首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The formation of mesoderm is an important developmental process of vertebrate embryos, which can be broken down into several steps; mesoderm induction, patterning, morphogenesis and differentiation. Although mesoderm formation in Xenopus has been intensively studied, much remains to be learned about the molecular events responsible for each of these steps. Furthermore, the interplay between mesoderm induction, patterning and morphogenesis remains obscure. Here, we describe an enhanced functional screen in Xenopus designed for large-scale identification of genes controlling mesoderm formation. In order to improve the efficiency of the screen, we used a Xenopus tropicalis unique set of cDNAs, highly enriched in full-length clones. The screening strategy incorporates two mesodermal markers, Xbra and Xmyf-5, to assay for cell fate specification and patterning, respectively. In addition we looked for phenotypes that would suggest effects in morphogenesis, such as gastrulation defects and shortened anterior-posterior axis. Out of 1728 full-length clones we isolated 82 for their ability to alter the phenotype of tadpoles and/or the expression of Xbra and Xmyf-5. Many of the clones gave rise to similar misexpression phenotypes (synphenotypes) and many of the genes within each synphenotype group appeared to be involved in similar pathways. We determined the expression pattern of the 82 genes and found that most of the genes were regionalized and expressed in mesoderm. We expect that many of the genes identified in this screen will be important in mesoderm formation.  相似文献   

2.
3.
4.
Tracheal and nervous system development are two model systems for the study of organogenesis in Drosophila. In two independent screens, we identified three alleles of a gene involved in tracheal, cuticle and CNS development. Here, we show that these alleles, and the previously identified cystic and mummy, all belong to the same complementation group. These are mutants of a gene encoding the UDP-N-acetylglucosamine diphosphorylase, an enzyme responsible for the production of UDP-N-acetylglucosamine, an important intermediate in chitin and glycan biosynthesis. cyst was originally singled out as a gene required for the regulation of tracheal tube diameter. We characterized the cyst/mmy tracheal phenotype and upon histological examination concluded that mmy mutant embryos lack chitin-containing structures, such as the procuticle at the epidermis and the taenidial folds in the tracheal lumen. While most of their tracheal morphogenesis defects can be attributed to the lack of chitin, when compared to krotzkopf verkehrt (kkv) chitin-synthase mutants, mmy mutants showed a stronger phenotype, suggesting that some of the mmy phenotypes, like the axon guidance defects, are chitin-independent. We discuss the implications of these new data in the mechanism of size control in the Drosophila trachea.  相似文献   

5.
Rap1 is a key regulator of cell adhesion and cell motility in Dictyostelium. Here, we identify a Rap1-specific GAP protein (RapGAP3) and provide evidence that Rap1 signaling regulates cell-cell adhesion and cell migration within the multicellular organism. RapGAP3 mediates the deactivation of Rap1 at the late mound stage of development and plays an important role in regulating cell sorting during apical tip formation, when the anterior-posterior axis of the organism is formed, by controlling cell-cell adhesion and cell migration. The loss of RapGAP3 results in a severely altered morphogenesis of the multicellular organism at the late mound stage. Direct measurement of cell motility within the mound shows that rapGAP3 cells have a reduced speed of movement and, compared to wild-type cells, have a reduced motility towards the apex. rapGAP3 cells exhibit some increased EDTA/EGTA sensitive cell-cell adhesion at the late mound stage. RapGAP3 transiently and rapidly translocates to the cell cortex in response to chemoattractant stimulation, which is dependent on F-actin polymerization. We suggest that the altered morphogenesis and the cell-sorting defect of rapGAP3 cells may result in reduced directional movement of the mutant cells to the apex of the mound.  相似文献   

6.
7.
Mammalian WASP and N-WASP are involved in reorganization of the actin cytoskeleton through activation of the Arp2/3 complex and in regulation of cell motility or cell shape changes. In the present study, we identified WASP-interacting protein homologue (WIP)-1 in Caenorhabditis elegans. WIP-1 contains the domains and sequences conserved among mammalian WIP family proteins. Yeast two-hybrid analysis detected a physical interaction between WIP-1 and WSP-1, the sole homologue of WASP/N-WASP in C. elegans. Western analysis of embryo lysates showed that RNA interference (RNAi) treatment for wip-1 decreased levels of WSP-1 protein, and wsp-1(RNAi) treatment decreased levels of WIP-1 protein. However, wsp-1 mRNA levels were not decreased in wip-1(RNAi)-treated embryos, and wip-1 mRNA levels were not decreased in wsp-1(RNAi)-treated embryos. Furthermore, disruption of WIP-1 by RNAi resulted in embryonic lethality with morphologic defects in hypodermal cell migration, a process known as ventral enclosure. This phenotype was similar to that observed in RNAi experiments for wsp-1. Immunostaining showed that WIP-1 was expressed by migrating hypodermal cells, as was WSP-1. This expression during ventral enclosure was reduced in wip-1(RNAi)-treated embryos and wsp-1(RNAi)-treated embryos. Our results suggest that C. elegans WIP-1 may function in hypodermal cell migration during ventral enclosure by maintaining levels of WSP-1.  相似文献   

