首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neural coding of gustatory information.   总被引:6,自引:0,他引:6  
The nervous system encodes information relating chemical stimuli to taste perception, beginning with transduction mechanisms at the receptor and ending in the representation of stimulus attributes by the activity of neurons in the brain. Recent studies have rekindled the long-standing debate about whether taste information is coded by the pattern of activity across afferent neurons or by specifically tuned 'labeled lines'. Taste neurons are broadly tuned to stimuli representing different qualities and are also responsive to stimulus intensity and often to touch and temperature. Their responsiveness is also modulated by a number of physiological factors. In addition to representing stimulus quality and intensity, activity in taste neurons must code information about the hedonic value of gustatory stimuli. These considerations suggest that individual gustatory neurons contribute to the coding of more than one stimulus parameter, making the response of any one cell meaningful only in the context of the activity of its neighbors.  相似文献   

2.
Smith  DV; Li  CS 《Chemical senses》1998,23(2):159-169
The effects of gamma-aminobutyric acid (GABA) and the GABAA receptor antagonist bicuculline methiodide (BICM) on the activity of taste- responsive neurons in the nucleus of the solitary tract (NST) were examined electrophysiologically in urethane-anesthetized hamsters. Single neurons in the NST were recorded extracellularly and drugs (21 nl) were microinjected into the vicinity of the cell via a multibarrel pipette. The response of each cell was recorded to lingual stimulation with 0.032 M NaCl, 0.032 M sucrose, 0.0032 M citric acid and 0.032 M quinine hydrochloride (QHCl). Forty-six neurons were tested for the effects of GABA; the activity of 29 cells (63%) was inhibited by 5 mM GABA. Whether activity was elicited in these cells by repetitive anodal current stimulation (25 microA, 0.5 s, 0.1 Hz) of the tongue (n = 13 cells) or the cells were spontaneously active (n = 13 cells), GABA produced a dose-dependent (1, 2 and 5 mM) decrement in activity. Forty- seven NST neurons were tested for the effects of BICM on their responses to chemical stimulation of the tongue; the responses of 28 cells (60%) were enhanced by 10 mM BICM. The gustatory responses of 26 of these cells were tested with three concentrations (0.2, 2 and 10 mM) of BICM, which produced a dose-dependent increase in both spontaneous activity and taste-evoked responses. Nine of these neurons were sucrose- best, seven were NaCl-best, eight were acid-best and two responded best to QHCl. The responses to all four tastants were enhanced, with no difference among neuron types. For 18 cells that were tested with two or more gustatory stimuli, BICM increased their breadth of responsiveness to their two most effective stimuli. These data show that approximately 60% of the taste-responsive neurons in the rostral NST are inhibited by GABA and/or subject to a tonic inhibitory influence, which is mediated by GABAA receptors. The modulation of these cells by GABA provides a mechanism by which the breadth of tuning of the cell can be sharpened. Modulation of gustatory activity following a number of physiological changes could be mediated by such a GABAergic circuit.   相似文献   

3.
Palatable gustatory stimuli promote feeding, whereas gastric distension generally inhibits this behavior. We explored a neural basis for integration of these opposing sensory signals by evaluating the effect of gastric distension on gustatory responses in the parabrachial nucleus (PBN) of anesthetized rats. Sixteen percent of 92 taste cells were coactivated; they responded to independent taste or gastric distension stimulus application. Modulation of taste responses by distension was more prevalent; taste responses declined 37% in response to distension in 25% of the cells and increased by 46% in 10% of cells. Across the whole population, however, the suppressive effect of distension on taste responses was small (6%). The incidence of modulation did not vary as a simple hedonic function of gustatory sensitivity, i.e., similar proportions of sucrose-, citric-acid-, and QHCl-best, but not NaCl-best, neurons were modulated by gastric distension. Coactivated, modulated, and nonmodulated gustatory-responsive cells were intermingled in the gustatory zone of the caudal PBN. The suppression of PBN taste responses by visceral stimulation may reflect a mechanism for satiation and further implicates the PBN in the control of ingestive function.  相似文献   

