首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The soil yeast Trichosporon cutaneum was grown in continuous culture on phenol, acetate or glucose as sole carbon source. The activities of enzymes participating in the tricarboxylic acid cycle, glyoxylate cycle, 3-oxoadipate pathway, pentose phosphate pathway and glycolysis were determined in situ during shifts of carbon sources. Cells grown on phenol or glucose contained basal activity of the glyoxylate-cycle-specific isocitrate lyase. The derepression of the glyoxylate cycle enzymes was partly hindered in the presence of phenol but not in the presence of low levels of glucose. Phenol and glucose caused repression of isocitrate lyase. In the presence of either phenol or glucose, acetate accumulation in the medium increased. However, part of the supplied acetate was utilized simultaneously with phenol or glucose, the utilization rate of either carbon source being reduced in the presence of the other carbon source. Acetate caused repression but not inactivation of the phenol-degrading enzymes, phenol hydroxylase and catechol 1,2-dioxygenase. The simultaneous utilization of phenol and other carbon sources in continuous culture as well as the observed repression-derepression patterns of the involved enzymes reveal T. cutaneum to be an organism of interest for possible use in decontamination processes. Offprint requests to: H. Y. Neujahr Offprint requests to: H. Y. Neujahr  相似文献   

2.
Enzymes of the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways were detected in strains ofRhizobium andBradyrhizobium cultured on glucose. The enzymes, except glyceraldehyde-3-phosphate dehydrogenase, were present only in trace amounts in succinategrown cells. The enzymes of the pentose phosphate pathway, being absent inBradyrhizobium, were detected only in glucose-grown cells ofRhizobium. The presence of the glucose-catabolic enzymes in cells only during growth on glucose suggests that they are inducible in nature. Succinate repressed the glucose catabolic enzymes, and the repression appeared to be similar to catabolite repression. Exogenous addition of cAMP caused no change in the activity of these enzymes, demonstrating that the repression was unlikely to be mediated via cAMP.  相似文献   

3.
Phosphoenolpyruvate carboxykinase (PEPCKase) and pyruvate kinase (PKase) were measured in Saccharomyces cerevisiae grown in the presence of glycolytic and gluconeogenic carbon sources. The PEPCKase activity was highest in ethanol-grown cells. However, high PEPCKase activity was also observed in cells grown in 1% glucose, especially as compared with the activity of sucrose-, maltose-, or galactose-grown cells. Activity was first detected after 12 h when glucose was exhausted from the growth medium. The PKase activity was very high in glucose-grown cells; considerable activity was also present in ethanol- and pyruvate-grown cells. The absolute requirement of respiration for gluconeogenesis was demonstrated by the absence or significantly low levels of PEPCKase and fructose-1,6-bisphosphatase activities observed in respiratory deficient mutants, as well as in wild-type S. cerevisiae cells grown in the presence of glucose and antimycin A or chloramphenicol. Obligate glycolytic and gluconeogenic enzymes were present simultaneously only in stationary phase cells, but not in exponential phase cells; hence futile cycling could not occur in log phase cells regardless of the presence of carbon source in the growth medium.  相似文献   

4.
Summary Wild-type strains ofPenicillium chrysogenum produce lower penicillin V titers in media containing excess glucose. Two mutant strains were isolated and shown to produce normal penicillin V titers in the presence of excess glucose. These strains, designated as glucose-repression insensitive (GRI) mutants, produced higher penicillin V titers than the wild-type strain in media containing lactose as the main carbohydrate source. In lactose-based media, the production of penicillin V was depressed to a much lesser extent by in-cycle additions of glucose with the GRI mutants when compared to the wild-type strain. In short-term biosynthesis experiments using washed cells in a medium containing glucose as the sole carbon source, the GRI mutants produced penicillin V at a faster rate than the wild-type strain. In fed-batch fermentations in 14-liter fermentors, where glucose was fed continuously and pH controlled, both GRI mutants produced more than 10% higher penicillin V titers than the wild-type strain. These results suggest that isolation of GRI mutants is an effective way to select for higher producing strains and that the synthesis of penicillin synthesizing enzymes in GRI mutants may be less repressed by glucose than in wild-type strains.  相似文献   

