首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined changes in zeta potential (the surface charge density, zeta) of the complexes of liposome (nmol)/DNA (microg) (L/D) formed in water at three different ratios (L/D=1, 10 and 20) by changing the ionic strength or pH to find an optimum formulation for in vivo gene delivery. At high DNA concentrations, zeta of the complexes formed in water at L/D=10 was significantly lowered by adding NaCl (zeta=+8.44+/-3.1 to -27.6+/-3.5 mV) or increasing pH from 5 (zeta=+15.3+/-1.0) to 9 (zeta=-22.5+/-2.5 mV). However, the positively charged complexes formed at L/D=20 (zeta=+6.2+/-3.5 mV) became negative as NaCl was added at alkaline pH as observed in medium (zeta=-19.7+/-9.9 mV). Thus, the complexes formed in water under the optimum condition were stable and largely negatively charged at L/D=1 (zeta=-58.1+/-3.9 mV), unstable and slightly positively charged at L/D=10 (zeta=+8.44+/-3.7 mV), and unstable and largely positively charged at L/D=20 (zeta=+24.3+/-3.6 mV). The negatively charged complexes efficiently delivered DNA into both solid and ascitic tumor cells. However, the positively charged complexes were very poor in delivering DNA into solid tumors, yet were efficient in delivering DNA into ascitic tumors grown in the peritoneum regardless of complex size. This slightly lower gene transfer efficiency of the negatively charged complexes can be as efficient as the positively charged ones when an injection is repeated (at least two injections), which is the most common case for therapy regimes. The results indicate that optimum in vivo lipofection may depend on the site of tumor growth.  相似文献   

2.
Use of antimicrobial enzymes covalently attached to nanoparticles is of great interest as an antibiotic-free approach to treat microbial infections. Intrinsic properties of nanoparticles can also be used to add functionality to their conjugates with biomolecules. Here, we show in a model system that nanoparticle charge can be used to enhance delivery and increase bactericidal activity of an antimicrobial enzyme, lysozyme. Hen egg lysozyme was covalently attached to two types of polystyrene latex nanoparticles: positively charged, containing aliphatic amine surface groups, and negatively charged, containing sulfate and chloromethyl surface groups. In the case of bacterial lysis assay with a Gram-positive bacteria Micrococcus lysodeikticus, activity of lysozyme conjugated to positively charged nanoparticles was approximately twice as large as that of free lysozyme, while lysozyme conjugated to negatively charged nanoparticles showed little detectable activity. At the same time, when assayed using a low-molecular weight oligosaccharide substrate, lysozyme attached to both positively and negatively charged nanoparticles showed slightly lower activity than free enzyme. A possible explanation of these results is that lysozyme attached to negatively charged nanoparticles cannot be effectively targeted to the bacteria because of the electrostatic Coulombic repulsion from the negatively charged bacterial cell walls, whereas lysozyme conjugated to positively charged nanoparticles was targeted better than free enzyme due to stronger electrostatic attraction to bacteria. Zeta potential measurements confirmed the validity of this hypothesis. Thus, nanoparticle charge is an important factor that can be used to control targeting and activity of protein-nanoparticle conjugates.  相似文献   

3.
The effects of merocyanine 540 on the electrical properties of lipid bilayer membranes have been investigated. The alterations this dye was found to produce in the intrinsic conductances of these membranes were minimal, but it profoundly altered the conductances produced by extrinsic permeant species. These alterations were much larger for neutral membranes than for negatively charged ones. The dye increased the conductances mediated by positively charged permeant species and decreased those by negatively charged permeant species, suggesting that it produces a negative electrostatic potential on the membrane; it also altered the kinetics and the voltage dependencies of permeation by these charge carriers. The magnitudes of dye-mediated conductance changes were much larger for positively charged permeants than for negatively charged ones; also, changes in ionic strength altered these dye effects in opposite directions from those predicted by the Stern equation, and the dependence of the conductance alteration on dye concentration was steeper than that predicted by this equation. Finally, only very small changes in liposome zeta potentials were induced by the dye. Calculations show that a large fraction of these effects can be accounted for by the dipole potential produced by merocyanine at the membrane surface, but that additional effects of the dye must be postulated as well.  相似文献   