4.
The gustatory responsiveness of four adult spider monkeys to five food-associated acids was assessed in two-bottle preference tests of brief duration (3 min). The animals were given the choice between a 30 mM sucrose solution and defined concentrations of citric acid, ascorbic acid, malic acid, acetic acid, or tannic acid dissolved in a 30 mM sucrose solution. With this procedure,Ateles geoffroyi was found to significantly discriminate concentrations as low as 5 mM ascorbic acid, citric acid, and acetic acid, 10 mM malic acid, and 0.1 mM tannic acid from the alternative stimulus. With the latter two substances, the monkeys rejected all suprathreshold concentrations tested, whereas with the former three substances, the animals showed an inverted U-shaped function of preference, i.e. they rejected high concentrations, but significantly preferred low but detectable concentrations of these acidic tastants over the alternative sweet stimulus. The results showed (1) the spider monkey to respond to the same range of acid concentrations as other nonhuman primate species; (2) thatAteles geoffroyi, is able to detect food-associated acids at concentrations well below those present in most fruits; and (3) that unlike most other primate species tested so far, spider monkeys do not generally reject acidic tastants but show a substanceand concentration-dependent change in responsiveness that may range from rejection to preference. The results support the assumptions that spider monkeys may use sourness and/or astringency of food-associated acids as a criterion for food selection, and that the gustatory responsiveness ofAteles geoffroyi to acidic tastants might reflect an evolutionary adaptation to frugivory.  相似文献   

5.
Responses of 117 single- or multi-units in the auditory cortex (AC) of bats (Myotis lucifugus) to tone bursts of different stimulus durations (1– 400 ms) were studied over a wide range of stimulus intensities to determine how stimulus duration is represented in the AC. 36% of AC neurons responded more strongly to short stimulus durations showing short-pass duration response functions, 31% responded equally to all pulse durations (i.e., all-pass), 18% responded preferentially to stimuli having longer durations (i.e., long-pass), and 15% responded to a narrow range of stimulus durations (i.e., band-pass). Neurons showing long-pass and short-pass duration response functions were narrowly distributed within two horizontal slabs of the cortex, over the rostrocaudal extent of the AC. The effects of stimulus level on duration selectivity were evaluated for 17 AC neurons. For 65% of these units, an increase in stimulus intensity resulted in a progressive decrease in the best duration. In light of the unusual intensity-dependent duration responses of AC neurons, we hypothesized that the response selectivities of AC neurons is different from that in the brainstem. This hypothesis was validated by results of study of the duration response characteristics of single neurons in the inferior colliculus. Accepted: 8 November 1996  相似文献   

6.
In Drosophila, as in most insects, gustation is mediated by sensory hairs located on the external and internal parts of the proboscis and on the legs and wings. We describe in detail the organization and ultrastructure of the gustatory sensilla on the labellum and legs and the distribution of PBPRP2, a putative odorant-binding protein, in the gustatory organs of Drosophila. The labellum carries two kinds of sensilla: taste bristles and taste pegs. The former have the typical morphology of gustatory sensilla and can be further subdivided into three morphological subtypes, each with a stereotyped distribution and innervation. Taste pegs have a unique morphology and are innervated by two receptor cells: one mechanoreceptor and the other a putative chemoreceptor cell. PBPRP2 is abundantly expressed in all adult gustatory organs on labellum, legs, and wings and in the internal taste organs on the proboscis. In contrast to olfactory organs, where PBPRP2 is expressed in the epidermis, this protein is absent from the epidermis of labial palps and legs. In the taste bristles of the labellum and legs, PBPRP2 is localized in the crescent-shaped lumen of the sensilla, and not in the lumen where the dendrites of the gustatory neurons are found, making a function in stimulus transport unlikely in these sensilla. In contrast, PBPRP2 in peg sensilla is expressed in the inner sensillum-lymph cavity and is in contact with the dendrites. Thus, PBPRP2 could be involved as a carrier for hydrophobic ligands, e.g., bitter tastants, in these sensilla.  相似文献   

