首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant competition and disease in genetically diverse wheat populations   总被引:5,自引:0,他引:5  
Summary The direct and indirect effects of plant genetic diversity on epidemics and the influence of disease on plant competition were investigated using the wheat (Triticum aestivum)/stripe rust (Puccinia striiformis) system. Replacement series consisting of a susceptible and a resistant wheat genotype or two wheat genotypes susceptible to different races of stripe rust were grown in the presence and absence of the pathogen. Stripe rust severity, number of seed heads, seed yield, and seed weight were determined separately for each wheat genotype in the mixtures and the pure stands. The frequency of susceptible genotypes in a mixture explained up to 67% of the variation in disease severity. However, competitive interactions among plant genotypes sometimes appeared to alter susceptibility and obscured the relationship. In pure stands of single genotypes, disease severity explained between 52 and 58% of the variation in seed yield. In mixtures, coefficients of determination were only 10 and 31%, suggesting a strong influence of plant-plant interactions on seed yield. These results suggest that host-parasite coevolutionary models need to account for the strong effect that specific plant genotype combinations may have on disease severity and plant reproduction.Paper No. 9818 of the journal series of the Oregon Agricultural Experiment Station  相似文献   

2.
The number of genes controlling slow rusting resistance to leaf rust (Puccinia triticina) was estimated in five spring wheat (Triticum aestivum) cultivars using quantitative formulae. Parents and F6 families were evaluated in replicated field trials under epidemics initiated by artificial inoculation. The F6 families resulted from a diallel cross involving the fast-rusting cultivar Yecora 70 and five slow-rusting wheat cultivars: Sonoita 81, Tanager ‘S’, Galvez 87, Ures 81, and Moncho ‘S’. The area under the disease progress curve (AUDPC) was used to measure leaf rust severity over time. Results indicate that cultivar Sonoita 81 has three or four genes, Tanager ‘S’ has two or three genes, Galvez 87 has three genes, and both Ures 81 and Moncho ‘S’ have two genes for slow rusting resistance to leaf rust. Based on this result and previously reported moderate to high narrow-sense heritability estimates for slow rusting resistance in these materials, early-generation selection for slow leaf rusting would be effective.  相似文献   

3.
4.
Race‐specific resistance of wheat (Triticum aestivum L.) to yellow rust caused by Puccinia striiformis Westend. f.sp. tritici is often short‐lived. Slow‐rusting resistance has been reported to be a more durable type of resistance. A set of sixteen bread wheat varieties along with a susceptible control Morocco was tested during 2004–05 to 2006–07 in field plots at Peshawar (Pakistan) to identify slow rusting genotypes through epidemiological variables including final rust severity (FRS), apparent infection rate (r), area under disease progress curve (AUDPC), average coefficients of infection (ACI) and leaf tip necrosis (LTN). Epidemiological parameters of resistance were significantly (P < 0.01) different for years/varieties in three seasons, while variety × year interactions remained non‐significant. Sequence tagged site (STS) marker, csLV34 analyses revealed that cultivars Faisalabad‐83, Bahawalpur‐95, Suleman‐96, Punjab‐96, Bakhtawar‐93, Faisalabad‐85, Shahkar‐95 and Kohsar‐95 possessed Yr18 linked allele. Faisalabad‐83, Bahawalpur‐95, Suleman‐96, Punjab‐96, Bakhtawar‐93 and Faisalabad‐85 were relatively more stable over 3‐years where FRS, AUDPC and r values reduced by 80, 84 and 70% respectively compared to control Morocco. These six varieties therefore could be exploited for the deployment of Yr18 in breeding for slow rusting in wheat. Both FRS and ACI are suitable parameters for phenotypic selection.  相似文献   