4.
In our previous study [Hong Y, Brown DG (2009) Appl Environ Microbiol 75(8):2346–2353], the adenosine triphosphate (ATP) level of adhered bacteria was observed to be 2–5 times higher than that of planktonic bacteria. Consequently, the proton motive force (Δp) of adhered bacteria was approximately 15% greater than that of planktonic bacteria. It was hypothesized that the cell surface pH changes upon adhesion due to the charge‐regulated nature of the bacterial cell surface and that this change in surface pH can propagate to the cytoplasmic membrane and alter Δp. In the current study, we developed and applied a charge regulation model to bacterial adhesion and demonstrated that the charge nature of the adhering surface can have a significant effect on the cell surface pH and ultimately the affect the ATP levels of adhered bacteria. The results indicated that the negatively charged glass surface can result in a two‐unit drop in cell surface pH, whereas adhesion to a positively charged amine surface can result in a two‐unit rise in pH. The working hypothesis indicates that the negatively charged surface should enhance Δp and increase cellular ATP, while the positively charged surface should decrease Δp and decrease ATP, and these results of the hypothesis are directly supported by prior experimental results with both negatively and positively charged surfaces. Overall, these results suggest that the nature of charge on the solid surface can have an impact on the proton motive force and cellular ATP levels. Biotechnol. Bioeng. 2010;105: 965–972. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
We describe a procedure for reversible adsorption of DNA onto a gold electrode maintained under potential control. The adsorbate can be imaged by scanning probe microscopy in situ. Quantitative control of a molecular adsorbate for microscopy is now possible. We found a potential window (between 0 and 180 mV versus a silver wire quasi reference) over which a gold (111) surface under phosphate buffer is positively charged, but is not covered with a dense adsorbate. When DNA is present in these conditions, molecules adsorb onto the electrode and remain stable under repeated scanning with a scanning tunneling microscope (STM). They become removed when the surface is brought to a negative charge. When operated at tunnel currents below approximately 0.4 nA, the STM yields a resolution of approximately 1 nm, which is better than can be obtained with atomic force microscopy (AFM) at present. We illustrate this procedure by imaging a series of DNA molecules made by ligating a 21 base-pair oligonucleotide. We observed the expected series of fragment lengths but small fragments are adsorbed preferentially.  相似文献   

6.
Cationic lipid-DNA (CL-DNA) complexes comprise a promising new class of synthetic nonviral gene delivery systems. When positively charged, they attach to the anionic cell surface and transfer DNA into the cell cytoplasm. We report a comprehensive x-ray diffraction study of the lamellar CL-DNA self-assemblies as a function of lipid composition and lipid/DNA ratio, aimed at elucidating the interactions determining their structure, charge, and thermodynamic stability. The driving force for the formation of charge-neutral complexes is the release of DNA and lipid counterions. Negatively charged complexes have a higher DNA packing density than isoelectric complexes, whereas positively charged ones have a lower packing density. This indicates that the overcharging of the complex away from its isoelectric point is caused by changes of the bulk structure with absorption of excess DNA or cationic lipid. The degree of overcharging is dependent on the membrane charge density, which is controlled by the ratio of neutral to cationic lipid in the bilayers. Importantly, overcharged complexes are observed to move toward their isoelectric charge-neutral point at higher concentration of salt co-ions, with positively overcharged complexes expelling cationic lipid and negatively overcharged complexes expelling DNA. Our observations should apply universally to the formation and structure of self-assemblies between oppositely charged macromolecules.  相似文献   

