首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The effects of GBR-12909 (selective DA uptake inhibitor), zimelidine (selective 5-HT uptake inhibitor) and nisoxetine (selective NE uptake inhibitor) on the uptake of 30 nM [3H]DA into cultured rat astrocytes were examined. [3H]DA uptake was inhibited by approximately 50% by GBR-12909 or zimelidine in a concentration-dependent manner (100 nM to approximately 10 microM). Furthermore, the inhibition curves of GBR-12909 were biphasic, and uptake was completely inhibited by a high concentration of GBR-12909 (100 microM). [3H]DA uptake was also inhibited by approximately 50% by nisoxetine in a concentration-dependent manner (0.1 to approximately 100 nM), and nisoxetine was more potent than GBR-12909 or zimelidine. The inhibitory potencies were in the order nisoxetine > GBR-12909 > zimelidine. The uptake of [3H]DA under Na+-free conditions was approximately 50% of that under normal conditions. Thus, DA was taken up by both Na+-dependent and Na+-independent mechanisms. Nisoxetine (100 nM), zimelidine (100 microM) and GBR-12909 (10 microM) inhibited [3H]DA uptake into astrocytes only in the presence of Na+. On the other hand, this uptake was completely inhibited by a high concentration of GBR-12909 (100 microM) in the absence of Na+. The present data suggest that the Na+-dependent uptake of [3H]DA in cultured rat astrocytes may occur in the NE uptake system. Furthermore, astrocytes express the extraneuronal monoamine transporter (uptake2), which is an Na+-independent system, and this transporter is involved in the inactivation of centrally released DA.  相似文献   

2.
In the central nervous system (CNS), extracellular concentrations of amino acids (e.g., aspartate, glutamate) and divalent metals (e.g., zinc, copper, manganese) are primarily regulated by astrocytes. Adequate glutamate homeostasis and control over extracellular concentrations of these excitotoxic amino acids are essential for the normal functioning of the brain. Not only is glutamate of central importance for nitrogen metabolism but, along with aspartate, it is the primary mediator of excitatory pathways in the brain. Similarly, the maintenance of proper Mn levels is important for normal brain function. Brain glutamate is removed from the extracellular fluid mainly by astrocytes via high affinity astroglial Na+-dependent excitatory amino acid transporters, glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1). The effects of Mn on specific glutamate transporters have yet to be determined. As a first step in this process, we examined the effects of Mn on the transport of [D-2, 3-3H]D-aspartate, a non-metabolizable glutamate analog, in Chinese hamster ovary cells (CHO) transfected with two glutamate transporter subtypes, GLAST (EAAT1) or GLT-1 (EAAT2). Mn-mediated inhibition of glutamate transport in the CHO-K1 cell line DdB7 was pronounced in both the GLT-1 and GLAST transfected cells. This resulted in a statistically significant inhibition (p<0.05) of glutamate uptake compared with transfected control in the absence of Mn treatment. These studies suggest that Mn accumulation in the CNS might contribute to dysregulation of glutamate homeostasis.  相似文献   

3.
Na+-coupled carboxylate transporters (NaCs) mediate the uptake of tricarboxylic acid cycle intermediates in mammalian tissues. Of these transporters, NaC3 (formerly known as Na+-coupled dicarboxylate transporter 3, NaDC3/SDCT2) and NaC2 (formerly known as Na+-coupled citrate transporter, NaCT) have been shown to be expressed in brain. There is, however, little information available on the precise distribution and function of both transporters in the CNS. In the present study, we investigated the functional characteristics of Na+-dependent succinate and citrate transport in primary cultures of astrocytes and neurons from rat cerebral cortex. Uptake of succinate was Na+ dependent, Li+ sensitive and saturable with a Michaelis constant (Kt) value of 28.4 microM in rat astrocytes. Na+ activation kinetics revealed that the Na+ to succinate stoichiometry was 3:1 and the concentration of Na+ necessary for half-maximal transport was 53 mM. Although uptake of citrate in astrocytes was also Na+ dependent and saturable, its Kt value was significantly higher (approximately 1.2 mM) than that of succinate. Unlabeled succinate (2 mM) inhibited Na+-dependent [14C]succinate (18 microM) and [14C]citrate (4.5 microM) transport completely, whereas unlabeled citrate inhibited Na+-dependent [14C]succinate uptake more weakly. Interestingly, N-acetyl-L-aspartate, which is the second most abundant amino acid in the nervous system, also completely inhibited Na+-dependent succinate transport in rat astrocytes. The inhibition constant (Ki) for the inhibition of [14C]succinate uptake by unlabeled succinate, N-acetyl-L-aspartate and citrate was 15.9, 155 and 764 microM respectively. In primary cultures of neurons, uptake of citrate was also Na+ dependent and saturable with a Kt value of 16.2 microM, which was different from that observed in astrocytes, suggesting that different Na+-dependent citrate transport systems are expressed in neurons and astrocytes. RT-PCR and immunocytochemistry revealed that NaC3 and NaC2 are expressed in cerebrocortical astrocytes and neurons respectively. These results are in good agreement with our previous reports on the brain distribution pattern of NaC2 and NaC3 mRNA using in situ hybridization. This is the first report of the differential expression of different NaCs in astrocytes and neurons. These transporters might play important roles in the trafficking of tricarboxylic acid cycle intermediates and related metabolites between glia and neurons.  相似文献   

