首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In view of a possible application of the alpha-amylase from Bacillus licheniformis as a time-temperature integrator for evaluation of heat processes,(11) thermal inactivation kinetics of the dissolved and covalently immobilized enzyme were studied in the temperature range 90-108 degrees C. The D-values (95 degrees C) for inactivation of alpha-amylase, dissolved in tris-HCl buffer, ranged from 6 to 157 min, depending on pH, ionic strength, and Ca(2+) and enzyme concentration. The z-value fluctuated between 6.2 and 7.6 degrees C. On immobilization of the alpha-amylase by covalent coupling with glutaraldehyde to porous glass beads, the thermoinactivation kinetics became biphasic under certain circumstances. For immobilized enzyme, the D-values (95 degrees C) ranged between 17 and 620 min, depending largely on certain environmental conditions. The z-value fluctuated between 8.1 and 12.9 degrees C. In each case of biphasic inactivation, the z-value of the stable fraction (with the higher D-values) was lower than the z-value of the labile fraction. (c) 1992 John Wiley & Sons, Inc.  相似文献   

2.
The reaction of chymase, a chymotryptic proteinase from human skin, and bovine pancreatic chymotrypsin with a number of time-dependent inhibitors has been studied. An integrated equation, relating product formation with time, has been derived for the reaction of enzymes with time-dependent inhibitors in the presence of substrate. This is based on a two-step model in which a rapidly reversible, non-covalent complex (EI) is formed prior to a tighter, less readily reversible complex (EI)*). The equation depends on the simplifying assumption [I] much greater than [E], but is applicable to reversible and irreversible slow-binding and tight-binding inhibitors whether or not they show saturation kinetics. The method has been applied to the reaction of chymase and chymotrypsin with the tetrapeptide aldehyde, chymostatin, basic pancreatic trypsin inhibitor and Ala-Ala-Phe-chloromethylketone (AAPCK). The irreversible inhibitor, AAPCK, showed the expected saturation kinetics for both enzymes and the apparent first-order rate constants (k2) and dissociation constants (Ki) for the non-covalent complexes were determined. Chymostatin was a much more potent inhibitor which failed to show a saturation effect. The second-order rate constant of inactivation (k2/Ki), the first-order reactivation rate constant (k-2), and the dissociation constant of the covalent complex (Ki*) were determined. Basic pancreatic trypsin inhibitor, a potent inhibitor of chymotrypsin, had similar kinetics to chymostatin but failed to inhibit chymase. The applicability of the two-step model and the integrated equation to slow- and tight-binding inhibitors is discussed in relation to a number of examples from the literature.  相似文献   

3.
Some properties of immobilized alpha-amylase by Aspergillus sclerotiorum within calcium alginate gel beads were investigated and compared with soluble enzyme. Optimum pH and temperature were found to be 5.0 and 40 degrees C, respectively, for both soluble and immobilized enzymes. The immobilized enzyme had a better Km value, but kcat/Km values were the same for both enzymes. Entrapment within calcium alginate gel beads improved, remarkably, the thermal and storage stability of alpha-amylase. The half life values of immobilized enzyme and soluble enzyme at 60 degrees C were 164.2, and 26.2 min, respectively. The midpoint of thermal inactivation (Tm) shifted from 56 degrees C (for soluble enzyme) to 65.4 degrees C for immobilized enzyme. The percentages of soluble starch hydrolysis for soluble and immobilized alpha-amylase were determined to be 97.5 and 92.2% for 60 min, respectively.  相似文献   

4.
Biphasic kinetic data were obtained when trypsin (EC 3.4.21.4) which had previously been complexed with a thiol-containing inhibitor (present in Ehrlich ascites tumour cells) was incubated with incremental additions of periodate. At low concentrations of periodate the trypsin was re-activated whilst at higher concentrations of periodate the trypsin was irreversibly inhibited. This biphasic reactivation followed by inhibition was also demonstrated when trypsin was first inhibited by dithiothreitol and followed by incremental addition of periodate. Similar results were obtained with chymotrypsin (EC 3.4.21.1). Incremental additions of either dithiothreitol or periodate caused inhibition of both these enzymes. The biphasic kinetic data can be explained in terms of reduction and oxidation of a significant disulphide bond in both trypsin and chymotrypsin which can be cleaved by thiols in a disulphide exchange reaction [1]. This bond is thought to maintain the active centres of each of these enzymes in a conformation sterically favourable for enzymic cleavage of specific peptide bonds in the protein substrates (polymeric collagen fibrils and casein) employed in this study.  相似文献   

