首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Populations of the Victoria strain of Newcastle disease virus (NDV), reisolated from persistently infected L-cell cultures and passed twice in the embryonated hen's egg (NDVL-E-2), were found to differ strikingly from the original, chick embryo-adapted virus (NDVo). After exposure of L cells to NDVo at high multiplicities of infection, all cells became abortively infected; they produced only small aggregates of viral antigen and few, if any, infectious virus particles, but they yielded large amounts of interferon. No cytopathic effects (CPE) were noted, and the cultures survived readily as viral carriers. In contrast, NDVL-E-2 yielded under similar conditions large quantities of viral antigen and infectious virus particles, but no detectable interferon, and the cultures were rapidly destroyed. This change in “virulence” was at least partially reversible by further serial passages of NDVL-E-2 in chick embryos, as was evident from a consecutive decrease in CPE with a concomitant increasingly rapid recovery of the L-cell cultures, gradually diminishing yields of infectious viral progeny, and the returning of a capacity to induce interferon synthesis. Thus, NDVL-E-16 resembled NDVo in many aspects, except for a less striking reduction in its ability to replicate in L cells. Although a selection of viral variants under the given sets of conditions has not been entirely excluded, the establishment of “avirulence” appears to be largely explained by a gradual accumulation of noninfectious, interferon-inducing components in the course of serial passages in the embryonated hen's egg, and the acquisition of “virulence” by a loss of these components. The evidence is as follows. (i) By a step-wise decrease in the dose of virus and restriction of the analyses to the first infectious cycle, a multiplicity of infection was ultimately reached for all “avirulent” populations at which infected cells produced normal yields of infectious viral progeny; i.e., the interferon-inducing components were diluted to noneffective levels. The lowest multiplicity which resulted in a measurable reduction in infectious virus replication was also the last one to induce detectable interferon synthesis. (ii) All viral clones derived from “avirulent” populations behaved like NDVL-E-2 rather than like the parent viral suspensions, except that some of them elicited small amounts of interferon in L cells. The interferon-inducing components were reduced or lost in the cloning procedures. The nature of the interferon-inducing components has not been established. These components, which were neutralized by rabbit sera against “virulent” NDVL-E-2 populations, may represent largely inactive or incomplete virus particles; however, the infectious virus-hemagglutinin ratios of “avirulent” populations were mostly of an order similar to those of “virulent” populations. The interferon-inducing components aborted the infectious process in cells simultaneously invaded by infectious virus particles. The implications of these findings are discussed.  相似文献   

2.
A comparison of the replication patterns in L cells and in chick embryo (CE) cell cultures was carried out with the Herts strain of Newcastle disease virus (NDV(o)) and with a mutant (NDV(pi)) isolated from persistently infected L cells. A significant amount of virus progeny, 11 plaque-forming units (PFU)/cell, was synthesized in L cells infected with NDV(o), but the infectivity remained cell-associated and disappeared without being detectable in the medium. In contrast, in L cells infected with NDV(pi), progeny virus (30 PFU/cell) was released efficiently upon maturation. It is suggested that the term "covert" rather than "abortive" be used to describe the infection of L cells with NDV(o). In both L and CE cells, the latent period of NDV(pi) was 2 to 4 hr longer than for NDV(o). The delay in synthesis of viral ribonucleic acid (RNA) in the case of NDV(pi) coincided with the delay in the inhibition of host RNA and protein synthesis. Although both NDV(o) and NDV(pi) produced more progeny and more severe cell damage in CE cells than in L cells, the shut-off of host functions was significantly less efficient in CE cells than in L cells. Paradoxically, no detectable interferon was produced in CE cells by either of the viruses, whereas in L cells most of the interferon appeared in the medium after more than 90% of host protein synthesis was inhibited. These results suggest that the absence of induction of interferon synthesis in CE cells infected with NDV is not related to the general shut-off of host cell synthetic mechanisms but rather to the failure of some more specific event to occur. In spite of the fact that NDV(pi) RNA synthesis commenced 2 to 4 hr later than that of NDV(o), interferon was first detected in the medium 8 hr after infection with both viruses. This finding suggests that there is no relation between viral RNA synthesis and the induction of interferon synthesis.  相似文献   

3.
Infection of L cells with wild-type (L(1)) vesicular stomatitis virus at high or low multiplicities does not result in the production of interferon; however, infection of L cells with low multiplicities of a small-plaque mutant (S(2)) results in the synthesis of large amounts of interferon. In chick embryo (CE) cells, both viruses induce synthesis of interferon; there is no significant multiplicity effect in CE cells. The rate and efficiency of shutoff of macromolecular synthesis in the different host cells is a critical factor in determining the ability of the viruses to induce interferon synthesis. If host ribonucleic acid or protein synthesis is shut off by the virus before the required new ribonucleic acid is transcribed or translated, interferon production does not occur. The relative yield of the two viruses in CE and L cells is not related to the effects of interferon produced during the course of infection.  相似文献   