4.
The brain efflux index method has been used to clarify the mechanism of efflux transport of acidic amino acids such as L-aspartic acid (L-Asp), L-glutamic acid (L-Glu), and D-aspartic acid (D-Asp) across the blood-brain barrier (BBB). About 85% of L-[3H]Asp and 40% of L-[3H]Glu was eliminated from the ipsilateral cerebrum within, respectively, 10 and 20 min of microinjection into the brain. The efflux rate constant of L-[3H]Asp and L-[3H]Glu was 0.207 and 0.0346 min(-1), respectively. However, D-[3H]Asp was not eliminated from brain over a 20-min period. The efflux of L-[3H]Asp and L-[3H]Glu was inhibited in the presence of excess unlabeled L-Asp and L-Glu, whereas D-Asp did not inhibit either form of efflux transport. Aspartic acid efflux across the BBB appears to be stereospecific. Using a combination of TLC and the bioimaging analysis, attempts were made to detect the metabolites of L-[3H]Asp and L-[3H]Glu in the ipsilateral cerebrum and jugular vein plasma following a microinjection into parietal cortex, area 2. Significant amounts of intact L-[3H]Asp and L-[3H]Glu were found in all samples examined, including jugular vein plasma, providing direct evidence that at least a part of the L-Asp and L-Glu in the brain interstitial fluid is transported across the BBB in the intact form. To compare the transport of acidic amino acids using brain parenchymal cells, brain slice uptake studies were performed. Although the slice-to-medium ratio of D-[3H]Asp was the highest, followed by L-[3H]Glu and L-[3H]Asp, the initial uptake rate did not differ for both L-[3H]Asp and D-[3H]Asp, suggesting that the uptake of aspartic acid in brain parenchymal cells is not stereospecific. These results provide evidence that the BBB may act as an efflux pump for L-Asp and L-Glu to reduce the brain interstitial fluid concentration and act as a static wall for D-Asp.  相似文献   

5.
The release of preaccumulated gamma-amino[3H]butyric acid ([3H]GABA) from putative GABAergic amacrine cells was studied in neuronal monolayer cultures made from embryonic chick retina. Release was specifically stimulated by excitatory amino acid agonists. N-Methyl-D-aspartate (NMDA; EC50, 19.1 +/- 5.0 microM), kainic acid (EC50, 15.6 +/- 2.3 microM), and the presumptive endogenous ligand glutamate (EC50, 3.6 +/- 0.5 microM) showed the same efficacy. Quisqualic acid, although the most potent agonist (EC50, 0.56 +/- 0.12 microM), was only half as efficacious. The time course of [3H]GABA release and autoradiographic visualization of responsive GABA-accumulating cells suggest that approximately 50% of the [3H]GABA-accumulating cells possess no or very low responsiveness to quisqualic acid. Depolarization (56 mM KCl)-induced release was fivefold lower than the maximal effect elicited by excitatory amino acids. Release of [3H]GABA and of endogenous GABA was entirely independent of extracellular Ca2+ but was completely abolished after replacement of Na+ by choline or Li+. The effects of NMDA and low concentrations of glutamate (up to 10 microM) were blocked by 2-amino-5-phosphonovaleric acid, by MK 801, and (in a voltage-dependent manner) by Mg2+. The reduction of NMDA responses by kynurenic acid was reversed by D-serine, and quisqualic acid competitively inhibited kainic acid-evoked release. Our results show that the cultured [3H]GABA-accumulating neurons, which probably represent the in vitro counterparts of GABAergic amacrine cells, express at least two types of excitatory amino acid receptors (of the NMDA and non-NMDA type), both of which can mediate a Ca2(+)-independent but Na2(+)-dependent release of GABA.  相似文献   