5.
The presence of adenosine triphosphate, guanosine triphosphate, cytosine triphosphate, or uridine triphosphate reduced the rate of inactivation of vaccinia when heated at 50 C. The virus-associated nucleoside triphosphate phosphohydrolases (adenosine triphosphatase, guanosine triphosphatase, cytosine triphosphatase, and uridine triphosphatase) and ribonucleic acid polymerase were also protected from heat inactivation by these compounds. These obervations are best explained by postulating that ribonucleoside triphosphates bind to enzymes in the virus particle, and that these enzyme-substrate complexes are more resistant to thermal denaturation than are the enzymes without their substrates. The kinetics of heat inactivation of the vaccinia ATP phosphohydrolase activity is biphasic, suggesting that there are two proteins in the vaccinia particle that have this enzyme activity but they have different kinetics of heat inactivation. Any of the vaccinia-associated nucleotide phosphohydrolase activities are protected from heat inactivation by the presence of any one of the respective nucleoside triphosphates. This observation suggests that there is a single enzymatic site in vaccinia that is able to react with any ribonucleoside triphosphate.  相似文献   

6.
A trypsin inhibitor, isolated from whole-wheat grain (Triticum aestivum L.) by the method of bio-specific chromatography on trypsin-Sepharose, was potent in inhibiting human salivary alpha-amylase. The bi-functional alpha-amylase/trypsin inhibitor was characterized by a narrow specificity for other alpha-amylases and proteinases. The high thermostability of the inhibitor was lost in the presence of SH group-reducing agents. The inhibitor-trypsin complex retained its activity against alpha-amylase. The inhibitor-alpha-amylase complex was active against trypsin. Studies of the enzyme kinetics demonstrated that the inhibition of alpha-amylase and trypsin was noncompetitive. Our results suggest the existence of two independent active sites responsible for the interaction with the enzymes.  相似文献   

7.
Kinetics of thermal inactivation of glyceraldehyde-3-phosphate dehydrogenases of mung beans and rabbit muscle have been studied under different pH conditions in the absence and presence of various concentrations of NAD+ and NADH. The data have been discussed with respect to the effect of the coenzymes on the quaternary structure symmetry of the two enzymes and their binding isotherms. Both the (homo-tetrameric) apo-enzymes exhibit biphasic kinetics of thermal inactivation, characteristic of C2 symmetry, at lower pH values and a single exponential decay of enzyme activity, characteristic of D2 symmetry, at higher pHs. In each case, NAD+ has no effect on the biphasic kinetic pattern of thermal inactivation at lower pH values, but NADH brings about a change to single exponential decay. At higher pH values, NADH does not affect the kinetic pattern (single exponential decay) of any enzyme, but NAD+ alters it to biphasic kinetics in each case. The data suggest that NAD+ and NADH have higher affinity for the C2 and D2 symmetry conformation, respectively. With mung beans enzyme, the effect of NAD+ on the two rate constants of biphasic inactivation at pH 7.3 is consistent with a Kdiss equal to 110 microM. The NAD(+)-dependent changes in the kinetic pattern of thermal inactivation of this enzyme at pH 8.6 suggest a positive cooperativity in the coenzyme binding (nH = 3.0). In the binding of NADH to the mung beans enzyme, a weak positive cooperativity is observed at pH 7.3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Phenylalanine ammonia-lyase contained within permeabilized cells of Rhodosporidium toruloides was protected from proteolytic attack by trypsin, chymotrypsin and duodenal juice. The inactivation by the proteases was biphasic. The enzyme contained within the yeast cells had a similar Km for phenylalanine and Ki for cinnamic acid to the protein in free solution. Phenylalanine ammonia-lyase present in the yeast depleted duodenal juice of free phenylalanine, while the enzyme in free solution did not. The possibility of using permeabilized cells of R. toruloides as a vehicle for protecting orally ingested therapeutic enzymes from proteolytic inactivation is discussed.  相似文献   

9.
The photosensitive inactivation of trypsin and chymotrypsin by 4-fluoro-3-nitrophenyl azide (FNPA) is described. A dark inhibition was observed at elevated probe concentrations, and was reversible. The enzymes were stable to photolysis in the absence of probe. Photolytic inactivation of trypsin and chymotrypsin with FNPA was found to be irreversible, and occurs in minutes at concentrations of FNPA where dark inhibition is negligible. The photoprobe was equally effective at pH 3 or pH 8. Nonspecific inactivation appears to be low, as evidenced by the stability of glucose oxidase and peroxidase to photolysis with FNPA.  相似文献   

