首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
2.
3.
Pax3 functions in cell survival and in pax7 regulation   总被引:11,自引:0,他引:11  
In developing vertebrate embryos, Pax3 is expressed in the neural tube and in the paraxial mesoderm that gives rise to skeletal muscles. Pax3 mutants develop muscular and neural tube defects; furthermore, Pax3 is essential for the proper activation of the myogenic determination factor gene, MyoD, during early muscle development and PAX3 chromosomal translocations result in muscle tumors, providing evidence that Pax3 has diverse functions in myogenesis. To investigate the specific functions of Pax3 in development, we have examined cell survival and gene expression in presomitic mesoderm, somites and neural tube of developing wild-type and Pax3 mutant (Splotch) mouse embryos. Disruption of Pax3 expression by antisense oligonucleotides significantly impairs MyoD activation by signals from neural tube/notochord and surface ectoderm in cultured presomitic mesoderm (PSM), and is accompanied by a marked increase in programmed cell death. In Pax3 mutant (Splotch) embryos, MyoD is activated normally in the hypaxial somite, but MyoD-expressing cells are disorganized and apoptosis is prevalent in newly formed somites, but not in the neural tube or mature somites. In neural tube and somite regions where cell survival is maintained, the closely related Pax7 gene is upregulated, and its expression becomes expanded into the dorsal neural tube and somites, where Pax3 would normally be expressed. These results establish that Pax3 has complementary functions in MyoD activation and inhibition of apoptosis in the somitic mesoderm and in repression of Pax7 during neural tube and somite development.  相似文献   

4.
The in vitro derivation of renal lineage progenitor cells is essential for renal cell therapy and regeneration. Despite extensive studies in the past, a protocol for renal lineage induction from embryonic stem cells remains unestablished. In this study, we aimed to induce renal lineages from mouse embryonic stem cells (mESC) by following in vivo developmental stages, i.e., the induction of mesoderm (Stage I), intermediate mesoderm (Stage II) and renal lineages (Stage III). For stage I induction, in accordance with known signaling pathways involved in mesoderm development in vivo, i.e., Nodal, bone morphogenic proteins (BMPs) and Wnt, we found that the sequential addition of three factors, i.e., Activin-A (A), a surrogate for Nodal signaling, during days 0-2, A plus BMP-4 (4) during days 2-4, and A4 plus lithium (L), a surrogate for Wnt signaling, during days 4-6, was most effective to induce the mesodermal marker, Brachyury. For stage II induction, the addition of retinoic acid (R) in the continuous presence of A4L during days 6-8 was most effective to induce nephrogenic intermediate mesodermal markers, such as Pax2 and Lim1. Under this condition, more than 30% of cells were stained positive for Pax2, and there was a concomitant decrease in the expression of non-mesodermal markers. For stage III induction, in resemblance to the reciprocal induction between ureteric bud (UB) and metanephric mesenchyme (MM) during kidney development, we found that the exposure to conditioned media derived from UB and MM cells was effective in inducing MM and UB markers, respectively. We also observed the emergence and gradual increase of cell populations expressing progenitor cell marker CD24 from Stage I to Stage III. These CD24(+) cells correlated with higher levels of expression of Brachyury at stage I, Pax2 and Lim1 at stage II and MM markers, such as WT1 and Cadherin 11, after exposure to UB-conditioned media at stage III. In conclusion, our results show that stepwise induction by tracing in vivo developmental stages was effective to generate renal lineage progenitor cells from mESC, and CD24 may serve as a useful surface marker for renal lineage cells at stage II and MM cells at stage III.  相似文献   

5.
6.
配对框(Paired box)首先是在果蝇的分节基因中发现的一段DNA保守序列,编码能与DNA特异结合的一个蛋白质结构域。这些序列在进化中有一定的保守性,在许多种生物基因组内存在,其中包括小鼠和人。至今为止,在小鼠中分离到九个含配对框的Pax基因,按基因发现时序,分别定名为Pax 1至Pax 9。Pax 7是其中的一个成员,它不但含有配对框,还含有八肽结构(Octapeptide)和  相似文献   