7.
Lei Q  Yan JQ  Shi JH  Yang XJ  Chen K 《生理学报》2007,59(3):260-266
本研究以轻度麻醉的大鼠为对象,应用细胞外微电极记录技术,观察并分析了脑桥臂旁核抑制性味觉神经元的自发活动及其对NaCl、HCl、盐酸奎宁(quinine HCl,QHCl))和蔗糖等四种基本味觉刺激的反应。共分析了18个具有自发活动的抑制性味觉神经元,自发放电频率分布在0.2~5.5Hz之间,平均放电频率(2.15±0.31)Hz。18个神经元中,1个神经元对单一味觉刺激呈抑制性反应,其余17个神经元对两种或两种以上的基本味觉刺激发生抑制性反应,且抑制具有潜伏期短、持续时间较长等特征。抑制持续时间5~80S,部分神经元表现为后抑制效应。根据神经元对四种基本味觉刺激呈抑制性反应的程度,将其分为NaCl优势神经元(n=8),HCl优势神经元(n=3),QHCl优势神经元n=3)和蔗糖优势神经元n=4)。其中NaCl优势神经元的反应谐宽最高(0.945)。这些神经元对欣快或厌恶刺激的区别能力较低。结果提示,在脑桥臂旁核存在对味觉刺激起抑制性反应的神经元,这些味觉神经元可能在味觉的调制及对欣快和厌恶刺激的编码中发挥重要的作用。  相似文献   

8.
In this paper, we will provide evidence of the putative molecular signals and biochemical events that mediate the formation of long-lasting gustatory memory trace. When an animal drinks a novel taste (the conditioned stimulus; CS) and it is later associated with malaise (unconditioned stimulus; US), the animal will reject it in the next presentation, developing a long-lasting taste aversion, i.e., the taste cue becomes an aversive signal, and this is referred to as conditioning taste aversion. Different evidence indicates that the novel stimulus (taste) induces a rapid and strong cortical acetylcholine activity that decreases when the stimulus becomes familiar after several presentations. Cholinergic activation via muscarinic receptors initiates a series of intracellular events leading to plastic changes that could be related to short- and/or long-term memory gustatory trace. Such plastic changes facilitate the incoming US signals carried out by, in part, the glutamate release induced by the US. Altogether, these events could produce the cellular changes related to the switch from safe to aversive taste memory trace. A proposed working model to explain the biochemical sequence of signals during taste memory formation will be discussed.  相似文献   

9.
The purpose of the present investigation was to map the multiunitresponsiveness of the gustatory portion of the nucleus of thesolitary tract (NTS) in the hamster, elicited by chemical stimulationof oral taste receptors. Neural responsiveness to four stimuli(0.1 M sucrose, 0.03 M NaCl, 0.003 M HCl, 0.001 M QHCl) deliveredto either the anterior tongue or other parts of the oral cavitywas examined at 37 NTS recording sites. Gustatory responseswere shown-to depend collectively upon the stimulus, the receptivearea being stimulated, and the location of the recording sitewithin the NTS. By comparing the proportional magnitudes ofintegrated responses across recording sites, unique topographicpatterns of responsiveness were demonstrated for sucrose, NaCIand QHCl. Responses to HCl and NaCl generated similar patterns.Further, the response patterns for each stimulus differed followingstimulation of the anterior tongue or posterior oral cavity.Spatial differences in NTS responsiveness arise as a resultof differences in peripheral gustatory nerve sensitivities andprovide a possible substrate for the coding of taste quality.  相似文献   

10.
Summary The responses of 230 single neurons in the inferior colliculus of the horseshoebat to single tones have been studied, emphasizing systematic analysis of the effective frequency bands, dynamic properties and the time course of responses. Distribution of the units' best excitatory frequencies (BEF) is: low frequency neurons 23% (BEF 3–65 kHz); FM-frequency neurons 25% (BEF 65–81 kHz, i.e., frequencies occurring in the FM-part of the bat's echo signal); filter neurons 45% (BEF 81–88 kHz, i.e., frequencies occurring in the stabilized CF-part of the bat's echo=reference frequency (RF)); high frequency neurons about 7% (BEF > 88 kHz). Tuning curves show conventional shapes (Fig. 1), apart from those of filter neurons, which are extremely narrow. Accordingly, Q10dB-values (BEF divided by the bandwidth of the tuning curve at 10 dB above threshold) are 80–450 in filter neurons (Fig. 2). Response patterns (Fig. 3) are similar to those of Nucleus cochlearis units (transient, sustained, negative and complex responders) with an increased percentage of complex responders up to 38% and a decreased number of transient responders.All types of spike-count functions are found (Fig. 4); nonmonotonic ones dominating. Maximal spike counts are not at the BEF but a few kHz below. Distinct upper thresholds, especially at the BEF of filter neurons (Fig. 5) lead to abrupt changes in activity by slightly shifting stimulus frequency or intensity.The hallmark of inferior colliculus neurons is inhibition, disclosed by distinct inhibitory areas enfolding and overlapping excitatory ones (Figs. 3 and 5). Duration of inhibition varies with stimulus frequency, but is largely independent of stimulus duration (Fig. 6), whereas rebound of inhibition depends on stimulus duration building up periodic rebound activities, if stimulus duration is lengthened. In addition, there are neurons responding only periodically, regardless of stimulus frequency and intensity (Fig. 7). Inhibition is discussed in terms of improving the neuronal signal/spontaneous noise ratio and altering responsiveness of neurons after stimulation, so that these neurons may be suited to time processing in the acoustic pathway.Supported by grants from Stiftung Volkswagenwerk Az. 111858 and DFG Ne. 146/6ffWe thank Mrs. Nasrin Chayegan and Mrs. Martha Gonnert for technical assistance and Mrs. Angie Barker for her suggestions concerning the English.  相似文献   