4.
Although no detectable interferon was produced when L cells were infected with wild-type VSV (VSV-o), considerable amounts of interferon were produced when cells were infected with UV-irradiated VSV-o at a multiplicity equivalent to 10 PFU/cell. Treatment of VSV-o with UV-light resulted in the marked reduction of the RNA synthesizing capacity and cytotoxity of the virus, and the UV-irradiated virus had neither infectivity nor interfering activity against homologous viruses. The amount of interferon induced by UV-VSV-o was markedly influenced by multiplicity of infection and incubation temperature. Less-virulent temperature-sensitive mutants (VSV-mp and VSV-sp) derived from L cells persistently infected with VSV induced interferon in L cells without treatment of the viruses with UV-light, but these viruses could not induce interferon if the infected cells were incubated at nonpermissive temperature, or if cells were infected at multiplicities of more than 10 PFU/cell. On the other hand, it was shown that treatment of cells with cycloheximide (100 μg/ml) delayed the expression of cell damage caused by non-irradiated VSV-o and resulted in the production of interferon when cycloheximide was removed from the cultures. These results indicate that VSV has intrinsically interferon-inducing capacity in L cells and can induce interferon if the induction is carried out under such condition that cell damage caused by VSV are suppressed or delayed. Furthermore, the effect of pretreatment of cells by interferon and undiluted passage of VSV-o on interferon induction was discussed in relation to persistent infection.  相似文献   

5.
The Miyadera strain of Newcastle disease virus (NDV) consisted predominantly of virus particles forming small plaques on monolayers of chick embryo fibroblasts (CEF), and contained small amounts of virus particles forming large plaques. These large- and small-plaque-forming clones of this virus (NDV-L and NDV-S) were isolated. The small size of the NDV-S plaques did not appear to be due to an agar inhibitor. NDV-L produced a much higher yield of infective virus particles in CEF and they were released more completely from the infected cells than were those produced by NDV-S. The yield of infective virus of NDV-L per cell from cultures of CEF was comparable to the yield from the allantoic cells. The infectivity/hemagglutinin ratio for NDV-L from CEF was as high as the ratio for virus from the allantoic cells, but the ratio for NDV-S from CEF was lower. NDV-S demonstrated an autointerference phenomenon in CEF when infected at high multiplicities, but NDV-L did not. Contrary to virus multiplication, NDV-S exhibited a more rapid and marked cytopathic effect on monolayers of CEF than NDV-L. In the allantoic cavity of eggs NDV-S produced slightly higher virus yields than NDV-L. No correlation existed between plaque size of the two viruses and the capacity to induce interferon synthesis or the susceptibility to the action of interferon. The properties of both distinctive plaque isolates were stable on egg passage.  相似文献   

6.
Sendai virus infection induced enhancement of 32P incorporation into phospholipids in chick embryo, monkey kidney and bovine kidney cells, as previously observed in chorioallantoic membranes of chick embryos. These findings indicate that phospholipid synthesis is enhanced upon Sendai virus infection. Ultraviolet irradiation abolished the ability of the virus to induce the enhanced synthesis of phospholipids, a fact suggesting that the phenomenon depends upon infectivity of the virus. Gamma irradiation of host cells little affected the enhanced 32P labeling of cellular phospholipids, suggesting that the function of host cell DNA may not be directly involved in the phenomenon.  相似文献   

7.
Persistence of mumps virus in mouse L929 cells   总被引:1,自引:0,他引:1  
The characteristics of a persistent infection of L929 cells with mumps virus (MuV) is presented. The persistent infection (L-MuV cells) was regulated by interferon (IFN) produced endogenously and almost all the properties showed that the carrier culture was maintained by horizontal transmission of the virus. Small-plaque mutants, but not temperature-sensitive variants, were selected during the persistent infection. MuV released from L-MuV cells (MuV-pi) replicated efficiently in L929 cells, while infection of L929 cells with the original MuV-o resulted in an abortive infection. The efficient replication of MuV-pi in L929 cells can be explained by the findings that MuV-pi induced IFN more slowly and had lower susceptibility to IFN in L929 cells than MuV-o did. M protein was synthesized to a considerable degree in MuV-pi-infected cells, while it could not be detected in MuV-o-infected cells. By contrast, MuV-pi formed small plaques in Vero cell monolayers and the yield of MuV-pi in Vero cells was lower than that of MuV-o. M protein induced by MuV-pi decayed easily in Vero cells. M protein was considered to be a limiting factor for MuV replication in both cell lines.  相似文献   