5.
A genetic linkage map, based on a cross between the synthetic hexaploid CPI133872 and the bread wheat cultivar Janz, was established using 111 F1-derived doubled haploid lines. The population was phenotyped in multiple years and/or locations for seven disease resistance traits, namely, Septoria tritici blotch (Mycosphaeralla graminicola), yellow leaf spot also known as tan spot (Pyrenophora tritici-repentis), stripe rust (Puccinia striiformis f. sp. tritici), leaf rust (Puccinia triticina), stem rust (Puccinia graminis f. sp. tritici) and two species of root-lesion nematode (Pratylenchyus thornei and P. neglectus). The DH population was also scored for coleoptile colour and the presence of the seedling leaf rust resistance gene Lr24. Implementation of a multiple-QTL model identified a tightly linked cluster of foliar disease resistance QTL in chromosome 3DL. Major QTL each for resistance to Septoria tritici blotch and yellow leaf spot were contributed by the synthetic hexaploid parent CPI133872 and linked in repulsion with the coincident Lr24/Sr24 locus carried by parent Janz. This is the first report of linked QTL for Septoria tritici blotch and yellow leaf spot contributed by the same parent. Additional QTL for yellow leaf spot were detected in 5AS and 5BL. Consistent QTL for stripe rust resistance were identified in chromosomes 1BL, 4BL and 7DS, with the QTL in 7DS corresponding to the Yr18/Lr34 region. Three major QTL for P. thornei resistance (2BS, 6DS, 6DL) and two for P. neglectus resistance (2BS, 6DS) were detected. The recombinants combining resistance to Septoria tritici blotch, yellow leaf spot, rust diseases and root-lesion nematodes from parents CPI133872 and Janz constitute valuable germplasm for the transfer of multiple disease resistance into new wheat cultivars.  相似文献   

6.
7.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is the most devastating wheat disease in China. Early and accurate detection of the pathogens would facilitate effective control of the diseases. DNA‐based methods now provide essential tools for accurate plant disease diagnosis. In this study, inter‐simple sequence repeats (ISSR) technique has been successfully applied to develop a sequence‐characterized amplified region (SCAR) marker for diagnosis of stripe rust of wheat and detection of Pst. In this study, one fragment unique to Pst was identified by ISSR and then sequenced. Based on the specific fragment, a pair of SCAR primers (616AF/616AR) was designed to amplify a 299‐bp DNA fragment within the sequenced region. The primers can amplify a unique DNA fragment for all tested isolates of Pst but not for the other pathogens of wheat leaves and the uninfected leaves. The polymerase chain reaction (PCR) assay could detect as low as 0.1 ng of genomic DNA in a 25.0 μl PCR reaction mixture and detect the pathogen from asymptomatic wheat leaves inoculated with Pst under glasshouse conditions.  相似文献   

8.
A model of the effect of foliar-applied fungicides on disease-induced yield loss is described, parameterised and tested. The effects of fungicides on epidemics of Septoria tritici (leaf blotch), Puccinia striiformis (yellow rust), Blumeria graminis f.sp. tritici (powdery mildew) and Puccinia triticina (brown rust) on winter wheat were simulated using dose–response curve parameters. Where two or more active substances were applied together, their joint action was estimated using an additive dose model where the active substances had the same mode of action or a multiplicative survival model where the modes of action differed. By coupling the model with models of wheat canopy growth and foliar disease published previously, it was possible to estimate disease-induced yield loss for a prescribed fungicide programme. The difference in green canopy area and, hence, interception of photosynthetically active radiation between simulated undiseased and diseased (but treated) crop canopies was used to estimate yield loss. The model was tested against data from field experiments across a range of sites, seasons and wheat cultivars and was shown to predict the observed disease-induced yield loss with sufficient accuracy to support fungicide treatment decisions. A simple method of accounting for uncertainty in the predictions of yield loss is described. Fungicide product, dose and spray timing combinations selected using the coupled models responded appropriately to disease pressure and cultivar disease resistance.  相似文献   

9.
The genetic variability and collection structure of the wheat leaf rust fungus Puccinia recondita collected from four agro‐ecological areas of Morocco, Abda‐doukala, Chaouia‐Tadla, Gharb and Tangérois were investigated by amplified fragment length polymorphism (AFLP) markers. A set of five AFLP primers combinations which generated 253 polymorphic loci were used. Hierarchical partitioning revealed that bread wheat collections of Puccinia recondita form a single collection. No significant variation was observed between durum wheat collections of Puccinia recondita; they maintained most of the genetic variability within rather among collections. The distribution pattern of genetic variation of Puccinia recondita collections seems to be the result of high gene flow and the mixed reproduction system.  相似文献   