11.
3,4-Dihydroxyphenylalanine, dopamine, epinephrine, 3,4-dihydroxyphenylglycol, and 3,4-dihydroxyphenylacetic acid as well as norepinephrine were measured in dog lumbar sympathetic ganglia. The responses of these compounds to several classes of stimuli were investigated using an isolated time-resolved superfusion system. Nonselective (i.e., amphetamine and high K+) and receptor-mediated selective (oxotremorine) stimuli were used to evoke releases. The overflows of all compounds were measured by HPLC with electrochemical detection. The efficiency of each stimulus was estimated by normalizing the amount of evoked release to the total neurotransmitter pool when the stimulus was applied; i.e., fractional release was calculated. Overflows of all compounds except 3,4-dihydroxyphenylalanine were enhanced by a 10-min 100 microM amphetamine stimulus, and each of the catecholamine pools (dopamine, norepinephrine, and epinephrine) was affected to the same degree. By contrast, the 3,4-dihydroxyphenylalanine and dopamine pools were more readily releasable than the norepinephrine pool with a 10-min 80 mM K+ stimulus, and these releases were Ca2+ dependent. Epinephrine was released in preference to norepinephrine by a 10-min 1 mM oxotremorine stimulus. The data suggest the existence of at least three types of neurons in dog lumbar ganglia and are consistent with previous histological observations.  相似文献   

12.
For studying how dynamical responses to external stimuli depend on the synaptic-coupling type, we consider two types of excitatory and inhibitory synchronization (i.e., synchronization via synaptic excitation and inhibition) in complex small-world networks of excitatory regular spiking (RS) pyramidal neurons and inhibitory fast spiking (FS) interneurons. For both cases of excitatory and inhibitory synchronization, effects of synaptic couplings on dynamical responses to external time-periodic stimuli S(t) (applied to a fraction of neurons) are investigated by varying the driving amplitude A of S(t). Stimulated neurons are phase-locked to external stimuli for both cases of excitatory and inhibitory couplings. On the other hand, the stimulation effect on non-stimulated neurons depends on the type of synaptic coupling. The external stimulus S(t) makes a constructive effect on excitatory non-stimulated RS neurons (i.e., it causes external phase lockings in the non-stimulated sub-population), while S(t) makes a destructive effect on inhibitory non-stimulated FS interneurons (i.e., it breaks up original inhibitory synchronization in the non-stimulated sub-population). As results of these different effects of S(t), the type and degree of dynamical response (e.g., synchronization enhancement or suppression), characterized by the dynamical response factor \(D_f\) (given by the ratio of synchronization degree in the presence and absence of stimulus), are found to vary in a distinctly different way, depending on the synaptic-coupling type. Furthermore, we also measure the matching degree between the dynamics of the two sub-populations of stimulated and non-stimulated neurons in terms of a “cross-correlation” measure \(M_c\). With increasing A, based on \(M_c\), we discuss the cross-correlations between the two sub-populations, affecting the dynamical responses to S(t).  相似文献   

13.
14.
Reaction Time (RT) procedures are widely used in cognitive and behavioral experiments. In the sensory realm RT has been traditionally applied to measure visual, auditory or motor responses. The application of the RT method to gustatory stimuli has proved to be difficult. Attempts to develop automatic control techniques have been restrained by difficulties related to the control of variables, e.g. physiochemical characteristics of chemical solutions and the procedure for stimulus presentation. In this report we describe a computer based system that was designed to measure the reaction time to taste solutions dropped on the tongue. The equipment consists of a pumping system, an interface between the computer and the pumping system, the software required to control the interface and to measure reaction time, and a push button to detect the subject's response. The system can be used as a tool for both research and evaluation tests.  相似文献   

