首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Altered glial function may contribute to the initiation or progression of neuronal death in neurodegenerative diseases. Thus, modulation of astrocyte death may be essential for preventing pathological processes in the CNS. In recent years, metabotropic glutamate receptor (mGluR) activation has emerged as a key target for neuroprotection. We investigated the effect of subtype 3 mGluR (mGluR3) activation on nitric oxide (NO)‐induced astroglial death. A mGluR3 selective agonist, LY379268, reduced inducible NO synthase expression and NO release induced by bacterial lipopolysaccharide and interferon‐γ in cultured rat astrocytes. In turn, a NO donor (diethylenetriamine/NO) induced apoptotic‐like death in cultured astrocytes, which showed apoptotic morphology and DNA fragmentation, but no caspase 3 activation. LY379268 prevented astrocyte death induced by NO exposure, which correlates with a reduction in: phosphatidylserine externalization, p53 and Bax activation and mitochondrial permeability. The reported effects of LY379268 were prevented by the mGluR3 antagonist (s)‐α‐ethylglutamic acid. All together, these findings show the protective effect of mGluR3 activation on astroglial death and provide further evidence of a role of these receptors in preventing CNS injury triggered by several inflammatory processes associated with dysregulated NO production.  相似文献   

2.
3.
The group I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG) elicited two phases of synchronized neuronal (epileptiform) discharges in hippocampal slices: an initial phase of short duration discharges followed by a phase of prolonged discharges. We assessed the involvement of transient receptor potential canonical (TRPC) channels in these responses. Pre-treatment of hippocampal slices with TRPC channel blockers, 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride (SKF96365) or 2-aminoethoxydiphenyl borate, did not affect the short epileptiform discharges but blocked the prolonged epileptiform discharges. SKF96365 suppressed ongoing DHPG-induced prolonged epileptiform discharges. Western blot analysis showed that the total TRPC4 or TRPC5 proteins in hippocampal slices were unchanged following DHPG. DHPG increased TRPC4 and TRPC5 in the cytoplasmic compartment and decreased these proteins in the plasma membrane. Translocation of TRPC4 and TRPC5 was suppressed when the epileptiform discharges were blocked by ionotropic glutamate receptor blockers. Translocation of TRPC4 and TRPC5 was also prevented in slices from phospholipase C (PLC) beta1 knockout mice, even when synchronized discharges were elicited by the convulsant 4-aminopyridine. The results suggest that TRPC channels are involved in generating DHPG-induced prolonged epileptiform discharges. This function of TRPC channels is associated with a neuronal activity- and PLCbeta1-dependent translocation of TRPC4 and TRPC5 proteins from the plasmalemma to the cytoplasmic compartment.  相似文献   

4.
We investigated whether the activation of astroglial group II and III metabotropic glutamate receptors (mGluRs) could exert neuroprotective effects and whether the neuroprotection was related to glutamate uptake. Our results showed that the activation of astroglial group II or III mGluRs exerted neuroprotection against 1-methyl-4-phenylpyridinium (MPP+) astroglial conditioned medium-induced neurotoxicity in midbrain neuron cultures. Furthermore, MPP+ decreased glutamate uptake of primary astrocytes and C6 glioma cells, which was recovered by activating group II or III mGluRs. Specific group II or III mGluRs antagonists completely abolished the neuroprotective effects and the enhancement of glutamate uptake of their respective agonists. Our results showed that the primary cultured rat astrocytes and C6 glioma cells expressed receptor proteins for group II mGluR2/3, group III mGluR4, mGluR6 and mGluR7. C6 glioma cells expressed mRNA for group II mGluR3, group III mGluR4, mGluR6, mGluR7 and mGluR8. In conclusion, we confirmed that the activation of astroglial mGluRs exerted neuroprotection, and demonstrated that the mechanism underlying this protective role was at least partially related to the enhancement of glutamate uptake.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a selective loss of motor neurones accompanied by intense gliosis in lesioned areas of the brain and spinal cord. Glutamate-mediated excitotoxicity resulting from impaired astroglial uptake constitutes one of the current pathophysiological hypotheses explaining the progression of the disease. In this study, we examined the regulation of glutamate transporters by type 5 metabotropic glutamate receptor (mGluR5) in activated astrocytes derived from transgenic rats carrying an ALS-related mutated human superoxide dismutase 1 (hSOD1(G93A)) transgene. Cells from transgenic animals and wild-type littermates showed similar expression of glutamate-aspartate transporter and glutamate transporter 1 (GLT-1) after in vitro activation, whereas cells carrying the hSOD1 mutation showed a three-fold higher expression of functional mGluR5, as observed in the spinal cord of end-stage animals. In cells from wild-type animals, (S)-3,5-dihydroxyphenylglycine (DHPG) caused an immediate protein kinase C (PKC)-dependent up-regulation of aspartate uptake that reflected the activation of GLT-1. Although this effect was mimicked in both cultures by direct activation of PKC using phorbol myristate acetate, DHPG failed to up-regulate aspartate uptake in cells derived from the transgenic rats. The failure of activated mGluR5 to increase glutamate uptake in astrocytes derived from this animal model of ALS supports the theory of glutamate excitotoxicity in the pathogenesis of the disease.  相似文献   

