely low concentrations of MNNG differ sharply from those observed at higher doses of this carcinogen. We conclude that the very low dose response cannot be extrapolated from usual dose-response analyses.  相似文献   

2.
It has been found that in BHK 21 cells caffeine potentiates cell killing by both UV irradiation and N-methyl-N-nitrosoguanidine (MNNG). The potentiating effect is greater with UV than with MNNG. While non-toxic concentrations of caffeine inhibit the joining of newly-replicated DNA fragments into large molecular weight DNA (post-replication repair) after UV irradiation, they have no such effect after MNNG treatment. Furthermore, the joining of DNA fragments continues in cells treated with 3 μg/ml of MNNG, a dose which leads to less than 5% cell survival. While inhibition of the synthesis of large molecular weight DNA can explain the synergistic effect of caffeine upon cell survival after UV irradiation, it cannot explain the similar effect after MNNG treatment.  相似文献   

3.
A transformation assay has been used to follow the fixation of mutations to novobiocin resistance induced by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) in Haemophilus influenzae. Very few mutations are produced by recently treated DNA, but many are produced by the DNA from cells that have been incubated for a time after exposure to MNNG. The time course of this mutation fixation is shown to coincide reasonably well with the time course of semiconservative DNA synthesis, as judged by uptake studies and by isopycnic centrifugation of density-labeled cells. Incubation with bromodeoxyuridine (BrdUrd) during the fixation period decreases the number of mutations that are fixed, showing in another way the importance of DNA synthesis for fixation.Mutations fixed in the presence of BrdUrd are not more sensitive to 313-nm radiation than those fixed in its absence, suggesting that these residual mutations are fixed in the absence of extensive DNA replication. Mutations newly fixed in the absence of BrdUrd are much more sensitive to 313-nm radiation than are the same mutations some cell generations later. This shows that the newly fixed mutations are in a state that is different from their final form, either because they are in regions of DNA with special configurations of the strands or because they are in a region of DNA that is a hybrid between an old, alkylated strand and a new strand with some bases different from normal. The data suggest that it is unlikely that anything like all the mutations that are fixed in H. influenzae arise by direct action of MNNG on the replication fork. Many of the results can be explained in terms of fixation during semiconservative replication of premutational lesions, some of which are initially located some distance from the replication fork. The final yield would then depend on the relative rates of removal of the lesions by repair and of fixation by replication.  相似文献   

4.
MutS inhibits RecA-mediated strand transfer with methylated DNA substrates   总被引:1,自引:0,他引:1  
DNA mismatch repair (MMR) sensitizes human and Escherichia coli dam cells to the cytotoxic action of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) while abrogation of such repair results in drug resistance. In DNA methylated by MNNG, MMR action is the result of MutS recognition of O6-methylguanine base pairs. MutS and Ada methyltransferase compete for the MNNG-induced O6-methylguanine residues, and MMR-induced cytotoxicity is abrogated when Ada is present at higher concentrations than normal. To test the hypothesis that MMR sensitization is due to decreased recombinational repair, we used a RecA-mediated strand exchange assay between homologous phiX174 substrate molecules, one of which was methylated with MNNG. MutS inhibited strand transfer on such substrates in a concentration-dependent manner and its inhibitory effect was enhanced by MutL. There was no effect of these proteins on RecA activity with unmethylated substrates. We quantified the number of O6-methylguanine residues in methylated DNA by HPLC-MS/MS and 5–10 of these residues in phiX174 DNA (5386 bp) were sufficient to block the RecA reaction in the presence of MutS and MutL. These results are consistent with a model in which methylated DNA is perceived by the cell as homeologous and prevented from recombining with homologous DNA by the MMR system.  相似文献   