8.
The effect of theophylline and adrenaline on the synthesis of interferon induced by the influenza B virus, strain Lee, in a chick embryo tissue culture was studied. Both preparation were found to decrease interferon synthesis when 5-day-old cultures were used; the inhibitory effect was increased when the two drugs were used together. The degree of inhibition of interferon production depended on a dose of the preparation; the inhibition was still present even when the drugs ere introduced several hours after the cells were infected with interferonogen. The treatment of one-day-old cultures with theophylline resulted in increase of interferon synthesis, whereas administration of adrenaline alone or together with theophylline did not affect the level of interferon synthesis. The drugs used produced no effect on the reproduction of the test-virus of vesicular stomatitis, Newcastle disease and Chickungunya viruses in chick embryo cells and influenza B virus in the developing chick embryos. The results obtained are discussed from the point of view of a possible influence of the intracellular adenosine 3',5-cyclic monophosphate level on the synthesis of virus-induced interferon.  相似文献   

9.
Propagation of cells infected with temperature-sensitive (ts) mutants of respiratory syncytial (RS) virus at nonpermissive temperature (39 degrees C) resulted in cytolytic, abortive, or persistent infection, depending on the mutant used to initiate infection. Five mutants from complementation group B produced cytolytic or abortive infections, whereas a single mutant (ts1) from group D and a noncomplbmenting mutant produced persistent infections. The persistently infected culture initiated by mutant ts1 (RS ts1/BS-C-1) has been maintained in serial culture for greater than 100 transfers, and infectious-center assays and immunofluorescent staining indicated that all cells harbored the RS virus genome. RS ts1/BS-C-1 cultures were resistant to superinfection by homologous and some heterologous viruses, and interferon-like activity against some heterologous viruses was present in the culture medium. Small amounts (0.002 to 0.2 PFU/cell) of infectious virus were present in the culture fluid, but autointerfering defective particles were not detected. This released virus formed small plaques and produced persistent infection of BS-C-1 cells at 37 degrees C. The RS ts1/BS-C-1 cells contained abundant RS virus antigen internally, but little at the surface, although the cells showed enhanced agglutinability by concanavalin A. Nucleocapsids and the 41,000-molecular-weight nucleoprotein were present in extracts of both nucleated and enucleated cells. No infectious RS virus was obtained by transfection of DNA from RS tsl/BS-C-1 cells to susceptible BS-C-1 or feline embryo cells under conditions allowing efficient transfection of a foamy virus proviral DNA. It was concluded that persistent infection was maintained in part by a non-ts variant of RS virus partially defective in maturation. The karyotype of the RS ts1/BS-C-1 culture differed from that of unifected cells.  相似文献   

10.
Summary The strains of fowl-plague virus being tested completely lost their infectivity to chick embryos when stored at pH 4 for one hour or more while those of the virus of Newcastle disease were all infective to chick embryos when stored at this pH-value for periods up to 7 days.  相似文献   

11.
Sexual hybrids between distantly related Solanum species can undergo endosperm failure, a post-zygotic barrier in inter-species hybridizations. This barrier is explained by the endosperm balance number (EBN) hypothesis, which states that parents must have corresponding EBNs for viable seed formation. Tests for inter-crossability were made involving the Mexican species Solanum pinnatisectum Dunal. (series Pinnatisecta, ApiApi, 1EBN), autotetraploids of this species, Solanum verrucosum Schlechtd. (series Tuberosa, AA, 2EBN), haploids (2x, 2EBN) of the South American S. tuberosum L. (series Tuberosa, A1A1A2A2, 4EBN), and F2 haploid-species hybrids with South American species (AA, 2EBN) S. berthaultii Hawkes, S. sparsipilum (Bitter.) Juz. and Bukasov and S. chacoense Bitter. The development of hybrid endosperms was investigated for these combinations by confocal microscopy with regard to cell-division timing and tissue collapse. Novel sexual diploid (AApi) and triploid (AApiApi) inter-series hybrids were generated from S. verrucosum × S. pinnatisectum crosses by using post-pollination applications of auxin. F1 embryos were rescued in vitro. The hybrid status of recovered plants was verified by microsatellite marker analysis, and the ploidy was determined by chromosome counting. The application of phytohormones in inter-ploidy S. pinnatisectum × S. tuberosum crosses, however, did not delay endosperm collapse, and embryos were not formed. Other diploid, 1EBN species tested in remote hybridizations with Group Tuberosum were S. cardiophyllum Lindl., S. trifidum Correll, and S. tarnii Hawkes and Hjert., series Pinnatisecta, and S. bulbocastanum Dunal., series Bulbocastana. Based on the analysis of post-zygotic reproductive barriers among isolated species of section Petota, we propose strategies to overcome such incompatibilities.  相似文献   