6.
A predominantly neurological presentation is common in patients with glutaric acidemia type I (GA-I). 3-hydroxyglutaric acid (3-OHGA), which accumulates in affected patients, has recently been demonstrated to play a central role in the neuropathogenesis of this disease. In the present study, we investigated the in vitro effects of 3-OHGA at concentrations ranging from 10 to 1000 microM on various parameters of the glutamatergic system, such as the basal and potassium-induced release of [3H]glutamate by synaptosomes, as well as on Na+-dependent [3H]glutamate uptake by synaptosomes and astrocytes and Na+-independent [3H]glutamate uptake by synaptic vesicles from cerebral cortex of 30-day-old Wistar rats. First, we observed that exposure of cultured astrocytes to 3-OHGA for 20 h did not reduce their viability. Furthermore, 3-OHGA significantly increased Na+-dependent [3H]glutamate uptake by astrocytes by up to 80% in a dose-dependent manner at doses as low as 30 microM. This effect was not dependent on the presence of the metabolite during the uptake assay, since it occurred even when 3-OHGA was withdrawn from the medium after cultured cells had been exposed to the acid for approximately 1 h. All other parameters investigated were not influenced by this organic acid, indicating a selective action of 3-OHGA on astrocyte transporters. Although the exact mechanisms involved in 3-OHGA-stimulatory effect on astrocyte glutamate uptake are unknown, the present findings contribute to the understanding of the pathophysiology of GA-I, suggesting that astrocytes may protect neurons against excitotoxic damage caused by 3-OHGA by increasing glutamate uptake and therefore reducing the concentration of this excitatory neurotransmitter in the synaptic cleft.  相似文献   

7.
Mouse ileal sodium dependent bile acid transporter (ISBT) was characterized using isolated enterocytes. Only enterocytes from the most distal portion showed Na+-dependent [3H]taurocholate uptake. Northern blot analysis using a probe against mouse ISBT revealed the expression of mouse ISBT mRNA to be restricted to the distal ileum. The Km and Vmax for Na+-dependent [3H]taurocholate transport into isolated ileocytes were calculated as 27 microM and 360 pmol/mg protein/min, respectively. Uptake of [3H]taurocholate was inhibited by N-ethylmaleimide. We have cloned ISBT cDNA from mouse ileum. The cDNA included the entire open reading frame coding 348 amino acid protein with seven hydrophobic segments and two N-glycosylation sites. COS-7 cells transfected with the expression vector containing this cDNA expressed Na+-dependent [3H]taurocholate uptake activity with a Km of 34 microM.  相似文献   