5.
DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents.  相似文献   

6.
SN1 DNA methylating agents are genotoxic agents that methylate numerous nucleophilic centers within DNA including the O6 position of guanine (O6meG). Methylation of this extracyclic oxygen forces mispairing with thymine during DNA replication. The mismatch repair (MMR) system recognizes these O6meG:T mispairs and is required to activate DNA damage response (DDR). Exonuclease I (EXO1) is a key component of MMR by resecting the damaged strand; however, whether EXO1 is required to activate MMR-dependent DDR remains unknown. Here we show that knockdown of the mouse ortholog (mExo1) in mouse embryonic fibroblasts (MEFs) results in decreased G2/M checkpoint response, limited effects on cell proliferation, and increased cell viability following exposure to the SN1 methylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), establishing a phenotype paralleling MMR deficiency. MNNG treatment induced formation of γ-H2AX foci with which EXO1 co-localized in MEFs, but mExo1-depleted MEFs displayed a significant diminishment of γ-H2AX foci formation. mExo1 depletion also reduced MSH2 association with DNA duplexes containing G:T mismatches in vitro, decreased MSH2 association with alkylated chromatin in vivo, and abrogated MNNG-induced MSH2/CHK1 interaction. To determine if nuclease activity is required to activate DDR we stably overexpressed a nuclease defective form of human EXO1 (hEXO1) in mExo1-depleted MEFs. These experiments indicated that expression of wildtype and catalytically null hEXO1 was able to restore normal response to MNNG. This study indicates that EXO1 is required to activate MMR-dependent DDR in response to SN1 methylating agents; however, this function of EXO1 is independent of its nucleolytic activity.  相似文献   

7.
We have studied the role of poly(ADP-ribose) polymerase in the repair of DNA damage induced by x-ray and N-methyl N-nitro-N-nitrosoguanidine (MNNG) by using V79 chinese hamster cells, and two derivative mutant cell lines, ADPRT54 and ADPRT351, that are deficient in poly(ADP-ribose) polymerase activity. Under exponentially growing conditions these mutant cell lines are hypersensitive to x-irradiation and MNNG compared to their parental V79 cells which could be interpreted to suggest that poly(ADP-ribose) polymerase is involved in the repair of DNA damage. However, the level of DNA strand breaks induced by x-irradiation and MNNG and their rates of repair are similar in all the cell lines, thus suggesting that it may not be the difference in strand break formation or in its rate of repair that is contributing to the enhanced cell killing in exponentially growing poly(ADP-ribose) polymerase deficient cell lines. In contrast, under growth-arrested conditions, all three cell lines become similarly sensitive to both x-irradiation and MNNG, thus suggesting that poly(ADP-ribose) polymerase may not be involved in the repair of DNA damage in growth-arrested cells. These paradoxical results could be interpreted to suggest that poly(ADP-ribose) polymerase is involved in DNA repair in a cell-cycle-dependent fashion, however, it is functionally active throughout the cell cycle. To resolve this dilemma and explain these results and those obtained by many others, we propose that the normal function of poly(ADP-ribose) polymerase is to prevent DNA recombination processes and facilitate DNA ligation.  相似文献   

8.
In a comparative study, henzo[a]pyrene (BaP), cyclophosphamide (CP), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and tetrachloroethylene (PER) were tested for their ability to induce genotoxic effects in the single cell gel (SCG) test and the sister-chromatid exchange (SCE) test with human blood cells. MNNG as well as S9 mix activated BaP- and CP-induced DNA effects in both tests in a dose-dependent manner. While the range of concentrations which induced DNA migration or SCE was the same for MNNG and for Bap, much higher CP concentrations were necessary for a positive response in the SCG test than in the SCE test. PER was tested in the absence and in the presence of S9 mix and neither induced DNA migration nor increased SCE frequencies. In these experiments, a clear cytotoxic effect of PER was observed. To investigate a possible influence of DNA repair on the effects in the SCG test, cells were treated for 2 h and further incubated for 1 h after removal of the test substance. This procedure caused a clear decrease in induced DNA migration in experiments with Bap and CP, whereas no reduction was found with MNNG. This modified protocol did not lead to the detection of DNA effects after treatment with PER. The results indicate that the SCG test responds to various DNA lesions and does not seem to be sensitive to non-genotoxic cell killing. Its sensitivity obviously depends on the type(s) of induced DNA lesions and the effects can be modified by DNA repair processes in a complex manner. For the detection of genotoxic properties of chemicals with the in vitro SCG test, a single evaluation at the end of the exposure period seems to be sufficient.  相似文献   