12.
A Bunyamwera group arbovirus was isolated from the blood and from the brain of a female caribou parasitized with meningeal worms. The virus passed through a 0.45 micron filter; was ether sensitive; possessed no hemagglutination properties; could be propagated in suckling mice, 6-day old chick embryos, and BHK-21 tissue culture; and produced plaques in chick embryo fibroblast tissue culture. Neither complement-fixation or neutralization tests were sensitive enough to determine the serotype of the virus.  相似文献   

13.
Integrative plasmids pC, pD, and pG were designed to contain a selective marker beyond the region of homology to virus DNA and to allow construction of recombinant cowpox viruses (CPV) that lack C18L, D11L, or G3L coding for kelch-like proteins. CPV mutants lacking one (C18L, D11L, or G3L), two (D11L/G3L or C18L/D11L), or three (D11L/G3L/C18L, that is, all) kelch-like protein genes of the left variable region of the virus genome were obtained. Impaired reproduction was observed for the triple mutant. Pocks produced by the triple mutant and the original virus differed in size and morphology. In addition, the two CPV variants differed in destructive changes caused in the chorioallantoic membrane of chick embryos.  相似文献   

14.
Factors Affecting the Sensitivity of Different Viruses to Interferon   总被引:17,自引:6,他引:11       下载免费PDF全文
When the sensitivities to interferon of Newcastle disease virus (NDV) and vesicular stomatitis virus (VSV) were compared by the plaque reduction method in chick embryo cell cultures, NDV was found to be 45-fold more resistant than VSV. This difference was exaggerated when a multiple-cycle yield inhibition method was employed. In marked contrast, when the same viruses were tested by a single-cycle yield inhibition method, the difference in sensitivity to interferon of the two viruses was virtually eliminated. Further investigation showed that, in chick embryo cells exposed to interferon, the resistance to NDV decayed more rapidly than resistance to VSV. This finding explained the divergent results obtained with the two viruses when single- or multiple-cycle replication techniques were employed. Experiments carried out with L cells showed that cellular antiviral resistance decayed much more slowly in these cells than in chick embryo cells. Consequently, when measured by the plaque reduction method in L cells, no difference was observed in the sensitivity to interferon of VSV and NDV(pi), a mutant of NDV which replicates efficiently in L cells. A procedure is suggested for determining the relative sensitivities to interferon of different viruses under conditions which minimize the role of decay of antiviral resistance in the host cells.  相似文献   

15.
The genetic basis for the distinctive capacity of influenza A/WSN/33 (H0N1) virus (WSN virus) to produce plaques on bovine kidney (MDBK) cells was found to be related to virus neuraminidase. Recombinant viruses that derived only the neuraminidase of WSN virus were capable of producing plaques, whereas recombinant viruses identical to WSN except for neuraminidase did not produce plaques. With viruses that do not contain WSN neuraminidase, infectivity of virus yields from MDBK cells was increased approximately 1,000-fold after in vitro treatment with trypsin. In contrast, no significant increase in infectivity was observed after trypsin treatment of viruses containing WSN neuraminidase. In addition, polyacrylamide gel analysis of proteins of WSN virus obtained after infection of MDBK cells demonstrated that hemagglutinin was present in the cleaved form (HA1 + HA2), whereas only uncleaved hemagglutinin was obtained with a recombinant virus that derived all of its genes from WSN virus except its neuraminidase. These data are in accord with the hypothesis that neuraminidase may facilitate production of infectious particles by removing sialic acid residues and exposing appropriate cleavage sites on hemagglutinin.  相似文献   