5.
Lactococcus lactis subsp. lactis biovar. diacetylactis was selected to study the physiological influences of immobilization and growth to high cell densities. Cells were cultivated on glucose or lactose medium in the presence and absence of citrate. With excess glucose the cells produced mainly lactate as the fermentation product (homofermentative) providing that not all of the substrate was consumed. The population so cultivated was exposed to extreme gradients of pH and lactate concentrations. When the glucose concentration was reduced the population showed a mixed product profile with half of the glucose being fermented to lactate, the remainder to formate, acetate, ethanol and 2,3-butanediol. Inclusion of citrate in the medium shifted the population to homofermentation, with respect to the amount of glucose or lactose consumed. The citrate was metabolized via the pyruvate-formate lyase and -acetolactate synthase routes. The pH of the medium was shown to strongly influence the product profile from citrate, presumably by affecting the activity of the key enzymes of pyruvate metabolism. The lactococci immobilized at high cell densities show product profiles typical of carbohydrate limitation at low dilution rates. Correspondence to: M. R. Smith  相似文献   

6.
In human diploid cell strains, the substitution of galactose for glucose as the sole hexose in the medium had no measurable effect on the specific activity of the cell protein for any of the three enzymes of the Leloir pathway. These enzymes are galactokinase, α-D-galactose-1-phosphate:UDP glucose uridylyl transferase and UDP galactose 4-epimerase. A cell strain from a patient with galactosemia had no detectable activity for the transferase. The substitution of galactose for glucose in the medium of these cells (which has been shown to cause the cells to accumulate galactose-1-phosphate) also failed to affect cellular activity for the three enzymes. Similarly, the three activities failed to respond to the substitution of galactose for glucose in cultures of a rat hepatoma line. Cells of this line have been shown by others to perform a number of the tissue-specific functions of liver. The failure of galactose to stimulate increased cellular activity for the three enzymes represents a striking difference between the behavior of these enzymes in human diploid cell strains and their behavior in E. coli.  相似文献   

7.
The effect of glucose and other sugars on sporulation and extracellular amylase production byClostridium perfringens NCTC 8679 type A in a defined medium was studied. Cells grown in the presence of glucose and mannose yielded the highest levels of amylase activity, while disaccharides such as lactose, maltose, and sucrose resulted in moderate amylase production. Little amylase activity was detected in the medium in the presence of ribose or galactose. The concentration of each sugar resulting in highest amylase production was between 6 and 10mm except for fructose (25mm). Levels of heat-resistant spores decreased as sugar concentrations increased. The addition of even small amounts of glucose to the medium before exponential growth suppressed sporulation but maximized amylase activity. The addition of glucose after the initiation of sporulation did not inhibit spore formation. However, its addition to 3-h amylase-producing cells did inhibit subsequent sporulation but promoted the continued excretion of amylase. The different response to glucose between sporulating cells and amylase-producing cells suggests that the mechanisms of catabolite repression of extracellular amylase production and sporulation are distinct in this strain ofC. perfringens.  相似文献   

8.
SYNOPSIS. Phenylalanine hydroxylase could not be assayed in extracts of Tetrahymena pyriformis strain W in a system by which the enzyme could be assayed in rat liver extracts. Isotopically labelled phenylalanine, however, was converted to tyrosine by growing or washed cells. Growth conditions which allowed limited synthesis of unconjugated tetrahydropteridine severely reduced the ability of the cells to synthesize tyrosine from phenylalanine. The presence of glucose and acetate in the growth medium resulted in elevated free tyrosine pools and an increased capacity of washed cell suspensions to convert phenylalanine to tyrosine. It would appear that the putative phenylalanine hydroxylation system is not subject to the repressive effects of glucose and acetate which apply to the enzymes of tyrosine catabolism. The significance of this distinction is discussed.  相似文献   