9.
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme activated by binding to DNA breaks, which causes PARP-1 automodification. PARP-1 activation is required for regulating various cellular processes, including DNA repair and cell death induction. PARP-1 involved in these regulations is localized in the nucleoplasm, but approximately 40% of PARP-1 can be found in the nucleolus. Previously, we have reported that nucleolar PARP-1 is delocalized to the nucleoplasm in cells exposed to DNA-damaging agents. However, the functional roles of this delocalization in cellular response to DNA damage is not well understood, since this approach simultaneously induces the delocalization of PARP-1 and its automodification. We therefore devised an approach for separating these processes. Unmodified PARP-1 was first delocalized from the nucleolus using camptothecin. Then, PARP-1 was activated by exposure of cells to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). In contrast to treatment with MNNG alone, delocalization of PARP-1 by CPT, prior to its activation by MNNG, induced extensive automodification of PARP-1. DNA repair activity and consumption of intracellular NAD+ were not affected by this activation. On the other hand, activation led to an increased formation of apoptotic cells, and this effect was suppressed by inhibition of PARP-1 activity. These results suggest that delocalization of PARP-1 from the nucleolus to the nucleoplasm sensitizes cells to DNA damage-induced apoptosis. As it has been suggested that the nucleolus has a role in stress sensing, nucleolar PARP-1 could participate in a process involved in nucleolus-mediated stress sensing.  相似文献   

10.
The clone-forming capacity and level of DNA repair was examined on normal human cells and repair-deficient Xeroderma pigmentosum (XP) fibroblasts exposed to various chemical carcinogens and mutagens.The cultured fibroblasts were treated for 90 min with the carcinogenic and mutagenic 4-nitroquinoline 1-oxide (4NQO), 4-hydroxyaminoquinoline 1-oxide (4HAQO), 2-methyl-4-nitroquinoline 1-oxide (2-Me-4NQO), 3-methyl-4-nitropyridine 1-oxide 3-Me-4NPO) and the non-carcinogenic 6-nitroquinoline 1-oxide (6NQO). The response of the cells to the N-oxides was compared to that induced by the mutagen and carcinogen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and UV-irradiation.The XP cells showed (1) a reduced level of DNA repair synthesis when exposed to various carcinogenic N-oxides, (2) no unscheduled DNA synthesis following 6NQO and (3) a normal degree of DNA repair synthesis after treatment with MNNG.When the clone-forming capacity was examined the XP cells exhibited (1) a higher increased sensitivity to the various carcinogenic N-oxides, (2) no reduction in the clone formation following 6NQO and (3) a sensitivity virtually comparable to that of normal cells after treatment with MNNG.The results suggest a link between extent of DNA damage, level of DNA repair and degree of sensitivity in human cells exposed to various chemical carcinogens and which induce DNA alterations that cannot be repaired by DNA repair synthesis.  相似文献   

11.
《Mutation Research Letters》1990,243(3):219-224
27-1 is a mutant of Chinese hamster ovary cells (CHO cells) that is hypersenstivie to the toxic effects of ultraviolet light, N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and other monofunctional alkylating agents. We show here that the enhanced MNNG sensitivity of these cells is not due to alterations in the amount of DNA methylation products introduced nor by a defect in the first step of removal of the main alkylation products 7-methylguanine and 3-methyladenine. However, these mutant cells perform more DNA repair synthesis after treatment with MNNG than normal CHO-9 cells. This observation might indicate a possible defect of a ligase involved in sealing DNA repair patches.27-1 cells did not show elevated frequencies of sister-chromatid exchange and chromosomal aberration induced by MNNG. The data show that MNNG-induced cell killing is not necessarily related to increased chromosomal instability.  相似文献   