7.
8.
Urodeles begin gastrulation with much of their presumptive mesoderm in the superficial cell layer, all of which must move into the deep layers during development. We studied the morphogenesis of superficial mesoderm in the urodeles Ambystoma maculatum, Ambystoma mexicanum, and Taricha granulosa. In all three species, somitic, lateral, and ventral mesoderm move into the deep layer during gastrulation, ingressing through a "bilateral primitive streak" just inside the blastopore. The mesodermal epithelium appears to slide under the endodermal epithelium by a mechanism we term "subduction." Subduction removes the large expanse of superficial presumptive somitic and lateral-ventral mesoderm that initially separates the sub-blastoporal endoderm from the notochord, leaving the endoderm bounding the still epithelial notochord along the gastrocoel roof. Subduction may be a common feature of urodele gastrulation, differing in this regard from anurans. Subducting cells constrict their apices and become bottle-shaped as they approach the junction of the mesodermal and endodermal epithelia. Subducting bottle cells endocytose apical membrane and withdraw the tight junctional component cingulin from the contracting circumferential tight junctions. Either in conjunction with or immediately after subducting, the mesodermal cells undergo an epithelial-to-mesenchymal transition. The mechanism by which epithelial cells release their apical junctions to become mesenchymal, without disrupting the integrity of the epithelium, remains mysterious, but this system should prove useful in understanding this process in a developmental context.  相似文献   

9.
10.
11.
The intermediate mesoderm lies between the somites and the lateral plate and is the source of all kidney tissue in the developing vertebrate embryo. While bone morphogenetic protein (Bmp) signaling is known to regulate mesodermal cell type determination along the medio-lateral axis, its role in intermediate mesoderm formation has not been well characterized. The current study finds that low and high levels of Bmp ligand are both necessary and sufficient to activate intermediate and lateral mesodermal gene expression, respectively, both in vivo and in vitro. Dose-dependent activation of intermediate and lateral mesodermal genes by Bmp signaling is cell-autonomous, as demonstrated by electroporation of the avian embryo with constitutively active Bmp receptors driven by promoters of varying strengths. In explant cultures, Bmp activation of Odd-skipped related 1 (Odd-1), the earliest known gene expressed in the intermediate mesoderm, is blocked by cyclohexamide, indicating that the activation of Odd-1 by Bmp signaling is translation-dependent. The data from this study are integrated with that of other studies to generate a model for the role of Bmp signaling in trunk mesodermal patterning in which low levels of Bmp activate intermediate mesoderm gene expression by inhibition of repressors present in medial mesoderm, whereas high levels of Bmp repress both medial and intermediate mesoderm gene expression and activate lateral plate genes.  相似文献   

12.
We report a novel developmental mechanism. Anterior-posterior positional information for the vertebrate trunk is generated by sequential interactions between a timer in the early non-organiser mesoderm and the organiser. The timer is characterised by temporally colinear activation of a series of Hox genes in the early ventral and lateral mesoderm (i.e., the non-organiser mesoderm) of the Xenopus gastrula. This early Hox gene expression is transient, unless it is stabilised by signals from the Spemann organiser. The non-organiser mesoderm and the Spemann organiser undergo timed interactions during gastrulation which lead to the formation of an anterior-posterior axis and stable Hox gene expression. When separated from each other, neither non-organiser mesoderm nor the Spemann organiser is able to induce anterior-posterior pattern formation of the trunk. We present a model describing that convergence and extension continually bring new cells from the non-organiser mesoderm within the range of organiser signals and thereby create patterned axial structures. In doing so, the age of the non-organiser mesoderm, but not the age of the organiser, defines positional values along the anterior-posterior axis. We postulate that the temporal information from the non-organiser mesoderm is linked to mesodermal Hox expression.  相似文献   

13.
14.
15.
Pax3 and Pax7 paralogous genes have functionally diverged in vertebrate evolution, creating opportunity for a new distribution of roles between the two genes and the evolution of novel functions. Here we focus on the regulation and function of Pax7 in the brain and neural crest of amphibian embryos, which display a different pax7 expression pattern, compared to the other vertebrates already described. Pax7 expression is restricted to the midbrain, hindbrain and anterior spinal cord, and Pax7 activity is important for maintaining the fates of these regions, by restricting otx2 expression anteriorly. In contrast, pax3 displays broader expression along the entire neuraxis and Pax3 function is important for posterior brain patterning without acting on otx2 expression. Moreover, while both genes are essential for neural crest patterning, we show that they do so using two distinct mechanisms: Pax3 acts within the ectoderm which will be induced into neural crest, while Pax7 is essential for the inducing activity of the paraxial mesoderm towards the prospective neural crest.  相似文献   