7.
The enhanced thermodynamic stability of PNA:DNA and PNA:RNA duplexes compared with DNA:DNA and DNA:RNA duplexes has been attributed in part to the lack of electrostatic repulsion between the uncharged PNA backbone and negatively charged DNA or RNA backbone. However, there are no previously reported studies that systematically evaluate the effect of ionic strength on duplex stability for PNA having a charged backbone. Here we investigate the role of charge repulsion in PNA binding by synthesizing PNA strands having negatively or positively charged side chains, then measuring their duplex stability with DNA or RNA at varying salt concentrations. At low salt concentrations, positively charged PNA binds more strongly to DNA and RNA than does negatively charged PNA. However, at medium to high salt concentrations, this trend is reversed, and negatively charged PNA shows higher affinity for DNA and RNA than does positively charged PNA. These results show that charge screening by counterions in solution enables negatively charged side chains to be incorporated into the PNA backbone without reducing duplex stability with DNA and RNA. This research provides new insight into the role of electrostatics in PNA binding, and demonstrates that introduction of negatively charged side chains is not significantly detrimental to PNA binding affinity at physiological ionic strength. The ability to incorporate negative charge without sacrificing binding affinity is anticipated to enable the development of PNA therapeutics that take advantage of both the inherent benefits of PNA and the multitude of charge-based delivery technologies currently being developed for DNA and RNA.  相似文献   

8.
Changes in surface charge density of liposomes induced by E. coli endotoxin were studied by microelectrophoresis. Endotoxin altered the surface charge of phosphatidylcholine liposomes from neutral to negative. The negative charge of the endotoxin-phosphatidylcholine complex was neutralized electrostatically by binding with Ca2+ (2 mM). Phosphatidylcholine liposomes were made positive by addition of the positively charged detergent, hexadecyltrimethylammonium chloride. Endotoxin made the positively charged liposomes less charged. On the other hand, phosphatidylserine liposomes which were negatively charged became less charged in the presence of high concentration of endotoxin (8 mg/ml). The endotoxin effect on phosphatidylserine liposomes was abolished by EDTA (1 mM) but potentiated by CaCl2 (0.1--2 mM). These results indicate that endotoxin interacts with liposomes both hydrophobically and electrostatically.  相似文献   

9.
The model membrane approach was used to investigate the surface charge effect on the ion-antibiotic complexation process. Mixed monolayers of valinomycin and lipids were spread on subphases containing K+ or Na+. The surface charge density was modified by spreading ionizable valinomycin analogs on aqueous subphases of different pH or by changing the nature of the lipid (neutral, negatively charged) in the mixed film. Surface pressure and surface potential measurements demonstrated that a neutral lipid (phosphatidylcholine) or positively charged valinomycin analogs didn't enhance the anti-biotic complexing capacity. However, a maximal complexation is reached for a critical lipid concentration in the valinomycin-phosphatidylserine mixed film. The role of the surface charge on the valinomycin complexing properties was examined in terms of the Gouy-Chapman theory. As a consequence of the negative charge of the lipid monolayer, the K+ concentration near the surface is larger than the bulk concentration, by a Boltzmann factor. A good agreement was observed between the experimental results and the theoretical predictions. Conductance measurements of asymmetric bilayers containing a neutral lipid (egg lecithin) on one side and a negatively charged lipid (phosphatidyl-serine) on the other, confirm the role of the surface charge. Indeed, addition of K+ to the neutral side of the bilayer containing valinomycin had no effect on the conductance whereas addition of K+ to the charged side of the bilayer caused a 80-fold conductance increase.  相似文献   