8.
Glycine is the principal inhibitory neurotransmitter in posterior regions of the brain. In addition, glycine serves as an allosteric regulator of excitatory neurotransmission mediated by the N-methyl-D-aspartate (NMDA) acidic amino acid receptor subtype. The studies presented here characterize [3H]glycine binding to washed membranes prepared from rat spinal cord and cortex, areas enriched in glycine inhibitory and NMDA receptors, respectively, in an attempt to define the glycine recognition sites on the two classes of receptors. Specific binding for [3H]glycine was seen in both cortex and spinal cord. Saturation analyses in cortex were best fitted by a two-site model with respective equilibrium dissociation constants (KD values) of 0.24 and 5.6 microM and respective maximal binding constants (Bmax values) of 3.4 and 26.7 pmol/mg of protein. Similar analyses in spinal cord were best fitted by a one-site model with a KD of 5.8 microM and Bmax of 20.2 pmol/mg of protein. Na+ had no effect on [3H]glycine binding to cortical membranes but increased the binding to spinal cord membranes by greater than 15-fold. This Na+-dependent binding may reflect glycine binding to the recognition site of the high-affinity, Na+-dependent glycine uptake system. Several short-chain, neutral amino acids displaced [3H]glycine binding from both cortical and spinal cord membranes. The most potent displacers of [3H]glycine binding to cortical membranes were D-serine and D-alanine, followed by the L-isomers of serine and alanine and beta-alanine. In contrast, D-serine and D-alanine were similar in potency to L-serine in spinal cord membranes. Compounds active at receptors for the acidic amino acids had disparate effects on the binding of [3H]glycine. At 10 microM, NMDA resulted in a 25% increase, whereas D- and L-2-amino-5-phosphonovaleric acid at 100 microM resulted in a 30% decrease, in [3H]glycine binding to cortical membranes. Kynurenic acid was the most potent of the acidic amino acid-related compounds at displacing [3H]glycine binding. In cortical membranes, kynurenic acid displacement was resolved into a high- and a low-affinity component; the high-affinity component displaced the high-affinity component of [3H]glycine binding.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Membrane fractions prepared from astrocytes grown in culture exhibit a specific binding site for L-[3H]glutamate that is Cl--dependent and Na+-independent. The binding site is a single saturable site with a KD of about 0.5 microM, is inhibited by L-aspartate, L-cysteate, and quisqualate, and is insensitive to kainate, N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate, and 2-amino-4-phosphonobutyrate. The pharmacological characteristics of the binding site indicate that it is distinct from any site previously described in synaptic membrane preparations. Comparisons of ionic requirements, ligand specificity, and inhibitor sensitivities, however, suggest the described binding is the first step in a Cl--dependent high-affinity glutamate uptake system. Such binding studies provide a useful model system in which to investigate the close association between excitatory amino acids, astrocytes, the termination of glutamate's excitatory action by high-affinity uptake, and the excitotoxic action of acidic amino acids in membranes of a single cell type.  相似文献   

10.
The cellular uptake of D-aspartic acid (D-Asp) as a model compound for glutamic acid transport was studied in rat hippocampal slices. D-Asp is accumulated by both Na(+)-dependent and Na(+)-independent processes in hippocampal slices, and both processes are dependent on temperature. The Na(+)-dependent uptake is assumed to be high in affinity (apparent Km = 0.17 mM), but low in capacity, whereas the Na(+)-independent uptake is much lower in affinity (Km = 2.86 mM), but higher in capacity. L-Aspartic acid, L-glutamic acid, dihydrokainic acid, and threo-3-hydroxy-DL-aspartic acid markedly inhibited the uptake of D-Asp with Na+ in the medium, whereas D-glutamic acid, glycine, and L-lysine had no significant effect. The Na(+)-dependent uptake of D-Asp was significantly reduced under "hypoglycemic," "anoxic," and "ischemic" conditions, whereas the Na(+)-independent uptake was unaffected. Metabolic inhibitors such as NaCN and ICH2COOH significantly inhibited the Na(+)-dependent uptake, but not the Na(+)-independent uptake. These results suggest that the Na(+)-dependent component of D-Asp transport in rat hippocampal cells is inactivated under ischemic conditions, whereas the Na(+)-independent component is unaffected.  相似文献   

11.
Na+-dependent uptake of dicarboxylic amino acids in membrane saccules, due to exchange diffusion and independent of ion gradients, was highly sensitive to inhibition by K+. The IC50 was 1-2 mM under a variety of conditions (i.e., whole tissue or synaptic membranes, frozen/thawed or fresh, D-[3H]aspartate (10-1000 nM) or L-[3H]glutamate (100 nM), phosphate or Tris buffer, NaCl or Na acetate, presence or absence of Ca2+ and Mg2+). The degree of inhibition by K+ was also not affected on removal of ion gradients by ionophores, or by extensive washing with H2O and reloading of membrane saccules with glutamate and incubation medium in the presence or absence of K+ (3 mM, i.e., IC70). Rb+, NH4+, and, to a lesser degree Cs+, but not Li+, could substitute for K+. [K+] showed a competitive relationship to [Na+]2. Incubation with K+ before or after uptake suggested that the ion acts in part by allowing net efflux, thus reducing the internal pool of amino acid against which D-[3H]aspartate exchanges, and in part by inhibiting the interaction of Na+ and D-[3H]aspartate with the transporter. The current model of the Na+-dependent high-affinity acidic amino acid transport carrier allows the observations to be explained and reconciled with previous seemingly conflicting reports on stimulation of acidic amino acid uptake by low concentrations of K+. The findings correct the interpretation of recent reports on a K+-induced inhibition of Na+-dependent "binding" of glutamate and aspartate, and partly elucidate the mechanism of action.  相似文献   