15.
Rats reduce intake of a palatable saccharin solution when it is followed by access to a preferred sucrose solution. This phenomenon, referred to as an anticipatory contrast effect (ACE), is thought to occur because the value of the saccharin conditioned stimulus pales in comparison to the highly rewarding sucrose unconditioned stimulus expected in the near future. Although relatively little is known about the underlying neural substrates, lesions of the gustatory thalamus fully disrupt the phenomenon (Reilly S, Bornovalova M, and Trifunovic R. Behav Neurosci 118: 365-376, 2004; Reilly S and Pritchard TC. Behav Neurosci 110: 746-759, 1996). The present set of experiments revisited this issue to determine the nature of this deficit. Rats with bilateral ibotenic acid lesions of the gustatory thalamus were given 3-min access to 0.15% saccharin and, after a 0-s or 5-min interval, were given 3-min access to either the same saccharin solution or a highly preferred 1.0 M sucrose solution. In experiment 1, ACE testing began with the 5-min interstimulus interval (ISI) and then switched to the 0-s ISI. For experiment 2, the order of ISI testing was reversed. The results show that axon-sparing, neurotoxic lesions of the gustatory thalamus prevent ACEs with a 0-s ISI and lead to a reversal (i.e., a reinforcement effect) with a 5-min ISI. Together, the results suggest that the lesion leads to a specific reward comparison deficit, whereby the rats fail to compare the value of an available reward with the memory of a preferred reward that is anticipated in the near future.  相似文献   

16.
Although the reciprocal projections between the bed nucleus of the stria terminalis (BNST) and the gustatory parabrachial nuclei (PbN) have been demonstrated neuroanatomically, there is no direct evidence showing that the projections from the PbN to the BNST carry taste information or that descending inputs from the BNST to the PbN modulate the activity of PbN gustatory neurons. A recent electrophysiological study has demonstrated that the BNST exerts modulatory influence on taste neurons in the nucleus of the solitary tract (NST), suggesting that the BNST may also modulate the activity of taste neurons in the PbN. In the present study, we recorded from 117 taste-responsive neurons in the PbN and examined their responsiveness to electrical stimulation of the BNST bilaterally. Thirteen neurons (11.1%) were antidromically invaded from the BNST, mostly from the ipsilateral side (12 cells), indicating that a subset of taste neurons in the PbN project their axons to the BNST. The BNST stimulation induced orthodromic responses on most of the PbN neurons: 115 out of 117 (98.3%), including all BNST projection units. This descending modulation on the PbN gustatory neurons was exclusively inhibitory. We also confirmed that activation of this efferent inhibitory projection from the BNST reduces taste responses of PbN neurons in all units tested. The BNST is part of the neural circuits that involve stress-associated feeding behavior. It is also known that brain stem gustatory nuclei, including the PbN, are associated with feeding behavior. Therefore, this neural substrate may be important in the stress-elicited alteration in ingestive behavior.  相似文献   

17.
Synaptic transmission from second- to third-order neurons of cockroach ocelli occurs in an exponentially rising part of the overall sigmoidal characteristic curve relating pre- and postsynaptic voltage. Because of the nonlinear nature of the synapse, linear responses of second-order neurons to changes in ligh intensity are half-wave rectified, i.e., the response to a decrement in light is amplified whereas that to an increment in light is compressed. Here I report that the gain of synaptic transmission from second- to third-order neurons changes by ambient light levels and by wind stimulation applied to the cerci. Transfer characteristics of the synapse were studied by simultaneous intracellular recordings of second- and third-order neurons. Potential changes were evoked in second-order neurons by a sinusoidally modulated light with various mean luminances. With a decrease in the mean luminance (a) the mean membrane potential of second-order neurons was depolarized, (b) the synapse between the second- and third-order neurons operated in a steeper range of the exponential characteristic curve, where the gain to transmit modulatory signals was higher, and (c) the gain of third-order neurons to detect a decrement in light increased. Second-order neurons were depolarized when a wind or tactile stimulus was applied to various parts of the body including the cerci. During a wind-evoked depolarization, the synapse operated in a steeper range of the characteristic curve, which resulted in an increased gain of third-order neurons to detect light decrements. I conclude that the nonlinear nature of the synapse between the second- and third-order neurons provides an opportunity for an adjustment of gain to transmit signals of intensity change. The possibility that a similar gain control occurs in other visual systems and underlies a more advanced visual function, i.e., detection of motion, is discussed.  相似文献   