10.
The effect of surface charge on the porcine pancreatic phospholipase A2 catalyzed hydrolysis of organized substrates was examined through initial rate enzyme kinetic measurements. Two long-chain phospholipid substrates, phosphatidylglycerol (PG) and phosphatidylcholine (PC), were solubilized in seven detergents differing in polar head-group charge. The neutral or zwitterionic detergents selected were Triton X-100, Zwittergent 314, lauryl maltoside, hexadecylphosphocholine (C16PN), and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The negatively and positively charged detergents used were cholate and CTAB, respectively. In general, the negatively charged phospholipid PG was hydrolyzed much more rapidly than the neutral (zwitterionic) phospholipid PC. The rate of hydrolysis of PG was rapid when solubilized in all the neutral detergents and in cholate but was essentially zero in the positively charged CTAB. Conversely, hydrolysis of PC was negligible when solubilized in neutral detergents, except C16PN, and was maximal in the negatively charged detergent, cholate. The rate of hydrolysis of PC solubilized in a neutral detergent became significant only when a negative surface charge was introduced by addition of SDS. Taken together, these kinetic measurements indicate that the surface charge on the lipid aggregates is an important factor in the rate of hydrolysis of phospholipid substrates and the highest activity is observed when the net surface charge is negative. Fluorescence and electron spin resonance (ESR) spectroscopic data provide additional support for this conclusion. The fluorescence emission spectrum of the single tryptophan of phospholipase A2 is a sensitive monitor of interfacial complex formation and shows that interaction of the protein with detergent micelles is strongly dependent on the presence of a negatively charged amphiphile.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Changes in surface charge density of liposomes induced by E. coli endotoxin were studied by microelectrophoresis. Endotoxin altered the surface charge of phosphatidylcholine liposomes from neutral to negative. The negative charge of the endotoxin-phosphatidylcholine complex was neutralized electrostatically by binding with Ca2+ (2 mM). Phosphatidylcholine liposomes were made positive by addition of the positively charged detergent, hexadecyltrimethylammonium chloride. Endotoxin made the positively charged liposomes less charged. On the other hand, phosphatidylserine liposomes which were negatively charged became less charged in the presence of high concentration of endotoxin (8 mg/ml). The endotoxin effect on phosphatidylserine liposomes was abolished by EDTA (1 mM) but potentiated by CaCl2 (0.1–2 mM). These results indicate that endotoxin interacts with liposomes both hydrophobically and electrostatically.  相似文献   

12.
Human neuron-specific enolase (NSE) or isozyme gamma has been expressed with a C-terminal His-tag in Escherichia coli. The enzyme has been purified, crystallized and its crystal structure determined. In the crystals the enzyme forms the asymmetric complex NSE x Mg2 x SO4/NSE x Mg x Cl, where "/" separates the dimer subunits. The subunit that contains the sulfate (or phosphate) ion and two magnesium ions is in the closed conformation observed in enolase complexes with the substrate or its analogues; the other subunit is in the open conformation observed in enolase subunits without bound substrate or analogues. This indicates negative cooperativity for ligand binding between subunits. Electrostatic charge differences between isozymes alpha and gamma, -19 at physiological pH, are concentrated in the regions of the molecular surface that are negatively charged in alpha, i.e. surface areas negatively charged in alpha are more negatively charged in gamma, while areas that are neutral or positively charged tend to be charge-conserved.  相似文献   

13.
In this study the ability of three polyamidoamine (PAMAM) dendrimers with different surface charge (positive, neutral and negative) to interact with a negatively charged protein (porcine pepsin) was examined. It was shown that the dendrimer with a positively charged surface (G4 PAMAM-NH2), as well as the dendrimer with a neutral surface (G4 PAMAM-OH), were able to inhibit enzymatic activity of pepsin. It was also found that these dendrimers act as mixed partially non-competitive pepsin inhibitors. The negatively charged dendrimer (G3.5 PAMAM-COOH) was not able to inhibit the enzymatic activity of pepsin, probably due to the electrostatic repulsion between this dendrimer and the protein. No correlation between changes in enzymatic activity of pepsin and alterations in CD spectrum of the protein was observed. It indicates that the interactions between dendrimers and porcine pepsin are complex, multidirectional and not dependent only on disturbances of the secondary structure.  相似文献   

14.
Activation of neutrophils in the presence of gold nanoparticles is accompanied by formation of free-radical peroxidation products, recorded as a flash of chemiluminescence. The basis for the activation mechanism has its origins most likely in the influence of the gold particles on the membrane surface potential of neutrophils. Assessment of changes in the fluorescence intensity of the negatively charged ANS probe on the surface of model membranes upon adding different concentrations of gold nanoparticles indicates a change in the membrane surface charge density, which can cause cell activation.  相似文献   