9.
Thermophilic Humicola lanuginosa, Penicillium duponti, Sporotrichum thermophile and Mucor pusillus required succinate in addition to glucose for optimal growth. The requirement for succinate was concentration-dependent and the concentration needed for one half of the maximal growth was 6.14 mM. In the presence of succinate, glucose utilization from the medium was markedly increased and this was associated with increased levels of the enzymes of the glycolytic and Krebs cycle pathways. Addition of succinate to cultures growing in glucose at any stage of growth stimulated the growth with the resulting rate of growth remaining high if the addition was made within 3 days of inoculation. Cycloheximide (71.4 M) prevented the succinate-mediated derepression of the enzymes suggesting that succinate may remove the catabolite repression in the presence of glucose.A preliminary part of this work was presented at the 17th annual meeting of the Association of Microbiologists of India at Manipal (India) held from Dec. 13 to 15, 1976  相似文献   

10.
The formation of the arginine dihydrolase pathway enzymes inLactobacillus buchneri NCDO110, a heterofermentative organism, was investigated. The specific activities of arginine deiminase, ornithine transcarbamylase, and carbamate kinase were higher in galactose-grown cells than in glucose- or sucrose-grown cells in the early stationary phase of growth. The addition of arginine to growing cells increased the specific activity of these three enzymes with all growth sugars. The specific activities of the enzymes decreased during the stationary phase of growth when the sugar-grown cells was galactose. When glucose was virtually exhausted from the medium, the activities of the three enzymes were not altered. This enzymic system was not repressed by glucose, and these results are different from those obtained withL. leichmanni, homofermentative organism.Dedicated to Dr. Luis F. Leloir on the occasion of his 80th birthday, 6 September 1986.Member of the Scientific Researcher's Career of theConsejo Nacional de Investigaciones Cientificas Ténicas (CONICET) Argentina.  相似文献   

11.
The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars. In the cultivations on single carbon sources, it was demonstrated that xylose acted as a carbon catabolite repressor (xylose cultivations), while the enzymes in the xylose utilisation pathway were also subject to repression in the presence of glucose (glucose cultivations). In the wild type strain growing on the sugar mixture, glucose repression of xylose utilisation was observed; with xylose utilisation occurring only after glucose was depleted. This phenomenon was not seen in the creA deleted strain, where glucose and xylose were catabolised simultaneously. Measurement of key metabolites and the activities of key enzymes in the xylose utilisation pathway revealed that xylose metabolism was occurring in the creA deleted strain, even at high glucose concentrations. Conversely, in the wild type strain, activities of the key enzymes for xylose metabolism increased only when the effects of glucose repression had been relieved. Xylose was both a repressor and an inducer of xylanases at the same time. The creA mutation seemed to have pleiotropic effects on carbohydratases and carbon catabolism.  相似文献   

12.
Using the adenine auxotroph of hydrocarbonoclastic microorganism, Corynebacterium petrophilum, the effects of glucose on the inosine productivity were investigated. The mutant did not produce inosine from glucose as the sole source of carbon. Production of inosine in n-C16 medium was found to be inhibited by the addition of glucose. To obtain information on such effect of glucose, several characters were compared between the cells grown in glucose medium and those grown in n-C16 medium. Intracellular content of UV-absorbing materials of the glucose-cells was higher than that of hydrocarbon-cells. The glucose-celle could not grow in media containing adenosine or 5′-AMP. On the other hand, hydrocarbon-cells were able to achieve growth, with adenine, adenosine and 5′-AMP contained in the hydrocarbon medium, but, in the case of glucose medium, the cells could grow only in the presence of adenine. Furthermore, the growth of this mutant in n-C16 medium was found to be inhibited by a larger amount of adenine than that required for the maximum growth, and this inhibition was overcome by the addition of guanine. The significance of the effect of guanine was discussed.  相似文献   