10.
The Inactivation kinetics of alpha-glucosidase, glucoamylase, alpha-amylase, and acid carboxypeptidase in fresh sake using a continuous flow system for high-pressure carbonation were investigated. In addition, the effects of ethanol and sugar concentrations on inactivation of the enzymes in high-pressure carbonated sake were investigated. Among the enzymes investigated, alpha-glucosidase was the most stable and alpha-amylase was the most labile on inactivation under carbonation. The decimal reduction times (D values) of alpha-glucosidase, glucoamylase, alpha-amylase (extrapolated from the Z value), and acid carboxypeptidase were 29, 6, 2, and 5 min respectively at 45 degrees C. These values are lower than those subjected to heat treatment. On the carbonation treatment as well as the heat treatment, ethanol accelerated the inactivation of all four enzymes, but glucose depressed the inactivation of these enzymes, except for acid carboxypeptidase. These results suggest that this continuous flow system enabled effective inactivation of enzymes in fresh sake.  相似文献   

11.
Time-dependent thermal inactivation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) present in the extract of mung beans at different periods of germination showed biphasic kinetics in the 12-h germinated seeds but single exponential decay at 24 h of germination. The glyceraldehyde 3-phosphate (G-3-P) concentration in the deproteinated extracts was found to increase with period of germination up to 36 h, parallel to that of GAPDH activity. G-3-P was found to offer protection of the enzyme against thermal inactivation and trypsin digestion. It is suggested that accumulation of G-3-P in germinating mung beans may be of physiological significance and it might offer protection to the enzyme in vivo against thermal inactivation and proteolysis.  相似文献   

12.
Bovine and porcine pancreatic residue, remaining after the extraction of insulin, has been used to prepare a proteinase powder. This powder was used as a source of trypsin and chymo-trypsin. The individual enzymes were isolated and purified by chromatography on sulfopropyl (SP)-Sephadex C-25 and affinity chromatography on soybean trypsin inhibitor (STI)-Sepharose. The bovine proteinase powder contained a-chymotrypsin, trypsin and chymotrypsin B in the ratio 5:2:1. The porcine powder contained cationic trypsin, anionic trypsin and cationic chymotrypsin in the ratio 5 : 1. 4 : 3. The isolated enzymes were characterized and found to be identical with enzymes isolated from fresh tissue with the exception of porcine chymotrypsin. Porcine cationic chymotrypsin was isolated as two distinct forms, A-l and A-2, which appear to be different activation products of porcine chymotrypsinogen A. Both forms resemble bovine a-chymotrypsin, a three chain structure, rather than porcine chymo-trypsin A, a two chain structure. Furthermore, the B-chain appears to be cleaved, possibly at residues Phe89-Lys90.  相似文献   

13.
14.
The production of extracellular alpha-amylase and protease by protoplasts of Bacillus amyloliquefaciens has been achieved. The production of enzymically active protease was totally dependent on a high concentration of either Mg2+, Ca2+, or spermidine, but production of active alpha-amylase was not. This cation dependence of protease production was seen immediately upon addition of lysozyme to intact cells. The cations could prevent the inactivation of protease and alter the cytoplasmic membrane configuration of protoplasts. Production of active alpha-amylase and protease by protoplasts was totally inhibited by proteolytic enzymes such as trypsin, alpha-chymotrypsin, or the organism's purified extracellular protease. The evidence suggests that these degradative enzymes act specifically on the emerging polypeptide of the extracellular enzyme and that the polypeptide emerges in a conformation different from that of the native molecule.  相似文献   