15.
The ability to immobilize DNA probes onto gold substrates at an optimum surface density is key in the development of a wide range of DNA biosensors. We present a method to accurately control probe DNA surface density by the simultaneous co-immobilization of thiol modified probes and mercaptohexanol. Probe surface density is controlled by the thiol molar ratio in solution, with a linear relationship between thiol molar ratio and probe density spanning (1-9) x10(12)/cm2. The probe surface density per microscopic surface area was determined using chronocoulometry, and a detailed analysis of the method presented. Using this sample preparation method, the effect of probe density and hybridization on the charge transfer resistance with the negatively charged ferri/ferrocyanide redox couple was determined. Above a threshold probe surface density of 2.5 x 10(12)/cm2, electrostatic repulsion from the negatively charged DNA modulates the charge transfer resistance, allowing hybridization to be detected. Below the threshold density no change in charge transfer resistance with probe density or with hybridization occurs. The probe surface density was optimized to obtain the maximum percentage change in charge transfer resistance with hybridization.  相似文献   

16.
The model membrane approach was used to investigate the surface charge effect on the ion-antibiotic complexation process. Mixed monolayers of valinomycin and lipids were spread on subphases containing K+ or Na+. The surface charge density was modified by spreading ionizable valinomycin analogs on aqueous subphases of different pH or by changing the nature of the lipid (neutral, negatively charged) in the mixed film. Surface pressure and surface potential measurements demonstrated that a neutral lipid (phosphatidylcholine) or positively charged valinomycin analogs didn't enhance the antibiotic complexing capacity. However, a maximal complexation is reached for a critical lipid concentration in the valinomycin-phosphatidylserine mixed film. The role of the surface charge on the valinomycin complexing properties was examined in terms of the Gouy-Chapman theory. As a consequence of the negative charge of the lipid monolayer, the K+ concentration near the surface is larger than the bulk concentration, by a Boltzmann factor. A good agreement was observed between the experimental results and the theoretical predictions. Conductance measurements of asymmetric bilayers containing a neutral lipid (egg lecithin) on one side and a negatively charged lipid (phosphatidylserine) on the other, confirm the role of the surface charge. Indeed, addition of K+ to the neutral side of the bilayer containing valinomycin had no effect on the conductance whereas addition of K+ to the charged side of the bilayer caused a 80-fold conductance increase.  相似文献   

17.
This study was designed to determine the effects of superparamagnetic iron oxide nanoparticles (SPIONs) on the biological activity of a bacterial biofilm (Streptococcus mutans). Our hypothesis was that the diffusion of the SPIONs into biofilms would depend on their surface properties, which in turn would largely be determined by their surface functionality. Bare, positively charged and negatively charged SPIONs, with hydrodynamic diameters of 14.6 ± 1.4 nm, 20.4 ± 1.3 nm and 21.2 ± 1.6 nm were evaluated. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) and electrophoretic mobility (EPM) measurements were used to confirm that carboxylic functional groups predominated on the negatively charged SPIONS, whereas amine functional groups predominated on the positively charged particles. Transmission electron microscopy (TEM) showed the morphology and sizes of SPIONs. Scanning electron microscopy (SEM) and EPM measurements indicated that the surfaces of the SPIONs were covered with biomolecules following their incubation with the biofilm. Bare SPIONs killed bacteria less than the positively charged SPIONs at the highest exposure concentrations, but the toxicity of the bare and positively charged SPIONs was the same for lower SPION concentrations. The positively charged SPIONs were more effective in killing bacteria than the negatively charged ones. Nonetheless, electrophoretic mobilities of all three SPIONs (negative, bare and positively charged) became more negative following incubation with the (negatively-charged) biofilm. Therefore, while the surface charge of SPIONS was important in determining their biological activity, the initial surface charge was not constant in the presence of the biofilm, leading eventually to SPIONS with fairly similar surface charges in situ. The study nonetheless suggests that the surface characteristics of the SPIONS is an important parameter controlling the efficiency of antimicrobial agents. The analysis of the CFU/mL values shows that the SPIONs have the same toxicity on bacteria in solution in comparison with that on the biofilm.  相似文献   