6.
Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors that are distributed throughout the brain and play important roles in regulation of synaptic efficacy. Some studies report that mGluRs heterologously expressed in nonneuronal cells are sensitive not only to glutamate but also to extracellular Ca2+ (Ca o 2+ ). We studied the Ca o 2+ -sensitivity of native mGluRs in mammalian central neurons. In cerebellar Purkinje cells that naturally express type-1 mGluR (mGluR1), physiological levels of Ca o 2+ (around 2 mM) activate mGluR1-mediated intracellular Ca2+ mobilization. The activation of the native mGluR1 response to Ca o 2+ appears to be slower than that to glutamate. Ca o 2+ (2 mM) also augments glutamate analog-evoked, native mGluR1-mediated inward cation current and intracellular Ca o 2+ mobilization. Detailed analysis of this effect suggests that Ca o 2+ modulates the glutamate responsiveness of native and heterologously expressed mGluR1s in different manners. These findings suggest that Ca o 2+ may enhance the basal level and glutamate responsiveness of neuronal mGluR signaling in vivo.  相似文献   

7.
The signaling property of metabotropic glutamate receptor 1alpha (mGlu1alpha) is different from that of short-form splice variants. This could be caused by the exposure of a cluster of positively charged amino acid residues, RRKK, in the proximal C-tail which is thought to be masked by the long C-tail of mGlu1alpha. We found that the RRKK residues, when exposed, attenuate Gq coupling and decrease the basal activity and the surface expression of mGlu1, in agreement with previous results. Moreover, these residues abolish the Gi/o coupling of mGlu1, but do not affect glutamate-induced dimeric rearrangement and protein kinase A-dependent modulation of mGlu1. These results suggest that the RRKK residues do not inhibit the conformational change upon glutamate binding and protein accessibility to the intracellular loops where G-protein coupling occurs, but rather act as an inhibitory domain against G-protein coupling in a different manner depending on the type of G protein.  相似文献   

8.
The effects of several metabotropic receptor (mGluR) ligands on baseline hippocampal glutamate and GABA overflow in conscious rats and the modulation of limbic seizure activity by these ligands were investigated. Intrahippocampal mGluR group I agonist perfusion via a microdialysis probe [1 mm (R,S)-3,5-dihydroxyphenylglycine] induced seizures and concomitant augmentations in amino acid dialysate levels. The mGlu1a receptor antagonist LY367385 (1 mm) decreased baseline glutamate but not GABA concentrations, suggesting that mGlu1a receptors, which regulate hippocampal glutamate levels, are tonically activated by endogenous glutamate. This decrease in glutamate may contribute to the reported LY367385-mediated anticonvulsant effect. The mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (50 mg/kg) also clearly abolished pilocarpine-induced seizures. Agonist-mediated actions at mGlu2/3 receptors by LY379268 (100 microm, 10 mg/kg intraperitoneally) decreased basal hippocampal GABA but not glutamate levels. This may partly explain the increased excitation following systemic LY379268 administration and the lack of complete anticonvulsant protection within our epilepsy model with the mGlu2/3 receptor agonist. Group II selective mGluR receptor blockade with LY341495 (1-10 microm) did not alter the rats' behaviour or hippocampal amino acid levels. These data provide a neurochemical basis for the full anticonvulsant effects of mGlu1a and mGlu5 antagonists and the partial effects observed with mGlu2/3 agonists in vivo.  相似文献   