15.
The unique steric inhibition of endopeptidases by human alpha(2)M (alpha(2)-macroglobulin) and the inactivation of the latter by methylamine were examined in relation to each other. Progressive binding of trypsin by alpha(2)M was closely correlated with the loss of the methylamine-reactive sites in alpha(2)M: for each trypsin molecule bound, two such sites were inactivated. The results further showed that, even at low proteinase/alpha(2)M ratios, no unaccounted loss of trypsin-binding capacity occurred. As alpha(2)M is bivalent for trypsin binding and no trypsin bound to electrophoretic slow-form alpha(2)M was observed, this indicates that the two sites must react (bind trypsin) in rapid succession. Reaction of [(14)C]methylamine with alpha(2)M was biphasic in time; in the initial rapid phase complex-formation with trypsin caused a largely increased incorporation of methylamine. In the subsequent slow phase trypsin had no such effect. These results prompted further studies on the kinetics of methylamine inactivation of alpha(2)M with time of methylamine treatment. It was found that conformational change of alpha(2)M and decrease in trypsin binding (activity resistant to soya-bean trypsin inhibitor) showed different kinetics. The latter decreased rapidly, following pseudo-first-order kinetics. Conformational change was much slower and followed complex kinetics. On the other hand, binding of (125)I-labelled trypsin to alpha(2)M did follow the same kinetics as the conformational change. This discrepancy between total binding ((125)I radioactivity) and trypsin-inhibitor-resistant binding of trypsin indicated formation of anomalous complexes, in which trypsin could still be inhibited by soya-bean trypsin inhibitor. Further examination confirmed that these complexes were proteolytically active towards haemoglobin and bound (125)I-labelled soya-bean trypsin inhibitor to the active site of trypsin. The inhibition by soya-bean trypsin inhibitor was slowed down as compared with reaction with free trypsin. The results are discussed in relation to the subunit structure of alpha(2)M and to the mechanism of formation of the complex.  相似文献   

16.
Digestion in Tenebrio molitor larvae occurs in the midgut, where there is a sharp pH gradient from 5.6 in the anterior midgut (AM) to 7.9 in the posterior midgut (PM). Accordingly, digestive enzymes are compartmentalized to the AM or PM. Enzymes in the AM are soluble and have acidic or neutral pH optima, while PM enzymes have alkaline pH optima. The main peptidases in the AM are cysteine endopeptidases presented by two to six subfractions of anionic proteins. The major activity belongs to cathepsin L, which has been purified and characterized. Serine post‐proline cleaving peptidase with pH optimum 5.3 was also found in the AM. Typical serine digestive endopeptidases, trypsin‐like and chymotrypsin‐like, are compartmentalized to the PM. Trypsin‐like activity is due to one cationic and three anionic proteinases. Chymotrypsin‐like activity consists of one cationic and four anionic proteinases, four with an extended binding site. The major cationic trypsin and chymotrypsin have been purified and thoroughly characterized. The predicted amino acid sequences are available for purified cathepsin L, trypsin and chymotrypsin. Additional sequences for putative digestive cathepsins L, trypsins and chymotrypsins are available, implying multigene families for these enzymes. Exopeptidases are found in the PM and are presented by a single membrane aminopeptidase N‐like peptidase and carboxypeptidase A, although multiple cDNAs for carboxypeptidase A were found in the AM, but not in the PM. The possibility of the use of two endopeptidases from the AM – cathepsin L and post‐proline cleaving peptidase – in the treatment of celiac disease is discussed.  相似文献   

17.
Alam N  Gourinath S  Dey S  Srinivasan A  Singh TP 《Biochemistry》2001,40(14):4229-4233
The ragi alpha-amylase/trypsin bifunctional inhibitor (RATI) from Indian finger millet, Ragi (Eleucine coracana Gaertneri), represents a new class of cereal inhibitor family. It exhibits a completely new motif of trypsin inhibitory site and is not found in any known trypsin inhibitor structures. The alpha-amylase inhibitory site resides at the N-terminal region. These two sites are independent of each other and the inhibitor forms a ternary (1:1:1) complex with trypsin and alpha-amylase. The trypsin inhibition follows a simple competitive inhibition obeying the canonical serine protease inhibitor mechanism. However, the alpha-amylase inhibition kinetics is a complex one if larger (> or =7 glucose units) substrate is used. While a complete inhibition of trypsin activity can be achieved, the inhibition of amylase is not complete even at very high molar concentration. We have isolated the N-terminal fragment (10 amino acids long) by CNBr hydrolysis of RATI. This fragment shows a simple competitive inhibition of alpha-amylase activity. We have also synthesized various peptides homologous to the N-terminal sequence of RATI. These peptides also show a normal competitive inhibition of alpha-amylase with varying potencies. It has also been shown that RATI binds to the larger substrates of alpha-amylase. In light of these observations, we have reexamined the binding of proteinaceous inhibitors to alpha-amylase and its implications on the mechanism and kinetics of inhibition.  相似文献   