13.
In Chlorella vulgaris UAM 101, the presence of glucose altered the photosynthetic and respiratory metabolism in the light. When glucose was added to the growth medium, an increase in the cellular level of enzymes involved in glucose oxidation, namely glucose-6-P dehydrogenase (EC 1.1.1.49) and NAD+-glyceraldehyde-3-P dehydrogenase (EC 1.2.1.12), was observed. Glucose also enhanced respiratory O2 consumption. In addition, CO2 released by glucose oxidation was refixed in photosynthesis. The presence of glucose also affected photosynthesis. Phosphoribulokinase (EC 2.7.1.19) and NADP+-dependent glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13), two regulatory enzymes of the reductive pentose phosphate cycle, were increased by glucose. However, Rubisco (EC 4.1.1.39) activity of these cells was lower than that of autotrophic cells. Despite these alterations, the photosynthetic O2 evolution was not significantly inhibited by glucose. On the other hand, an increase in the cytosolic NADP+-glyceraldehyde-3-P dehydrogenase (EC 1.2.1.9) that is involved in obtaining reducing power for anabolic processes was observed. The CO2 levels in the growth medium did not significantly affect the cellular level of enzymes measured in this work, except those involved in biosynthetic pathways. These data suggest that the effect of glucose on photosynthesis and respiration can be explained by alteration of the cellular level of photosynthetic enzymes and respiratory substrates, respectively.  相似文献   

14.
An Arthrobacter sp. (strain 9006), isolated from lake water, accumulated nitrite up to about 15 mg N/l, but no nitrate. In a mineral medium supplemented with tryptone, yeast extract, acetate and ammonium, the cells released nitrite into the medium parallel to growth or when growth had virtually ceased. The nitrite formed was proportional to the initial acetate concentration, indicating an involvement of acetate metabolism with nitrification. The organism grew with a wide variety of organic carbon sources, but washed cells formed nitrite from ammonium only in the presence of citrate, malate, acetate or ethanol. Magnesium ions were required for nitrification of ammonium and could not be replaced by other divalent metal ions. Analysis of the glyoxylate cycle key enzymes in washed suspensions incubated in a minimal medium revealed that isocitrate lyase and malate synthase were most active during the nitrification phase. Nitrite accumulation but not growth was inhibited by glucose, tryptone and yeast extract. A possible explanation for the different nitrification patterns during growth is based on the regulatory properties of glyoxylate cycle enzymes.Abbreviations IL Isocitrate lyase [threo-Ds-isocitrate glyoxylate-lase, E.C. 4.1.3.1.] - MS malate synthase [l-malate glyoxylate-lyase (CoA-acetylating), E.C. 4.1.3.2.]  相似文献   

15.
Summary The fdp mutation has been localized on the genome of Saccharomyces carlsbergensis, on chromosome II, between lys2 and tyr1, at a map distance of 31 centimorgan from lys2.Since the fdp mutant does not grow on glucose, fructose, mannose and sucrose, hexose transport and a number of enzymes of carbon metabolism were tested, but no significant differences could be found between the wild type and the mutant. Only the regulatory properties of glycogen synthetase are changed in the mutant, but it is doubtfull whether this can explain its phenotype.The disorganization of carbon metabolism of the mutant upon addition of glucose to the medium was analyzed in more detail. The most prominent feature observed until now is the accumulation of free glucose and hexose phosphates in the cell. This result indicates that somehow the feedback control between hexose transport and metabolism is impaired. Hexose phosphates are known to be toxic to many cells, including yeast. Therefore, accumulation of hexose phosphates in the presence of glucose in the medium, can explain the absence of growth on this carbon source.  相似文献   

16.
Mitochondrial respiration in yeast (S. cerevisiae) is regulated by the level of glucose in the medium. Glucose is known to inhibit respiration by repressing key enzymes in the respiratory chain. We present evidence that the early events in this inhibition include the closure of VDAC channels, the primary pathway for metabolite flow across the outer membrane. Aluminum hydroxide is known to inhibit the closure of VDAC. Addition of aluminum acetylacetonate to yeast cells, which should elevate the aluminum hydroxide concentrations in the cytoplasm, caused the inhibition of cell respiration by glucose to be delayed for up to 100 min. No significant effect of aluminum was observed in cells grown on glycerol. Yeast cells lacking the VDAC gene were also unresponsive to the addition of aluminum salt in the presence of glucose. Therefore, the closure of VDAC channels may be an early step in the inhibition of the respiration of yeast by glucose.  相似文献   