12.
Lymphoblastoid cell lines (LCLs) established from chromosomal breakage syndromes or related genetic disorders have been used to study the effects of mutagens on human lymphoid cells. The disorders studied include xeroderma pigmentosum, ataxia telangiectasia, Fanconi's anemia, Bloom's syndrome and Cockayne's syndrome. Three approaches were used to assess the cells' ability to cope with a particular mutagen: (1) assaying recovery of DNA snythetic capabilities as measured by [3H]thymidine (dT) incorporation; (2) measurements of classical excision DNA repair by isopyknic sedimentation of DNA density labeled with 5-bromo-2-deoxyuridine (BrdU); (3) determining cell survival by colony formation in microtiter plates. LCLs established from xeroderma pigmentosum showed increased sensitivities to ultraviolet (354 nm) light and N-acetoxy-2-acetylaminofluorene (AAAF) as determined by DNA synthesis or colony formation and had diminished levels of excision-repair. Cockayne's syndrome LCLs, on the other hand, had increased sensitivities to ultraviolet (UV) light, AAAF and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) while showing near normal levels of DNA-repair after treatment with each agent. An LCL established from ataxia telangiectasia had decreased DNA repair synthesis and defective colony-forming ability following treatment with MNNG. LCLs, in addition to ease of establishment, appear likely to provide useful material for the study of DNA repair replication and its relationship to carcinogenesis.  相似文献   

13.
《Mutation Research Letters》1994,323(1-2):75-79
DNA strand breaks, measured by alkaline elution, and hypoxanthine guanine phosphoribosyltransferase (HPRT) mutation were studied in V79 cells after photochemical treatment (PCT) or exposure to X-rays. Cells were incubated with the photosensitizers Photofrin II (PII) and three closely related porphyrins tetra-(3-hydroxyphenyl) porphyrin (3THPP), meso-tetra-(4-sulfonatophenyl) porphine (TPPS4) and meso-tetra-(N-methyl-4-pyridyl) porphine (TMPyPH2). These dyes are assumed to act on cellular targets mainly via singlet oxygen when excited by light. While the hydrophilic TPPS4 and TMPyPH2 did not photoinduce mutants to any significant extent, both lipophilic dyes, 3THPP and PII, were significantly mutagenic when excited by light. On the other hand, TPPS4 was the most efficient sensitizer of alkali-labile DNA strand breaks, while TMPyPH2 did not induce any significant amount of either type of DNA damage. Surprisingly, no correlation between the two parameters was found for PCT, either after exposures inactivating 50% of the cells or after exposures inactivating 90% of them. The lack of correlation between the yields of DNA strand breaks and of mutants could not be explained by differences in the intracellular localization pattern of the dyes.  相似文献   

14.
The ability of the nitroso derivative of the drug cimetidine to interact with cellular macromolecules in the intact rat was investigated. Radiolabelled nitrosocimetidine (NC) was shown to methylate DNA in a variety of tissues in the rat after oral administration. Radioactivity was also detected in the RNA and protein extracted from these same tissues. Methylation of DNA by the parent compound, cimetidine, was not detected in any of the tissues studied. For comparison, the DNA methylation produced by the carcinogen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) dosed orally was measured. DNA alkylation by MNNG was found to be approx. 2–36 times greater than that produced by NC, varying with the tissues studied. The highest yield of DNA alkylation was found in the stomach for MNNG and the small intestine for nitrosocimetidine suggesting pharmacokinetic differences.  相似文献   