9.
Stimulation of astrocytes with the excitatory neurotransmitter glutamate leads to the formation of inositol 1,4,5-trisphosphate and the subsequent increase of intracellular calcium content. Astrocytes express both ionotropic receptors and metabotropic glutamate (mGlu) receptors, of which mGlu5 receptors are probably involved in glutamate-induced calcium signaling. The mGlu5 receptor occurs as two splice variants, mGlu5a and mGlu5b, but it was hitherto unknown which splice variant is responsible for the glutamate-induced effects in astrocytes. We report here that both mRNAs encoding mGlu5 receptor splice variants are expressed by cultured astrocytes. The expression of mGlu5a receptor mRNA is much stronger than that of mGlu5b receptor mRNA in these cells. In situ hybridization experiments reveal neuronal expression of mGlu5b receptor mRNA in adult rat forebrain but a strong neuronal expression of mGlu5a mRNA only in olfactory bulb. Signals for mGlu5a receptor mRNA in the rest of the brain were diffuse and weak but consistently above background. Activation of mGlu5 receptors in astrocytes yields increases in inositol phosphate production and transient calcium responses. It is surprising that the rank order of agonist potency [quisqualate > (2S,1 'S,2'S)-2-(carboxycyclopropyl)glycine = trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (1S,3R-ACPD) > glutamate] differs from that reported for recombinantly expressed mGlu5a receptors. The expression of mGlu5a receptor mRNA and the occurrence of 1S,3R-ACPD-induced calcium signaling were found also in cultured microglia, indicating for the first time expression of mGlu5a receptors in these macrophage-like cells.  相似文献   

10.
A detailed pharmacological characterization of metabotropic glutamate receptors (mGluR) was performed in primary cultures of cerebellar granule cells at 6 days in vitro (DIV). The rank order of agonists induced polyphosphoinositide (PPI) hydrolysis (after correcting for the ionotropic component in the response) was as follows: in terms of efficiency, Glu>quisqualate (quis)=ibotenate (ibo)>(1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid (ACPD)>-methyl-amino-l-alanine (BMAA) and in terms of potency, quis>ACPD>Glu>ibo=BMAA. Ionotropic excitatory amino acid (EAA) receptor agonists, such as -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) were relatively inactive (in the presence of Mg2+). Quis and ACPD-induced PPI hydrolysis was unaffected by ionotropic Glu receptor antagonists, but was inhibited, in part by L-2-amino-3-phosphonopropionate (AP3). In contrast, Glu-or ibo- induced PPI hydrolysis was reduced, in part, by both AP3 and NMDA receptor antagonists. Characteristic interactions involving different transmitter receptors were noted. PPI hydrolysis evoked by quis and 1S,3R-ACPD was not additive. In contrast, PPI hydrolysis stimulated by quis/ACPD and carbamylcholine was additive (indicating different receptors/transduction pathways). In the presence of Mg2+, the metabotropic response to quis/AMPA and NMDA was synergistic (this being consistent with AMPA receptor-induced depolarization activating NMDA receptor). On the other hand, in Mg2+-free buffer the effects of quis and NMDA, at concentrations causing maximal PPI hydrolysis, were additive (indicating that PPI hydrolysis was effected by two different mechanisms). Thus, in cerebellar granule cells EAAs elicit PPI hydrolysis by acting at two distinct receptor types: (i) metabotropic Glu receptors (mGluR), with pharmacological characteristics suggesting the expression of a unique mGluR receptor that shows certain similarities to those observed for the mGluR1 subtype (Aramori and Nakanishi, 1992) and (ii) NMDA receptors. The physiological agonist, Glu, is able to stimulate both receptor classes.Abbreviations ACPD (1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid - AMPA -amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid - AP3 L-2-amino-3-phosphono-propionate - AP5 D-2-amino-5-phosphonopentenoate - BMAA -methyl-amino-L-alanine - DIV days in vitro - DNOX 6,7-dinitroouinoxoline-2,3-dione - EAA excitatory amino acids - Glu glutamate - InsP inositol monophosphate - mGluR metabotropic glutamate receptors - MK-801 (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohept-5,10-imine hydrogen maleate - NMDA N-methyl-D-aspartate - PPI polyphosphoinositide - quis quisqualate  相似文献   