17.
The mode of synthesis and the regulation of fructose-1,6-bisphosphatase (Fbpase), a gluconeogenic enzyme, and phosphofructokinase (PFK), a glycolytic enzyme, were investigated in Saccharomyces cerevisiae after growth in the presence of different concentrations of glucose or various gluconeogenic carbon sources. The activity of FBPase appeared in the cells after the complete disappearance of glucose from the growth medium with a concomitant increase of the pH and no significant change in the levels of accumulated ethanol. The appearance of FBPase activity following glucose depletion was dependent upon the synthesis of protein. The FBPase PFK were present in glucose-, ethanol-, glycerol-, lactate-, or pyruvate-grown cells; however, the time of appearance and the levels of both these enzymes varied. The FBPase activity was always higher in 1% glucose-grown cells than in cells grown in the presence of gluconeogenic carbon sources. Phosphoglucose isomerase activity did not vary significantly. Addition of glucose to an FBPase and PFK synthesizing culture resulted in a complete loss, followed by a reappearance, of PFK activity. In the presence of cycloheximide the disappearance of glucose and the changes in the levels of FBPase and PFK were decreased significantly. It is concluded that S. cerevisiae exhibits a more efficient synthesis of FBPase after the exhaustion of glucose compared to the activity present in cells grown in the presence of exogenous gluconeogenic carbon sources. Two metabolically antagonistic enzymes, FBPase and PFK, are present during the transition phase, but not during the exponential phase, of growth, and the decay or inactivation of these enzymes in vivo may be dependent upon a glucose-induced protease activity.  相似文献   

18.
The synthesis of isocitrate lyase was induced by the presence of ethanol in the chemostat reaching a specific activity of 200 mU·mg-1 at this induced state. In glucoselimited, derepressed cells, 20 mU·mg-1 were detected and under repressed conditions isocitrate lyase activity was not detected.The sensitivity of gluconeogenic enzymes: cytoplasmic malate dehydrogenase; fructose 1,6-bisphosphatase and isocitrate lyase as well as the mitochondrial enzymes NADH dehydrogenase and succinate cytochrome c oxidase to glucose and galactose repression were studied in chemostat cultures. Our results show that galactose was less effective as a repressor than glucose. Malate dehydrogenase was completely inactivated by glucose, whereas galactose only produced a 78% decrease of specific activity. Fructose 1,6-bisphosphatase and isocitrate lyase were completely inactivated by both sugars but at different rate. Glucose produced an 85% decrease of specific activity of the mitochondrial enzymes whereas galactose only decrease an 67%.  相似文献   

19.
Summary 1. Under aerobic conditions the development ofAzotobacter is suppressed by the presence of reducing substances in concentrations lowering the aerobic potential more than ±120 mV.2. The development ofAzotobacter is not only retarded by the presence of these reducing substances, but the cells are killed.3. Under anaerobic conditions no development ofAzotobacter could be observed even when the solution was poised at a high redox potential. The cells were not killed by the anaerobic conditions; as soon as aerobic conditions were restored, a rapid development ofAzotobacter was observed.4. When the anaerobic conditions coincide with a low redox potentiale.g. in culture solutions containing glucose, the cells ofAzotobacter were killed.5. The limits of potential endured byAzotobacter appeared to be dependent on the relations between the ions in the medium.6. The cells ofAzotobacter secrete certain substances enabling them to develop at low potentials.7. The conclusion is drawn that the development ofAzotobacter is in general influenced by the redox potential of the medium. However, this influence may be very complex, as the potential of the medium is only important in so far as the redox potential(s) in the cell are changed. The factors influencing the relation between the redox potential of the medium and the redox potentials of the cell are discussed.8. ForAzotobacter, oxygen cannot be replaced by other redox systems with a suitable redox potential, most probably because these redox systems have to react with the respiratory enzymes of the cell.  相似文献   

20.
Effects of some nitriles and amides, as well as glucose and ammonium, on the growth and the nitrile hydratase (EC 4.2.1.84) activity of the Rhodococcus sp. strain gt1 isolated from soil were studied. The activity of nitrile hydratase mainly depended on the carbon and nitrogen supply to cells. The activity of nitrile hydratase was high in the presence of glucose and ammonium at medium concentrations and decreased at concentrations of glucose of more than 0.3%. Saturated unsubstituted aliphatic nitriles and amides were found to be a good source of nitrogen and carbon. However, the presence of nitriles and amides in the medium was not absolutely necessary for the expression of the activity of nitrile hydratase of the Rhodococcus sp. strain gt1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号