12.
The action of the polyether antibiotic monensin on the release of gamma-[3H]amino-n-butyric acid [( 3H]GABA) from mouse brain synaptosomes is characterized. Monensin enhances the release of this amino acid transmitter in a dose-dependent manner and does not modify the efflux of the nontransmitter amino acid alpha-[3H]aminoisobutyrate. The absence of external Ca2+ fails to prevent the stimulatory effect of monensin on [3H]GABA release. Furthermore, monensin is less effective in stimulating [3H]GABA release in the presence of Ca2+. The releasing response to monensin is absolutely dependent on external Na+. The blockade of voltage-sensitive Na+ or Ca2+ channels does not modify monensin-induced release of the transmitter. Also, the blockade of the GABA uptake pathway fails to prevent the stimulatory effect of monensin on [3H]GABA release. Although monensin markedly increases Na+ permeability in synaptosomes, these data indicate that the Ca2+-independent monensin-stimulated transmitter release is not mediated by the Na+-dependent uptake pathway. It is concluded that the entrance of Na+ through monensin molecules inserted in the presynaptic membrane might be sufficient to initiate the intraterminal molecular events underlying transmitter release.  相似文献   

13.
Using cerebellar, neuron-enriched primary cultures, we have studied the glutamate receptor subtypes coupled to neurotransmitter amino acid release. Acute exposure of the cultures to micromolar concentrations of kainate and quisqualate stimulated D-[3H]aspartate release, whereas N-methyl-D-aspartate, as well as dihydrokainic acid, were ineffective. The effect of kainic acid was concentration dependent in the concentration range of 20-100 microM. Quisqualic acid was effective at lower concentrations, with maximal releasing activity at about 50 microM. Kainate and dihydrokainate (20-100 microM) inhibited the initial rate of D-[3H]aspartate uptake into cultured granule cells, whereas quisqualate and N-methyl-DL-aspartate were ineffective. D-[3H]Aspartate uptake into confluent cerebellar astrocyte cultures was not affected by kainic acid. The stimulatory effect of kainic acid on D-[3H]aspartate release was Na+ independent, and partly Ca2+ dependent; the effect of quisqualate was Na+ and Ca2+ independent. Kynurenic acid (50-200 microM) and, to a lesser extent, 2,3-cis-piperidine dicarboxylic acid (100-200 microM) antagonized the stimulatory effect of kainate but not that of quisqualate. Kainic and quisqualic acid (20-100 microM) also stimulated gamma-[3H]-aminobutyric acid release from cerebellar cultures, and kynurenic acid antagonized the effect of kainate but not that of quisqualate. In conclusion, kainic acid and quisqualic acid appear to activate two different excitatory amino acid receptor subtypes, both coupled to neurotransmitter amino acid release. Moreover, kainate inhibits D-[3H]aspartate neuronal uptake by interfering with the acidic amino acid high-affinity transport system.  相似文献   

14.
Recent studies have shown that N(6),2'-O-dibutyryladenosine 3':5' cyclic monophosphate (dbcAMP) increases the expression of specific subtypes of Na(+)-dependent glutamate transporters in cultured astrocytes. Our group also found that treatment of astrocytes with dbcAMP for several days increases the Na(+)-independent accumulation of L-[3H]glutamate. In this study, the properties of this Na(+)-independent accumulation were characterized, and the mechanism by which dbcAMP up-regulates this process was investigated. This accumulation was markedly reduced in the absence of Cl(-) and was also inhibited by several anion-exchange inhibitors, including 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, 4,4'-dinitrostilbene-2,2'-disulfonic acid and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid, suggesting that this activity is mediated by a Cl(-)-dependent transporter. In addition, this activity was inhibited by micromolar concentrations of several inhibitors of another Cl(-)-dependent (Na(+)-independent) transport activity frequently referred to as system xc(-) (L-cystine, L-alpha-aminoadipate, L-homocysteate, quisqualate, beta-N-oxalyl-l-alpha,beta-diaminopropionate, ibotenate). This activity was competitively inhibited by several phenylglycine derivatives previously characterized as inhibitors of metabotropic glutamate receptor activation. The concentration-dependence for Na(+)-independent, Cl(-)-dependent L-[3H]glutamate uptake activity was compared for dbcAMP-treated and untreated astrocytes. Treatment with dbcAMP increased the V(max) of this Cl(-)-dependent transport activity by sixfold but had no effect on the K(m) value. System xc(-) requires two subunits, xCT and 4F2hc/CD98, to reconstitute functional activity. We found that dbcAMP caused a twofold increase in the levels of xCT mRNA and a sevenfold increase in the levels of 4F2hc/CD98 protein. This study indicates that dbcAMP up-regulates Cl(-)-dependent L-[3H]glutamate transport activity in astrocytes and suggests that this effect is related to increased expression of both subunits of system xc(-). Because this activity is thought to be important for the synthesis of glutathione and protection from oxidant injury, understanding the regulation of system xc(-) may provide alternate approaches to limit this form of injury.  相似文献   