11.
We evaluated the possible functional expression of metabotropic glutamate receptors (mGluRs) by neural progenitors from embryonic mouse neocortex. Constitutive expression was seen with group I, II, and III mGluRs in undifferentiated cells and neurospheres formed by clustered cells during culture with epidermal growth factor. The group III mGluR agonist, l -2-amino-4-phosphonobutyrate, drastically reduced proliferation activity at 1–100 μM without inducing cell death, with group I and group II mGluR agonists being ineffective, in these neurospheres. Both forskolin and a group III mGluR antagonist significantly increased the proliferation alone, but significantly prevented the suppression by l -2-amino-4-phosphonobutyrate. Activation of group III mGluR significantly decreased mRNA expression of the cell cycle regulator cyclinD1, in addition to inhibiting the transactivation mediated by cAMP of cyclinD1 gene in the pluripotent P19 progenitor cells. Prior activation of group III mGluR led to a significant decrease in the number of cells immunoreactive for a neuronal marker, with an increase in that for an astroglial marker irrespective of differentiation inducers. These results suggest that group III mGluR may be functionally expressed to suppress self-renewal capacity through a mechanism related to cAMP formation with promotion of subsequent differentiation into astroglial lineage in neural progenitors.  相似文献   

12.
Glutamate carboxypeptidase II (GCPII, EC 3.14.17.21) is a membrane-bound enzyme found on the extracellular face ofglia. The gene for this enzyme is designated FOLH1 in humans and Folh1 in mice. This enzyme has been proposed to be responsible for inactivation of the neurotransmitter N-acetylaspartylglutamate (NAAG) following synaptic release. Mice harboring a disruption of the gene for GCPII/Folh1 were generated by inserting into the genome a targeting cassette in which the intron-exon boundary sequences of exons 1 and 2 were removed and stop codons were inserted in exons 1 and 2. Messenger RNA for GCPII was not detected by northern blotting or RT-PCR analysis of RNA from the brains of -/- mutant mice nor was GCPII protein detected on western blots of this tissue. These GCPII null mutant mice developed normally to adulthood and exhibited a normal range of neurologic responses and behaviors including mating, open field activity and retention of position in rotorod tests. No significant differences were observed among responses of wild type, heterozygous mutant and homozygous mutant mice on tail flick and hot plate latency tests. Glutamate, NAAG and mRNA for metabotropic glutamate receptor type 3 levels were not significantly altered in response to the deletion of glutamate carboxypeptidase II. A novel membrane-bound NAAG peptidase activity was discovered in brain, spinal cord and kidney of the GCPII knock out mice. The kinetic values for brain NAAG peptidase activity in the wild type and GCPII nullmutant were Vmax = 45 and 3 pmol/mg/min and Km = 2650 nm and 2494 nm, respectively. With the exception of magnesium and copper, this novel peptidase activity had a similar requirement for metal ions as GCPII. Two potent inhibitors of GCPII, 4,4'-phosphinicobis-(butane-1,3 dicarboxilic acid) (FN6) and 2-(phosphonomethyl)pentanedioic acid (2-PMPA) inhibited the residual activity. The IC50 value for 2-PMPA was about 1 nm for wild-type brain membrane NAAG peptidase activity consistent with its activity against cloned ratand human GCPII, and 88 nm for the activity in brain membranes of the null mutants.  相似文献   

13.
At present, little is known regarding the mechanism of metabotropic glutamate receptor (mGluR) trafficking. To facilitate this characterization we inserted a haemagglutinin (HA) epitope tag in the extracellular N-terminal domain of the rat mGluR1a. In human embryonic kidney cells (HEK293), transiently transfected with HA-mGluR1a, the epitope-tagged receptor was primarily localized to the cell surface prior to agonist stimulation. Following stimulation with glutamate (10 microM; 30 min) the HA-mGluR1a underwent internalization to endosomes. Further quantification of receptor internalization was provided by ELISA experiments which showed rapid agonist-induced internalization of the HA-mGluR1a. To determine whether agonist-induced mGluR1a internalization is an arrestin- and dynamin-dependent process, cells were cotransfected with HA-mGluR1a and either of these dynamin-K44A or arrestin-2 (319-418). Expression of either dominant negative mutant constructs with receptor strongly inhibited glutamate-induced (10 microM; 30 min) HA-mGluR1a internalization. In addition, wild-type arrestin-2-green fluorescent protein (arrestin-2-GFP) or arrestin-3-GFP underwent agonist-induced translocation from cytosol to membrane in HEK293 cells coexpressing HA-mGluR1a. Taken together our observations demonstrate that agonist-induced internalization of mGluR1a is an arrestin- and dynamin-dependent process.  相似文献   