18.
D-beta-Hydroxybutyrate dehydrogenase is a lipid-requiring enzyme which is localized on the inner face of the mitochondrial inner membrane. The apodehydrogenase, i.e. the purified enzyme devoid of lipid, has been purified from beef heart mitochondria and as such is inactive. It can be reactivated by insertion into phospholipid vesicles containing lecithin. Proteolytic digestion with different proteases has been carried out to obtain insight into the orientation of the enzyme in the membrane and to assess the extent of immersion of the protein into the phospholipid bilayer. Digestion of the apodehydrogenase with either trypsin, chymotrypsin, Staphylococcus aureus protease, thermolysin, carboxypeptidases A and Y, or Pronase (from Streptomyces griseus) leads to loss of activity, as assayed with phospholipid. Limited digestion with carboxypeptidase results in complete inactivation. Of the proteases tested, only Pronase and chymotrypsin cleave and inactivate the enzyme inserted into phospholipid vesicles (enzyme-phospholipid complex). For the enzyme-phospholipid complex, the loss of activity with Pronase digestion follows a single exponential decay to less than 10% of the initial activity. With chymotrypsin digestion, the staining intensity of the original approximately 31,500-dalton polypeptide decreases more rapidly than the loss of enzymic activity. The enzyme-phospholipid complex, after limited cleavage with chymotrypsin, retains enzymic activity and resonance energy transfer from protein to bound NADH and an approximately 26,000-dalton polypeptide is observed. Phospholipid alters the cleavage pattern with both chymotrypsin and Pronase, and the rate of inactivation of the enzyme-phospholipid complex is slowed in the presence of NAD(H). Moreover, the rate of inactivation of the apodehydrogenase with chymotrypsin is diminished approximately 3-fold in the presence of NAD+. Digestion of submitochondrial vesicles with either trypsin, chymotrypsin, or Pronase rapidly inactivates D-beta-hydroxybutyrate dehydrogenase; the addition of NAD+ or NADH, together with dithiothreitol and increased salt (to 50 mM), decreases the rate of inactivation, and with trypsin, virtually eliminates inactivation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The inactivation behavior of the xylose isomerase from Thermotoga neapolitana (TN5068 XI) was examined for both the soluble and immobilized enzyme. Polymolecular events were involved in the deactivation of the soluble enzyme. Inactivation was biphasic at 95 degrees C, pH 7.0 and 7.9, the second phase was concentration-dependent. The enzyme was most stable at low enzyme concentrations, however, the second phase of inactivation was 3- to 30-fold slower than the initial phase. Both phases of inactivation were more rapid at pH 7.9, relative to 7.0. Differential scanning calorimetry of the TN5068 XI revealed two distinct thermal transitions at 99 degrees and 109 degrees C. The relative magnitude of the second transition was dramatically reduced at pH 7.9 relative to pH 7.0. Approximately 24% and 11% activity were recoverable after the first transition at pH 7.0 and 7.9, respectively. When the TN5068 XI was immobilized by covalent attachment to glass beads, inactivation was monophasic with a rate corresponding to the initial phase of inactivation for the soluble enzyme. The immobilized enzyme inactivation rate corresponded closely to the rate of ammonia release, presumably from deamidation of labile asparagine and/or glutamine residues. A second, slower inactivation phase suggests the presence of an unfolding intermediate, which was not observed for the immobilized enzyme. The concentration dependence of the second phase of inactivation suggests that polymolecular events were involved. Formation of a reversible polymolecular aggregate capable of protecting the soluble enzyme from irreversible deactivation appears to be responsible for the second phase of inactivation seen for the soluble enzyme. Whether this characteristic is common to other hyperthermophilic enzymes remains to be seen.  相似文献   

20.
The major inhibitor of trypsin in seeds of Prosopsis juliflora was purified by precipitation with ammonium sulphate, ion-exchange column chromatography on DEAE- and CM-Sepharose and preparative reverse phase HPLC on a Vydac C-18 column. The protein inhibited trypsin in the stoichiometric ratio of 1:1, but had only weak activity against chymotrypsin and did not inhibit human salivary or porcine pancreatic alpha-amylases. SDS-PAGE indicated that the inhibitor has a Mr of ca 20,000, and IEF-PAGE showed that the pI is 8.8. The complete amino acid sequence was determined by automatic degradation, and by DABITC/PITC microsequence analysis of peptides obtained from enzyme digestions of the reduced and S-carboxymethylated protein with trypsin, chymotrypsin, elastase, the Glu-specific protease from S. aureus and the Lys-specific protease from Lysobacter enzymogenes. The inhibitor consisted of two polypeptide chains, of 137 residues (alpha chain) and 38 residues (beta chain) linked together by a single disulphide bond. The amino acid sequence of the protein exhibited homology with a number of Kunitz proteinase inhibitors from other legume seeds, the bifunctional subtilisin/alpha-amylase inhibitors from cereals and the taste-modifying protein miraculin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号