18.
The N-terminal six-transmembrane domain (TM) bundle of lactose permease of Escherichia coli is uniformly inverted when assembled in membranes lacking phosphatidylethanolamine (PE). Inversion is dependent on the net charge of cytoplasmically exposed protein domains containing positive and negative residues, net charge of the membrane surface, and low hydrophobicity of TM VII acting as a molecular hinge between the two halves of lactose permease (Bogdanov, M., Xie, J., Heacock, P., and Dowhan, W. (2008) J. Cell Biol. 182, 925-935). Net neutral lipids suppress the membrane translocation potential of negatively charged amino acids, thus increasing the cytoplasmic retention potential of positively charged amino acids. Herein, TM organization of sucrose permease (CscB) and phenylalanine permease (PheP) as a function of membrane lipid composition was investigated to extend these principles to other proteins. For CscB, topological dependence on PE only becomes evident after a significant increase in the net negative charge of the cytoplasmic surface of the N-terminal TM bundle. High negative charge is required to overcome the thermodynamic block to inversion due to the high hydrophobicity of TM VII. Increasing the positive charge of the cytoplasmic surface of the N-terminal TM hairpin of PheP, which is misoriented in PE-lacking cells, favors native orientation in the absence of PE. PheP and CscB also display co-existing dual topologies dependent on changes in the charge balance between protein domains and the membrane lipids. Therefore, the topology of both permeases is dependent on PE. However, CscB topology is governed by thermodynamic balance between opposing lipid-dependent electrostatic and hydrophobic interactions.  相似文献   

19.
The effects of external protons on single sodium channel currents recorded from cell-attached patches on guinea pig ventricular myocytes were investigated. Extracellular protons reduce single channel current amplitude in a dose-dependent manner, consistent with a simple rapid channel block model where protons bind to a site within the channel with an apparent pKH of 5.10. The reduction in single channel current amplitude by protons is voltage independent between -70 and -20 mV. Increasing external proton concentration also shifts channel gating parameters to more positive voltages, consistent with previous macroscopic results. Similar voltage shifts are seen in the steady-state inactivation (h infinity) curve, the time constant for macroscopic current inactivation (tau h), and the first latency function describing channel activation. As pHo decreases from 7.4 to 5.5 the midpoint of the h infinity curve shifts from -107.6 +/- 2.6 mV (mean +/- SD, n = 16) to -94.3 +/- 1.9 mV (n = 3, P less than 0.001). These effects on channel gating are consistent with a reduction in negative surface potential due to titration of negative external surface charge. The Gouy-Chapman-Stern surface charge model incorporating specific proton binding provides an excellent fit to the dose-response curve for the shift in the midpoint of the h infinity curve with protons, yielding an estimate for total negative surface charge density of -1e/490 A2 and a pKH for proton binding of 5.16. By reducing external surface Na+ concentration, titration of negative surface charge can also quantitatively account for the reduction in single Na+ channel current amplitude, although we cannot rule out a potential role for channel block. Thus, titration by protons of a single class of negatively charged sites may account for effects on both single channel current amplitude and gating.  相似文献   

20.
The rate of association of equine liver alcohol dehydrogenase and its coenzymes exhibits a large pH dependence with slower rates at basic pH and an observed kinetic pKa value of approximately 9-9.5. This pH dependence has been explained by invoking local active site electrostatic effects which result in repulsion of the negatively charged coenzyme and the ionized hydroxyl anion form of the zinc-bound water molecule. We have examined a simpler hypothesis, namely, that the pH dependence results from the electrostatic interaction of the coenzyme and the enzyme which changes from an attractive interaction of the negatively charged coenzyme and the positively charged enzyme to a repulsive interaction between the two negatively charged species at the isoelectric point for the enzyme (pH 8.7). We have tested this proposal by examining the ionic strength dependence of the association rate constant at various pH values. These data have been interpreted by using the Wherland-Gray equation, which we have shown can be applied to the kinetics of enzyme-coenzyme association. Our results indicate that the shielding of the buffer electrolyte changes from a negative to a positive value as the charge on the protein changes at the isoelectric point. This result is exactly that which is predicted for electrostatic effects that depend on the charge of the protein molecule and is not consistent with predictions based upon the local active site effects. At low ionic strength values of 10 mM or less, approximately 75% of the observed pH dependence results from the enzyme electrostatic effects; the remaining pH dependence may result from active site effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号