16.
Clone NS20Y of the mouse neuroblastoma C1300 was infected with wild-type Edmonston measles virus, and, after a transition to a carrier culture, became persistently infected. Persistently infected clones were derived and characterized morphologically by the appearance of multinucleate giant cells and nucleocapsid matrices in cytoplasm and nucleus, but very few budding virus particles. Antimeasles antibodies markedly suppressed the expression of viral antigens and giant cells, and the effect was totally reversible. When the cells were cultured at 33 degrees C, the number of giant cells began to diminish and ultimately disappeared; in contrast, when cultured at 39 degrees C, the cultures invariably lysed. Yields at 33 degrees C were ca. 2 logs lower than those at 39 degrees C. Cells cultured at 33 degrees C produced relatively high levels of interferon, whereas those at 39 degrees C produced little or no interferon. When the persistently infected cultures were exposed to anti-interferon alpha/beta serum at a nonpermissive temperature, there was a marked increase in multinucleate cells, suggesting that maintenance of the persistence state and its regulation by temperature may be related to the production of interferon. Viral isolates from cells cultured at 39 degrees C were obtained, and 90% of viral clones were found to be cold sensitive. Complementation studies with different viral clones indicated that the cold-sensitive defect was probably associated with the same genetic function. Western blot analysis of the persistently infected cells indicated a significant diminution and expression of all measles-specific proteins at a nonpermissive temperature. Infection of NS20Y neuroblastoma cells with the cold-sensitive virus isolates resulted in the development of an immediate persistent infection, whereas infection of Vero or HeLa cells resulted in a characteristic lytic infection, suggesting that the cold-sensitive mutants may be selected or adapted for persistent infection in cells of neural origin.  相似文献   

17.
African Green Monkey Kidney cells were shown to normally synthesize immunoreactive PGE1. Infection of these cells with Sendai virus did not alter rates of PGE1 synthesis, while it stimulated interferon production. PGAs, that we have previously shown to be potent inhibitors of Sendai virus replication in this system, at the same dose (4 μg/ml), also strongly inhibited the replication of this virus in HEp-2 cells and in VERO cells, a monkey kidney cell line that does not produce interferon. PGA1 was found to be effective in several cell and virus models, suggesting a broad spectrum of antiviral actions. Finally, we confirmed the observation that PGA1-treatment prevents the establishment of a “carrier state” by Sendai virus, and PGA1-cured cells did not show any sign of persistent infection for periods as long as 110 days after Sendai function. Attempts to cure already established persistently infected cells were only partially successful.  相似文献   

18.
19.
Sendai virus grown in fertile eggs (egg Sendai) infects L cells in which the synthesis of L Sendai (grown in L cells) occurs by the one-step mechanism. L Sendai is not infectious for L cells when tested by the tube titration method although it is infectious for chick embryos. When L cells infected with egg Sendai were dispersed by trypsin and plated on a monolayer culture of L cells, the viral agents spread to the adjacent recipient cells in which the synthesis of L Sendai occurred. The newly infected L cells became infectious for L cells again by trypsin treatment. Kinetic experiments suggested that the target of trypsin is the mature virus, of L Sendai nature, just budding from the L-cell surface. By using an immunofluorescent cell-counting technique, recovery of the infectivity of L Sendai for L cells due to a direct enzymatic action of trypsin was demonstrated. Under the optimal condition, the infectivity increased 1,000-fold for L cells and 10-fold for chick embryos, and both the titers could favorably be compared. No increasing effect of trypsin was observed on the infectivity of egg Sendai. Density centrifugation studies revealed a difference between egg Sendai and L Sendai in the density. Trypsin treatment which induced the maximal enhancement of L Sendai infectivity did not affect both the densities, showing that variations of Sendai virus in the infectivity for L cells and in the density are independent types of host-controlled modification.  相似文献   

20.
Kaposi''s sarcoma-associated herpesvirus (KSHV) is tightly linked to at least two lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman''s disease (MCD). However, the development of KSHV-mediated lymphoproliferative disease is not fully understood. Here, we generated two recombinant KSHV viruses deleted for the first RBP-Jκ binding site (RTA1st) and all three RBP-Jκ binding sites (RTAall) within the RTA promoter. Our results showed that RTA1st and RTAall recombinant viruses possess increased viral latency and a decreased capability for lytic replication in HEK 293 cells, enhancing colony formation and proliferation of infected cells. Furthermore, recombinant RTA1st and RTAall viruses showed greater infectivity in human peripheral blood mononuclear cells (PBMCs) relative to wt KSHV. Interestingly, KSHV BAC36 wt, RTA1st and RTAall recombinant viruses infected both T and B cells and all three viruses efficiently infected T and B cells in a time-dependent manner early after infection. Also, the capability of both RTA1st and RTAall recombinant viruses to infect CD19+ B cells was significantly enhanced. Surprisingly, RTA1st and RTAall recombinant viruses showed greater infectivity for CD3+ T cells up to 7 days. Furthermore, studies in Telomerase-immortalized human umbilical vein endothelial (TIVE) cells infected with KSHV corroborated our data that RTA1st and RTAall recombinant viruses have enhanced ability to persist in latently infected cells with increased proliferation. These recombinant viruses now provide a model to explore early stages of primary infection in human PBMCs and development of KSHV-associated lymphoproliferative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号