18.
Capsaicin is viewed as a purely chemesthetic stimulus that selectively stimulates the somatosensory system. Here we show that when applied to small areas of the tongue, capsaicin can produce a bitter taste as well as sensory irritation. In experiment 1, individuals were screened for the ability to perceive bitterness from capsaicin on the circumvallate papillae. Fifteen of 25 subjects who reported at least weak bitterness rated the intensity of taste, irritation and coolness produced by 100-320 microM capsaicin and 100-320 mM menthol applied via cotton swabs to the tip (fungiform region), the posterior edge (foliate region), and the dorsal posterior surface (circumvallate region) of the tongue. Sucrose, citric acid, sodium chloride and quinine hydrochloride were applied to the same areas to assess tastes responsiveness. On average, capsaicin and menthol produced "moderate" bitterness (and no other significant taste qualities) in the circumvallate region, and weaker bitterness on the side and tip of the tongue. Sensory irritation from capsaicin was rated significantly higher at the tongue tip, whereas menthol coolness was rated higher in the circumvallate region. In experiment 2 we applied sucrose and quinine hydrochloride together with capsaicin to investigate the effects other taste stimuli might have on capsaicin's reported bitterness. As expected, adding quinine produced stronger bitterness in the circumvallate and fungiform regions, and adding sucrose significantly reduced the bitterness of capsaicin in the circumvallate region. Overall, the results suggest that capsaicin and menthol are capable of stimulating a subset of taste neurons that respond to bitter substances, perhaps via receptor-gated ion channels like those recently found in capsaicin- and menthol-sensitive trigeminal ganglion neurons, and that the glossopharyngeal nerve may contain more such neurons than the chorda tympani nerve. That some people fail to perceive bitterness from capsaicin further implies that the incidence of capsaicin-sensitive taste neurons varies across people as well as between gustatory nerves.  相似文献   

19.
Consistent inter-individual differences in daily activity rhythms (i.e., chronotypes) can have ecological consequences in determining access to food resources and avoidance of predators. The most common measure to characterize chronotypes in animals as well as humans is the onset of activity (i.e., early or late chronotypes). However, daily activity rhythms may also differ in the relative amount of activity displayed at particular time periods. Moreover, chronotypes may also be linked to other consistent inter-individual differences in behavior (i.e., personality), such as the propensity to take risks. Here, we used the signal crayfish Pacifastacus leniusculus to test the presence of chronotypes and risk-taking personality traits and a potential behavioral syndrome between these traits. We first exposed crayfish to 5 days of light–darkness to measure daily activity rhythms and then we applied a visual predator-simulating stimulus in 2 different contexts (neutral and food). Our results showed consistent (i.e., across 5 days) inter-individual differences in the relative nocturnal activity displayed in the early and middle, but not in the late part of darkness hours. Moreover, while crayfish displayed inter-individual differences in risk-taking behavior, these were not found to be consistent across 2 contexts. Therefore, we were not able to formally test a behavioral syndrome between these 2 traits. In conclusion, our study provides the first evidence of chronotypes in the relative amount of activity displayed at particular time periods. This could be a valuable information for applied ecological aspects related to the signal crayfish, which is a major invasive species of freshwater ecosystems.  相似文献   

20.
We used European geometrid moths (>630 species) as a model group to investigate how life history traits linked to larval host plant use (i.e., diet breadth and host-plant growth form) and seasonal life cycle (i.e., voltinism, overwintering stage and caterpillar phenology) are related to adult body size in holometabolous insect herbivores. To do so, we applied phylogenetic comparative methods to account for shared evolutionary history among herbivore species. We further categorized larval diet breadth based on the phylogenetic structure of utilized host plant genera. Our results indicate that species associated with woody plants are, on average, larger than herb feeders and increase in size with increasing diet breadth. Obligatorily univoltine species are larger than multivoltine species, and attain larger sizes when their larvae occur exclusively in the early season. Furthermore, the adult body size is significantly smaller in species that overwinter in the pupal stage compared to those that overwinter as eggs or caterpillars. In summary, our results indicate that the ecological niche of holometabolous insect herbivores is strongly interrelated with body size at maturity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号