14.
Traumatic brain injury (TBI) produces a rapid and excessive elevation in extracellular glutamate that induces excitotoxic brain cell death. The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) is reported to suppress neurotransmitter release through selective activation of presynaptic group II metabotropic glutamate receptors. Therefore, strategies to elevate levels of NAAG following brain injury could reduce excessive glutamate release associated with TBI. We hypothesized that the NAAG peptidase inhibitor, ZJ-43 would elevate extracellular NAAG levels and reduce extracellular levels of amino acid neurotransmitters following TBI by a group II metabotropic glutamate receptor (mGluR)-mediated mechanism. Dialysate levels of NAAG, glutamate, aspartate and GABA from the dorsal hippocampus were elevated after TBI as measured by in vivo microdialysis. Dialysate levels of NAAG were higher and remained elevated in the ZJ-43 treated group (50 mg/kg, i.p.) compared with control. ZJ-43 treatment also reduced the rise of dialysate glutamate, aspartate, and GABA levels. Co-administration of the group II mGluR antagonist, LY341495 (1 mg/kg, i.p.) partially blocked the effects of ZJ-43 on dialysate glutamate and GABA, suggesting that NAAG effects are mediated through mGluR activation. The results are consistent with the hypothesis that inhibition of NAAG peptidase may reduce excitotoxic events associated with TBI.  相似文献   

15.
G protein-coupled receptors have a common structural motif of seven transmembrane alpha-helices and are classified into different families showing no sequence similarity. Extensive studies have been conducted on the structure-function relationship in family 1 receptors, but those in other families have not been well studied. In this study, to investigate the molecular basis leading to the G protein activation by metabotropic glutamate receptor (mGluR), the member of family 3, we searched for the amino acid residues responsible for the G protein activation in the second cytoplasmic loop, which was thought to be the main G protein binding region. Analyses of the systematical mutations of Gi/Go-coupled mGluR8 revealed the presence of a constitutively active mutation in the C-terminal region of the second loop. The corresponding mutation in the second loop of Gq-coupled mGluR1 also exhibited high agonist-independent activity. These results indicate that there is a common constitutive active mutation site regardless of mGluR subtypes, suggesting that the structural change of the junction between the second cytoplasmic loop and helix IV is strongly linked to the formation of the active state.  相似文献   

16.
We used cultured cerebellar granule cells to examine whether native group-III metabotropic glutamate (mGlu) receptors are coupled to the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI-3-K) pathways. Cultured granule cells responded to the group-III mGlu receptor agonist, L-2-amino-4-phosphonobutanoate (l-AP4), with an increased phosphorylation and activity of MAPKs (ERK-1 and -2) and an increased phosphorylation of the PI-3-K target, protein kinase B (PKB/AKT). These effects were attenuated by the group-III antagonists, alpha-methyl-serine-O -phosphate (MSOP) and (R,S )-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG), or by pretreatment of the cultures with pertussis toxin. l-AP4 also induced the nuclear translocation of beta-catenin, a downstream effector of the PI-3-K pathway. To assess the functional relevance of these mechanisms we examined the ability of l-AP4 to protect granule cells against apoptosis by trophic deprivation, induced by lowering extracellular K(+) from 25 to 10 mm. Neuroprotection by l-AP4 was attenuated by MSOP and abrogated by the compounds PD98059 and UO126, which inhibit the MAPK pathway, or by the compound LY294002, which inhibits the PI-3-K pathway. Taken together, these results show for the first time that native group-III mGlu receptors are coupled to MAPK and PI-3-K, and that activation of both pathways is necessary for neuroprotection mediated by this particular class of receptors.  相似文献   