10.
Stripe rust caused by Puccinia striiformis f.sp. tritici is the most serious disease of wheat globally including south‐eastern Anatolia of Turkey, where wheat originated. In this study, 12 spring wheat genotypes were artificially inoculated and preserved in two locations, Diyarbak?r and Ad?yaman, during the 2011–2012 season to investigate loss in yield and yield components. Genotypes were evaluated at the adult plant stage using two partial resistance parameters: final disease severity and area under the disease progress curve (AUDPC). AUDPC ranged from 14.8 to 860 in Diyarbak?r, and 74 to 760 in Ad?yaman. Yield loss ranged from 0.6 to 68.5% in Diyarbak?r and 9.8 to 56.8% in Ad?yaman. Genotypes G1, G5, G7 and G8 were found to lose less yield, while higher yield loss was observed in G3, G4 (Nurkent), G5 and G9 (Karacada?‐98). The highest loss in thousand kernel weight was observed in a susceptible cultivar Karacada?‐98 in Diyarbak?r followed by 43.4 and 24.4% in Ad?yaman. Test weight loss reached 8.89% in Diyarbak?r and 20.8% in Ad?yaman. Yield loss and AUDPC had a positive significant relationship. Based on the values of AUDPC, final disease severity and yield loss, three major clusters were formed for 12 wheat genotypes. Partially resistant genotypes were found to lose less grain yield and seemed to be stronger against severe stripe rust pressure.  相似文献   

11.
We report the characterization of 12 microsatellite markers in the biotrophic fungus Puccinia striiformis f.sp. tritici, responsible for yellow rust on wheat. An enrichment protocol was used to isolate microsatellite loci, and polymorphism was explored with 96 isolates from natural populations collected from several French and Chinese locations. Eight primers (67%) showed cross‐amplification when tested with eight isolates of P. triticina.  相似文献   

12.
An innovative application of X‐ray absorption near edge structure (XANES) spectroscopy for the characterization of interactions of biotrophic plant pathogens with their hosts as exemplified by Puccinia triticina colonizing wheat leaves is described. Spatially resolved, synchrotron radiation‐based XANES spectroscopy was used for the detection of changes in sulphur metabolism induced by leaf rust infections. A significant accumulation of sulphate occurred at the site of the sporulating urediniosori of P. triticina. Compared with non‐infected leaf areas, minor changes in the spectra were observed for the non‐visibly colonized tissue neighbouring the rust sori. As the spectra for isolated urediniospores and the healthy leaf areas did not match the spectra of the urediniosori, a significant impact of the biotrophic pathogen on sulphur metabolism of wheat has been demonstrated. Spatially resolved XANES spectroscopy will extend the range of qualitative and quantitative methods for in situ investigations of host–pathogen interactions, thus contributing to enlarge our knowledge about the metabolism of diseased plants.  相似文献   

13.
The stripe rust (or yellow rust) disease caused by Puccinia striiformis Westend is a serious disease of wheat in many areas of the world. The role of NO, which is an important redox‐active signalling molecule in plants, was investigated in the wheat‐stripe rust system. The phenotypes from interactions of the same wheat variety, Lovrin10, with two different clones of stripe rust strains (P. striiformis Westend), namely China yellow rust (CY)22‐2 and CY29‐1, which are immune and susceptible reaction types, respectively. The time course of host endogenous NO detected by electron spin resonance indicated that recognition of an avirulent strain was associated with two peaks of NO production. The first peak of NO accumulated in the early infection stage whereas the second peak accumulated in the latent period; however, only a single peak of NO was observed in the latent period for the virulent strain. Furthermore, the activity of pathogen‐related protein‐phenylalanine ammonia‐lyase was higher in the resistant system than in the susceptible system, which suggested that the first NO production was associated with resistance. Exogenous NO improved the activity of phenylalanine ammonia‐lyase and induced a resistant response of Lovrin10 to the virulent strain CY29‐1, thereby providing further evidence that the first peak of NO production was associated with resistance. These results indicate that the first NO burst in the immune system plays an important role in the resistant reaction of wheat to strip rust.  相似文献   