15.
Acceptor proteins for poly(adenosine diphosphoribosyl)ation were determined in resting human lymphocytes, in lymphocytes with N-methyl-N′-nitro-N-nitrosoguanidine-induced DNA damage and in lymphocytes stimulated to proliferate by phytohemagglutinin. Kinetic studies showed that the increase in ADP-ribosylation which occurred in response to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) treatment was greater in magnitude but more transient in duration than that which occurred in phytohemagglutinin-stimulated cells. Gel electrophoretic analyses revealed that MNNG treatment and phytohemagglutinin stimulation both caused an increase in ADP-ribosylation of poly(ADP-ribose) polymerase and core histones. In MNNG-treated cells, an increase in ADP-ribosylation of histone H1 was also observed. In contrast, phytohemagglutinin-stimulated cells showed no increase in ADP-ribosylation of histone H1. In MNNG-treated cells there was also ADP-ribosylation of a protein of molecular weight 62 000, while in phytohemagglutinin-stimulated cells there was a marked increase in ADP-ribosylation of a protein of molecular weight 96000. MNNG treatment of phytohemagglutinin-stimulated cells produced a pattern of ADP-ribosylation that appeared to be due to the combined effects of the individual treatments. 3-Aminobenzamide effectively inhibited ADP-ribosylation under all treatment conditions.  相似文献   

16.
p53 plays an important role in response to ionizing radiation by regulating cell cycle progression and triggering apoptosis. These activities are controlled, in part, by the phosphorylation of p53 by the protein kinase ATM. Recent evidence indicates that the monofunctional DNA alkylating agent N-methyl-N'-nitro-N- nitrosoguanidine (MNNG) also triggers up-regulation and phosphorylation of p53; however, the mechanism(s) responsible for this are unknown. We observed that in MNNG-treated normal human fibroblasts, up-regulation and phosphorylation of p53 was sensitive to the ATM kinase inhibitor wortmannin. ATM-deficient fibroblasts exhibited a delay in p53 up-regulation indicating a role for ATM in triggering the MNNG-induced response. Likewise, a mismatch repair (MMR)-deficient colorectal tumor line failed to show rapid up-regulation of p53. However, unlike ATM-deficient cells, these MMR-deficient cells displayed rapid phosphorylation of the p53 residue serine 15 after MNNG. In vitro kinase assays indicate that ATM is rapidly activated in both normal and MMR-deficient cells in response to MNNG. Using a number of morphological and biochemical approaches, we failed to observe MNNG-induced apoptosis in normal human fibroblasts, suggesting that apoptosis-induced DNA strand breaks are not required for the activation of ATM in response to MNNG. Comet assays indicated that strand breaks accumulated, and p53 up-regulation/phosphorylation occurred quite rapidly (within 30 min) after MNNG treatment, suggesting that DNA strand breaks that arise during the repair process activate ATM. These findings indicate that ATM activation is not limited to the ionizing radiation-induced response and potentially plays an important role in response to DNA alkylation.  相似文献   

17.
18.
Previous studies have demonstrated that phenolic compounds, including genistein (4′,5,7-trihydroxyisoflavone) and resveratrol (3,4′,5-trihydroxystilbene), are able to protect against carcinogenesis in animal models. This study was undertaken to examine the ability of genistein and resveratrol to inhibit reactive oxygen species (ROS)-mediated strand breaks in φX-174 plasmid DNA. H2O2/Cu(II) and hydroquinone/Cu(II) were used to cause oxidative DNA strand breaks in the plasmid DNA. We demonstrated that the presence of genistein at micromolar concentrations resulted in a marked inhibition of DNA strand breaks induced by either H2O2/Cu(II) or hydroquinone/Cu(II). Genistein neither affected the Cu(II)/Cu(I) redox cycle nor reacted with H2O2 suggest that genistein may directly scavenge the ROS that participate in the induction of DNA strand breaks. In contrast to the inhibitory effects of genistein, the presence of resveratrol at similar concentrations led to increased DNA strand breaks induced by H2O2/Cu(II). Further studies showed that in the presence of Cu(II), resveratrol, but not genistein was able to cause DNA strand breaks. Moreover, both Cu(II)/Cu(I) redox cycle and H2O2 were shown to be critically involved in resveratrol/copper-mediated DNA strand breaks. The above results indicate that despite their similar in vivo anticarcinogenic effects, genistein and resveratrol appear to exert different effects on oxidative DNA damage in vitro.  相似文献   