16.
17.
18.
Interactions between Nodal/Activin and Fibroblast growth factor (Fgf) signalling pathways have long been thought to play an important role in mesoderm formation. However, the molecular and cellular processes underlying these interactions have remained elusive. Here, we address the epistatic relationships between Nodal and Fgf pathways during early embryogenesis in zebrafish. First, we find that Fgf signalling is required downstream of Nodal signals for inducing the Nodal co-factor One-eyed-pinhead (Oep). Thus, Fgf is likely to be involved in the amplification and propagation of Nodal signalling during early embryonic stages. This could account for the previously described ability of Fgf to render cells competent to respond to Nodal/Activin signals. In addition, overexpression data shows that Fgf8 and Fgf3 can take part in this process. Second, combining zygotic mutations in ace/fgf8 and oep disrupts mesoderm formation, a phenotype that is not produced by either mutation alone and is consistent with our model of an interdependence of Fgf8 and Nodal pathways through the genetic regulation of the Nodal co-factor Oep and the cell propagation of Nodal signalling. Moreover, mesodermal cell populations are affected differentially by double loss-of-function of Zoep;ace. Most of the dorsal mesoderm undergoes massive cell death by the end of gastrulation, in contrast to either single-mutant phenotype. However, some mesoderm cells are still able to undergo myogenic differentiation in the anterior trunk of Zoep;ace embryos, revealing a morphological transition at the level of somites 6-8. Further decreasing Oep levels by removing maternal oep products aggravates the mesodermal defects in double mutants by disrupting the fate of the entire mesoderm. Together, these results demonstrate synergy between oep and fgf8 that operates with regional differences and is involved in the induction, maintenance, movement and survival of mesodermal cell populations.  相似文献   

19.
BMP is thought to induce hESC differentiation toward multiple lineages including mesoderm and trophoblast. The BMP-induced trophoblast phenotype is a long-standing paradox in stem cell biology. Here we readdressed BMP function in hESCs and mouse epiblast-derived cells. We found that BMP4 cooperates with FGF2 (via ERK) to induce mesoderm and to inhibit endoderm differentiation. These conditions induced cells with high levels of BRACHYURY (BRA) that coexpressed CDX2. BRA was necessary for and preceded CDX2 expression; both genes were essential for expression not only of mesodermal genes but also of trophoblast-associated genes. Maximal expression of the latter was seen in the absence of FGF but these cells coexpressed mesodermal genes and moreover they differed in cell surface and epigenetic properties from placental trophoblast. We conclude that BMP induces human and mouse pluripotent stem cells primarily to form mesoderm, rather than trophoblast, acting through BRA and CDX2.  相似文献   

20.
Heparan sulfate (HS) has been implicated in regulating cell fate decisions during differentiation of embryonic stem cells (ESCs) into advanced cell types. However, the necessity and the underlying molecular mechanisms of HS in early cell lineage differentiation are still largely unknown. In this study, we examined the potential of EXT1(-/-) mouse ESCs (mESCs), that are deficient in HS, to differentiate into primary germ layer cells. We observed that EXT1(-/-) mESCs lost their differentiation competence and failed to differentiate into Pax6(+)-neural precursor cells and mesodermal cells. More detailed analyses highlighted the importance of HS for the induction of Brachyury(+) pan-mesoderm as well as normal gene expression associated with the dorso-ventral patterning of mesoderm. Examination of developmental cell signaling revealed that EXT1 ablation diminished FGF and BMP but not Wnt signaling. Furthermore, restoration of FGF and BMP signaling each partially rescued mesoderm differentiation defects. We further show that BMP4 is more prone to degradation in EXT1(-/-) mESCs culture medium compared with that of wild type cells. Therefore, our data reveal that HS stabilizes BMP ligand and thereby maintains the BMP signaling output required for normal mesoderm differentiation. In summary, our study demonstrates that HS is required for ESC pluripotency, in particular lineage specification into mesoderm through facilitation of FGF and BMP signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号