14.
Maize (corn) is one of the most widely grown cereal crops globally. Fungal diseases of maize cause significant economic damage by reducing maize yields and by increasing input costs for disease management. The most sustainable control of maize diseases is through the release and planting of maize cultivars with durable disease resistance. The wheat gene Lr34 provides durable and partial field resistance against multiple fungal diseases of wheat, including three wheat rust pathogens and wheat powdery mildew. Because of its unique qualities, Lr34 became a cornerstone in many wheat disease resistance programmes. The Lr34 resistance is encoded by a rare variant of an ATP‐binding cassette (ABC) transporter that evolved after wheat domestication. An Lr34‐like disease resistance phenotype has not been reported in other cereal species, including maize. Here, we transformed the Lr34 resistance gene into the maize hybrid Hi‐II. Lr34‐expressing maize plants showed increased resistance against the biotrophic fungal disease common rust and the hemi‐biotrophic disease northern corn leaf blight. Furthermore, the Lr34‐expressing maize plants developed a late leaf tip necrosis phenotype, without negative impact on plant growth. With this and previous reports, it could be shown that Lr34 is effective against various biotrophic and hemi‐biotrophic diseases that collectively parasitize all major cereal crop species.  相似文献   

15.
Wheat leaf rust caused by Puccinia triticina   总被引:1,自引:0,他引:1  
Leaf rust, caused by Puccinia triticina, is the most common rust disease of wheat. The fungus is an obligate parasite capable of producing infectious urediniospores as long as infected leaf tissue remains alive. Urediniospores can be wind‐disseminated and infect host plants hundreds of kilometres from their source plant, which can result in wheat leaf rust epidemics on a continental scale. This review summarizes current knowledge of the P. triticina/wheat interaction with emphasis on the infection process, molecular aspects of pathogenicity, rust resistance genes in wheat, genetics of the host parasite interaction, and the population biology of P. triticina. Taxonomy: Puccinia triticina Eriks.: kingdom Fungi, phylum Basidiomycota, class Urediniomycetes, order Uredinales, family Pucciniaceae, genus Puccinia. Host range: Telial/uredinial (primary) hosts: common wheat (Triticum aestivum L.), durum wheat (T. turgidum L. var. durum), cultivated emmer wheat (T. dicoccon) and wild emmer wheat (T. dicoccoides), Aegilops speltoides, goatgrass (Ae. cylindrica), and triticale (X Triticosecale). Pycnial/aecial (alternative) hosts: Thalictrum speciosissimum (= T. flavum glaucum) and Isopyrum fumaroides. Identification: Leaf rust is characterized by the uredinial stage. Uredinia are up to 1.5 mm in diameter, erumpent, round to ovoid, with orange to brown uredinia that are scattered on both the upper and the lower leaf surfaces of the primary host. Uredinia produce urediniospores that are sub‐globoid, average 20 µm in diameter and are orange–brown, with up to eight germ pores scattered in thick, echinulate walls. Disease symptoms: Wheat varieties that are fully susceptible have large uredinia without causing chlorosis or necrosis in the host tissues. Resistant wheat varieties are characterized by various responses from small hypersensitive flecks to small to moderate size uredinia that may be surrounded by chlorotic and/or necrotic zones. Useful website: USDA Cereal Disease Laboratory: http://www.ars.usda.gov/mwa/cdl  相似文献   

16.
郭翔  王明田  张国芝 《生态学杂志》2017,28(12):3994-4000
四川盆地冬繁区是常年受小麦条锈病危害最重的地区之一.本研究利用盆地冬繁区代表站点1999—2016年的气象资料和条锈病资料,根据发病面积比将小麦锈病发生的气象条件划分为5个等级,采用多种分析方法确定了影响小麦条锈病发生的具有明确生物学意义的气象因子,并建立了小麦条锈病气象等级预测模型.结果表明: 四川盆地小麦条锈病的发生与平均(最高、最低)气温、降水量及距平百分率、相对湿度及距平百分率、平均风速、日照时数等多种气象因子显著相关,其中,平均气温和相对湿度距平百分率起主导作用.历史回代检验中,区(县)级样本准确率64%,市级样本准确率89%.对2017年盆地冬繁区小麦锈病发生气象等级进行预报,预测结果完全正确的样本占总样本量的62.8%;误差1个等级的样本占27.9%,误差2个或2个以上等级的样本仅占9.3%,预测效果较好,能达到从气象角度对小麦锈病发生进行预报的目的.  相似文献   