15.
Glutamate (10-100 microM) reversibly depolarizes guinea-pig cerebral cortical synaptosomes. This does not appear to be because of a conventional autoreceptor. Neither kainate at 1 mM, 100 microM N-methyl-D-aspartate (NMDA), 100 microM L-2-amino-4-phosphonobutanoate (APB), nor 100 microM quisqualate affects the Ca2+-dependent release of glutamate from suboptimally depolarized synaptosomes. However, kainate, quisqualate, and the quisqualate agonists beta-N-oxalylamino-L-alanine and alpha-amino-3-hydroxy-5-methylisoxazole propionate cause a slow Ca2+-independent release of glutamate from polarized synaptosomes. However, unlike kainate, quisqualate does not inhibit the acidic amino acid carrier. APB, NMDA, and the NMDA receptor-mediated neurotoxin beta-N-methylamino-L-alanine do not influence Ca2+-independent release at 100 microM. The depolarization of the plasma membrane by glutamate can be mimicked by D-aspartate, can be blocked by the transport inhibitor dihydrokainate, and is accompanied by the net uptake of acidic amino acids. L-Glutamate or D-aspartate at 100 microM increases the cytoplasmic free Ca2+ concentration. D-aspartate at 100 microM causes a Ca2+-dependent release of endogenous glutamate, superimposed on the Ca2+-independent heteroexchange with glutamate through the acidic amino acid carrier. The results suggest that the glutamatergic subpopulation of synaptosomes can be depolarized by exogenous glutamate.  相似文献   

16.
The specific binding of L-[3H]glutamate was investigated in the presence and the absence of sodium ions in freshly prepared membranes from rat hippocampus. Sodium ions were found to have a biphasic effect; low concentrations induced a marked inhibition of the binding (in the range 0.5-5.0 mM), whereas higher concentrations resulted in a dose-dependent stimulation of binding (in the range 10-150 mM). These results permit the discrimination of two binding sites in hippocampal membranes. Both Na+-independent and Na+-dependent binding sites were saturable, exhibiting dissociation constants at 30 degrees C of 750 nM and 2.4 microM, respectively, with Hill coefficients not significantly different from unity, and maximal number of sites of 6.5 and 75 pmol/mg protein, respectively. [3H]Glutamate binding to both sites reached equilibrium between 5 and 10 min and was reversible. The relative potencies of a wide range of compounds, with known pharmacological activities, to inhibit [3H]glutamate binding were very different for the Na+-independent and Na+-dependent binding and suggested that the former sites were related to post-synaptic glutamate receptors, whereas the latter were related to high-affinity uptake sites. This conclusion was also supported by the considerable variation in the regional distribution of the Na+-dependent binding site, which paralleled that of the high-affinity glutamate uptake; the Na+-independent binding exhibited less regional variation.  相似文献   

17.
RT-PCR of RNA isolated from monolayers of the human colonic epithelial cell lines T84 and Caco-2 demonstrated the presence of mRNA for the two cloned Na+-independent equilibrative nucleoside transporters, ENT1 and ENT2, but not for the cloned Na+-dependent concentrative nucleoside transporters, CNT1 and CNT2. Uptake of [3H]uridine by cell monolayers in balanced Na+-containing and Na+-free media confirmed the presence of only Na+-independent nucleoside transport mechanisms. This uptake was decreased by 70-75% in the presence of 1 microM nitrobenzylthioinosine, a concentration that completely inhibits ENT1, and was completely blocked by the addition of 10 microM dipyridamole, a concentration that inhibits both ENT1 and ENT2. These findings indicate the presence in T84 and Caco-2 cells of two functional Na+-independent equilibrative nucleoside transporters, ENT1 and ENT2.  相似文献   