17.
18.
The Group I metabotropic glutamate receptor (mGlu1) plays an important role in neuromodulation, development, and synaptic plasticity. Using immunocytochemistry, subcellular fractionation, and western blot analysis, the present study shows that mGlu1a receptors are present on nuclear membranes in stably transfected human embryonic kidney 293 (HEK293) cells as well as being endogenously expressed on rat cortical nuclei. Both glutamate and the group I agonist, quisqualate, directly activate nuclear mGlu1 receptors leading to a characteristic oscillatory pattern of calcium flux in isolated HEK nuclei and a slow rise to plateau in isolated cortical nuclei. In either case calcium responses could be terminated upon application of the mGlu1-selective antagonist, 7-(hydroxyamino)cyclopropa[b]chromen-1a-carboxylate ethyl ester. Responses could also be blocked by ryanodine and inositol 1,4,5-triphosphate receptor inhibitors, demonstrating the involvement of these calcium channels. Agonist activation of intracellular receptors was driven by Na(+)-dependent and -independent processes in nuclei isolated from either HEK or cortical neurons. Finally, mGlu1 nuclear receptors were dramatically up-regulated in the course of post-natal development. Therefore, like the other Group I receptor, mGlu5, mGlu1 can function as an intracellular receptor, suggesting a more encompassing role for nuclear G protein-coupled receptors and downstream signaling elements in the regulation of nuclear events.  相似文献   

19.
Glutamate carboxypeptidase II (GCPII), a glial ectoenzyme, is responsible for N-acetylaspartylglutamate (NAAG) hydrolysis. Its regulation in crayfish nervous tissue was investigated by examining uptake of [3H]glutamate derived from N-acetylaspartyl-[3H]glutamate ([3H]NAAG) to measure GCPII activity. Electrical stimulation (100 Hz, 10 min) during 30 min incubation with [3H]NAAG increased tissue [3H]glutamate tenfold. This was prevented by 2-(phosphonomethyl)-pentanedioic acid (2-PMPA), a GCPII inhibitor, suggesting that stimulation increased the hydrolysis of [3H]NAAG and metabolic recycling of [3H]glutamate. Antagonists of glial group II metabotropic glutamate receptors (mGLURII), NMDA receptors and acetylcholine (ACh) receptors that mediate axon-glia signaling in crayfish nerve fibers decreased the effect of stimulation by 58-83%, suggesting that glial receptor activation leads to stimulation of GCPII activity. In combination, they reduced [3H]NAAG hydrolysis during stimulation to unstimulated control levels. Agonist stimulation of mGLURII mimicked the effect of electrical stimulation, and was prevented by antagonists of GCPII or mGLURII. Raising extracellular K+ to three times the normal level stimulated [3H]NAAG release and GCPII activity. These effects were also blocked by antagonists of GCPII and mGLUR(II). No receptor antagonist or agonist tested or 2-PMPA affected uptake of [3H]glutamate. We conclude that NAAG released from stimulated nerve fibers activates its own hydrolysis via stimulation of GCPII activity mediated through glial mGLURII, NMDA and ACh receptors.  相似文献   

20.
High glucose concentrations cause oxidative injury and programmed cell death in neurons, and can lead to diabetic neuropathy. Activating the type 3 metabotropic glutamate receptor (mGluR3) prevents glucose-induced oxidative injury in dorsal root ganglion neurons co-cultured with Schwann cells. To determine the mechanisms of protection, studies were performed in rat dorsal root ganglion neuron-Schwann cell co-cultures. The mGluR3 agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate prevented glucose-induced inner mitochondrial membrane depolarization, reactive oxygen species accumulation, and programmed cell death, and increased glutathione (GSH) concentration in co-cultured neurons and Schwann cells, but not in neurons cultured without Schwann cells. Protection was diminished in neurons treated with the GSH synthesis inhibitor l-buthionine-sulfoximine, suggesting that mGluR-mediated protection requires GSH synthesis. GSH precursors and the GSH precursor GSH-ethyl ester also protected neurons from glucose-induced injury, indicating that GSH synthesis in Schwann cells, and transport of reaction precursors to neurons, may underlie mGluR-mediated neuroprotection. These results support the conclusions that activating glial mGluR3 protects neurons from glucose-induced oxidative injury by increasing free radical scavenging and stabilizing mitochondrial function, through increased GSH antioxidant defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号