17.
The weevil Ceratapion onopordi Kirby (Coleoptera: Apionidae) shows a mutualistic interaction with the rust fungus Puccinia punctiformis (Str.) Röhl (Pucciniaceae). One of the weevil’s host plants, the thistle Cirsium arvense (L.) Scop. (Asteraceae), is also the host of the rust fungus. It has been argued that weevils prefer rust‐infected thistle shoots for egg deposition and consequently should be able to detect such shoots. Olfactory, visual, and gustatory orientation was tested using a four‐chamber olfactometer, a visual testing arena, and feeding choice tests. Whereas the weevils used olfactory cues to find their host plants, visual orientation does not seem to be important. Rust‐infected thistle shoots were not preferred over healthy shoots in any of the tests. We conclude that host plants infected with rust fungi, which are rather rare in the field, appear to be found more or less by chance.  相似文献   

18.
Resistance breeding is crucial for a sustainable control of leaf rust (Puccinia triticina) in wheat (Triticum aestivum L.) while directly targeting functional variants is the Holy Grail for efficient marker‐assisted selection and map‐based cloning. We assessed the limits and prospects of exome association analysis for severity of leaf rust in a large hybrid wheat population of 1574 single‐crosses plus their 133 parents. After imputation and quality control, exome sequencing revealed 202 875 single‐nucleotide polymorphisms (SNPs) covering 19.7% of the high‐confidence annotated gene space. We performed intensive data mining and found significant associations for 2171 SNPs corresponding to 50 different loci. Some of these associations mapped in the proximity of the already known resistance genes Lr21, Lr34‐B, Lr1 and Lr10, while other associated genomic regions, such as those on chromosomes 1A and 3D, harboured several annotated genes putatively involved in resistance. Validation with an independent population helped to narrow down the list of putative resistance genes that should be targeted by fine‐mapping. We expect that the proposed strategy of intensive data mining coupled with validation will significantly influence research in plant genetics and breeding.  相似文献   

19.
The incorporation of effective and durable disease resistance is an important breeding objective for wheat improvement. The leaf rust resistance gene Lr34 and stripe rust resistance gene Yr18 are effective at the adult plant stage and have provided moderate levels of durable resistance to leaf rust caused by Puccinia triticina Eriks. and to stripe rust caused by Puccinia striiformis Westend. f. sp. tritici. These genes have not been separated by recombination and map to chromosome 7DS in wheat. In a population of 110 F7 lines derived from a Thatcher × Thatcher isogenic line with Lr34/Yr18, field resistance to leaf rust conferred by Lr34 and to stripe rust resistance conferred by Yr18 cosegregated with adult plant resistance to powdery mildew caused by Blumeria graminis (DC) EO Speer f. sp. tritici. Lr34 and Yr18 were previously shown to be associated with enhanced stem rust resistance and tolerance to barley yellow dwarf virus infection. This chromosomal region in wheat has now been linked with resistance to five different pathogens. The Lr34/Yr18 phenotypes and associated powdery mildew resistance were mapped to a single locus flanked by microsatellite loci Xgwm1220 and Xgwm295 on chromosome 7DS.  相似文献   

20.
Stripe rust (yellow rust), caused by Puccinia striiformis f.sp. tritici (Pst), is a serious disease of wheat worldwide, including China. Growing resistant cultivars is the most cost‐effective and environmentally friendly approach to control the disease. To assess the stripe rust resistance in commercial wheat cultivars and advanced lines in the Yellow and Huai River Valley Wheat Region, 115 wheat cultivars (lines) collected from 13 provinces in this region were evaluated with the most prevalent Chinese Pst races CYR32, CYR33 and the new race V26 at seedling stage. In addition, these wheat entries were inoculated with the mixed races of CYR32 and CYR33 at the adult‐plant stage in the field. The results indicated that 53 (46.1%) cultivars (lines) had all‐stage resistance to all the three races, and 16 (13.9%) cultivars (lines) showed adult‐plant resistance. The possible stripe rust resistance genes in these entries were postulated by the closely linked markers of all‐stage resistance genes Yr5, Yr9, Yr10, Yr15 and Yr26 and adult‐plant resistance gene Yr18. Molecular analysis indicated that resistance genes Yr5, Yr9, Yr10, Yr18 and Yr26 were found in 5 (4.3%), 38 (33.0%), 1 (0.9%), 2 (1.7%) and 8 (7.0%) entries, respectively. No entry was found to carry the Yr15 gene. In future breeding programs, Yr5, Yr15 and Yr18 should be used to pyramid with other effective genes to develop wheat cultivars with high‐level and durable resistance to stripe rust, whereas Yr9, Yr10 and Yr26 should not be used or used in a limited way due to the virulent races present in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号