18.
We discovered and characterized a novel type D-aspartyl endopeptidase (DAEP) produced extracellularly by Paenibacillus sp. B38. This bacterial DAEP of M(r) 34,798 (named paenidase) appeared to be converted into a smaller form of M(r) 34,169 by the proteolytic removal of 5 amino acid residues from the N-terminal. The intact and modified forms of the enzyme displayed essentially the same enzymatic properties. The enzyme specifically hydrolyzed succinyl-D-aspartic acid alpha-(p-nitroanilide) and succinyl-D-aspartic acid alpha-(4-methylcoumaryl-7-amide) to generate p-nitroaniline and 7-amino-4-methylcoumarin, and internally cleaved a synthetic peptide (D-A-E-F-R-H-[D-Asp]-G-S-Y) of the [D-Asp](7) amyloid beta (Abeta) protein between [D-Asp](7)-G(8). Either was totally inert to the normal Abeta peptide sequence containing L-Asp, instead of D-Asp at the 7th position. Thus, paenidase is the first DAEP from a microorganism that specifically recognizes an internal D-Asp residue to cleave [D-Asp]-X peptide bonds.  相似文献   

19.
Chronic exposure to excessive manganese (Mn) can lead to manganism, a type of neurotoxicity accomplished with extracellular glutamate (Glu) accumulation. To investigate this accumulation, this study focused on the role of astrocyte glutamate transporters (GluTs) and glutamine synthetase (GS), which have roles in Glu transport and metabolism, respectively. And the possible protective effects of riluzole (a glutamatergic modulator) were studied in relation to Mn exposure. At first, the astrocytes were exposed to 0, 125, 250, and 500 μM MnCl(2) for 24 h, and 100 μM riluzole was pretreated to astrocytes for 6 h before 500 μM MnCl(2) exposure. Then, [(3)H]-glutamate uptake was measured by liquid scintillation counting; Na(+)-K(+) ATPase and GS activities were determined by a colorimetric method; glutamate/aspartate transporter (GLAST), glutamate transporter-1 (GLT-1), and GS mRNA expression were determined by RT-PCR and protein levels were measured by western blotting. The results showed that Mn inhibited Glu uptake, Na(+)-K(+) ATPase and GS activities, GLAST, GLT-1, and GS mRNA, and protein in a concentration-dependent manner. And they were significantly higher for astrocytes pretreated with 100 μM riluzole than the group exposed to 500 μM MnCl(2). The results suggested that Mn disrupted Glu transport and metabolism by inhibiting GluTs and GS. Riluzole activated protective effects on enhancing GluTs and GS to reverse Glu accumulation. In conclusion, Mn exposure results in the disruption of GLAST, GLT-1, and GS expression and function. Furthermore, riluzole attenuates this Mn toxicity.  相似文献   

20.
In unwashed brain membranes taurine produced an inhibition of [3H]flunitrazepam [( 3H]FNZ) binding with IC50 ranging between 31.5 and 11.9 microM; the IC20 varied between 18 and 26 nM. This inhibitory effect was of a mixed type, with a reduction in Bmax and an increase in KD. Various precursors and metabolites of taurine have a less inhibitory effect. Taurine also has little inhibitory effect (IC50 above 500 microM) on the binding of [3H]ethyl-beta-carboline-3-carboxylate. In extensively washed membranes, 10(-5) M taurine produces a 16-21% increase in the binding of [3H]FNZ while 10(-5) M gamma-aminobutyric acid (GABA) increases it between 31 and 42%. However, if 10(-5) M GABA plus 10(-5) M taurine is included in the assay there is a dramatic inhibitory effect. Taurine causes an inhibition of the GABAergic enhancement of [3H]FNZ binding with an IC50 between 7.3 and 7.8 microM. Binding experiments with [3H]taurine done under different conditions failed to detect a Na+-independent and specific [3H]taurine receptor. These results suggest that endogenous taurine, the second most abundant free amino acid in brain, may play an important modulatory role in the GABA-benzodiazepine receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号