19.
Escherichia coli cells made permeable to deoxynucleoside triphosphates by brief treatment with toluene (permeablized) were used to measure the effect of the following chemical alkylating agents on either DNA replication or DNA repair synthesis: methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), N-methyl-N-nitrosourea (MNU), N-ethyl-N-nitrosourea (ENU), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and N-ethyl-N′-nitro-N-nitrosoguanidine (ENNG). Replication of DNA in this pseudo-in vivo system was completely inhibited 10–15 min after exposure to MMS at concentrations of 5 mM or higher or to MNU or MNNG at concentrations of 1 mM or higher. The ethyl derivatives of the alkylating agents were less inhibitory than their corresponding methyl derivatives, and inhibition of DNA replication occurred in the following order: EMS < ENNG < ENU. Maximum inhibition of DNA replication by all of the alkylating agents tested except EMS occurred at a concentration of 20 mM or lower. The extent of replication in cells exposed to EMS continued to decrease with concentrations of EMS up to 100 mM (the highest concentration tested).The experiments in which the inhibition of DNA replication by MMS, MNU, or MNNG was measured were repeated under similar assay conditions except that a density label was included and the DNA was banded in CsCl gradients. The bulk of the newly synthesized DNA from the untreated cells was found to be of the replicative (semi-conservative) type. The amount of replicative DNA decreased with increasing concentration of methylating agent in a manner similar to that observed in the incorporation experiments.Polymerase I (Pol I)-directed DNA repair synthesis induced by X-irradiation of permeablized cells was assayed under conditions that blocked the activity of DNA polymerases II and III. Exposure of cells to MNNG or ENNG at a concentration of 20 mM resulted in reductions in Pol I activity of 40 and 30%, respectively, compared with untreated controls. ENU was slightly inhibitory to Pol I activity, while MMS, EMS, and MNU all caused some enhancement of Pol I activity.These data show that DNA replication in a pseudo-in vivo bacterial system is particularly sensitive to the actions of known chemical mutagens, whereas DNA repair carried out by the Pol I repair enzyme is much less sensitive and in some cases apparently unaffected by such treatment. Possible mechanisms for this differential effect on DNA metabolism and its correlation with current theories of chemically induced mutagenesis and carcinogenesis are discussed.  相似文献   

20.
Methylating agents such as N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and methyl methane sulfonate (MMS) produce a wide variety of N- and O-methylated bases in DNA, some of which can block replication fork progression. Homologous recombination is a mechanism by which chromosome replication can proceed despite the presence of lesions. The two major recombination pathways, RecBCD and RecFOR, which repair double-strand breaks (DSBs) and single-strand gaps respectively, are needed to protect against toxicity with the RecBCD system being more important. We find that recombination-deficient cell lines, such as recBCD recF, and ruvC recG, are as sensitive to the cytotoxic effects of MMS and MNNG as the most base excision repair (BER)-deficient (alkA tag) isogenic mutant strain. Recombination and BER-deficient double mutants (alkA tag recBCD) were more sensitive to MNNG and MMS than the single mutants suggesting that homologous recombination and BER play essential independent roles. Cells deleted for the polA (DNA polymerase I) or priA (primosome) genes are as sensitive to MMS and MNNG as alkA tag bacteria. Our results suggest that the mechanism of cytotoxicity by alkylating agents includes the necessity for homologous recombination to repair DSBs and single-strand gaps produced by DNA replication at blocking lesions or single-strand nicks resulting from AP-endonuclease action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号