8.
9.
Wu L  Cui Y  Hong Y  Chen S 《Microbiological research》2011,166(8):606-617
We here report the sequence and functional analysis of cstB of Azospirillum brasilense Sp7. The predicted cstB contains C-terminal two PAS domains and N-terminal part which has similarity with CheB-CheR fusion protein. cstB mutants had reduced swarming ability compared to that of A. brasilense wild-type strain, implying that cstB was involved in chemotaxis in A. brasilense. A microscopic analysis revealed that cstB mutants developed mature cyst cells more quickly than wild type, indicating that cstB is involved in cyst formation. cstB mutants were affected in colony morphology and the production of exopolysaccharides (EPS) which are essential for A. brasilense cells to differentiate into cyst-like forms. These observations suggested that cstB was a multi-effector involved in cyst development and chemotaxis in A. brasilense.  相似文献   

10.
Despite the importance of the retinal pigment epithelium (RPE) for vision, the molecular processes involved in its specification are poorly understood. We identified two new mutant alleles for the zebrafish gene chokh (chk), which display a reduction or absence of the RPE. Unexpectedly, the neural retina (NR) in chk is specified and laminated, indicating that the regulatory network leading to NR development is largely independent of the RPE. Genetic mapping and molecular characterization revealed that chk encodes Rx3. Expression analyses show that otx2 and mitfb are not expressed in the prospective RPE of chk, indicating that the retinal homeobox gene rx3 acts upstream of the molecular network controlling RPE specification. Cellular transplantations demonstrate that rx3 function is autonomously required to specify the prospective RPE. Though rx2 is also absent in chk, neither rx2 nor rx1 is required for RPE development. Thus, our data provide the first indication that, in addition to controlling optic lobe evagination and proliferation, chk/rx3 also determines cellular fate.  相似文献   

11.
12.
13.
Lee MH  Han SM  Han JW  Kim YM  Ahnn J  Koo HS 《FEBS letters》2003,555(2):250-256
Caenorhabditis elegans germ cell proliferation and development were severely damaged in second generation dna-2 homozygotes. Even in the first generation, a much higher incidence of aberrant chromosomes in oocytes and resultantly higher embryonic lethality were found vs. wild type, when DNA breaks were induced by gamma-rays or camptothecin. The deficiency of dna-2 in combination with RNA interference on mre-11 gene expression synergistically aggravated germ-line development, especially oocyte formation. These results suggest that C. elegans Dna-2 is involved in a DNA repair pathway paralleling homologous recombination or non-homologous end joining with mre-11 participation.  相似文献   

14.
15.
The homeobox gene mbx is involved in eye and tectum development   总被引:4,自引:0,他引:4  
  相似文献   

16.
Innexins are the proposed structural components of gap junctions in invertebrates. Antibodies that specifically recognize the Caenorhabditis elegans innexin protein INX-3 were generated and used to examine the patterns of inx-3 gene expression and the subcellular sites of INX-3 localization. INX-3 is first detected in two-cell embryos, concentrated at the intercellular interface, and is expressed ubiquitously throughout the cellular proliferation phase of embryogenesis. During embryonic morphogenesis, INX-3 expression becomes more restricted. Postembryonically, INX-3 is expressed transiently in several cell types, while expression in the posterior pharynx persists throughout development. Through immuno-EM techniques, INX-3 was observed at gap junctions in the adult pharynx, providing supporting evidence that innexins are components of gap junctions. An inx-3 mutant was isolated through a combined genetic and immunocytochemical screen. Homozygous inx-3 mutants exhibit defects during embryonic morphogenesis. At the comma stage of early morphogenesis, variable numbers of cells are lost from the anterior of inx-3(lw68) mutants. A range of terminal defects is seen later in embryogenesis, including localized rupture of the hypodermis, failure of the midbody to elongate properly, abnormal contacts between hypodermal cells, and failure of the pharynx to attach to the anterior of the animal.  相似文献   

17.
18.
19.
20.
Although Wnt signaling plays an important role in body patterning during early vertebrate embryogenesis, the mechanisms by which Wnts control the individual processes of body patterning are largely unknown. In zebrafish, wnt3a and wnt8 are expressed in overlapping domains in the blastoderm margin and later in the tailbud. The combined inhibition of Wnt3a and Wnt8 by antisense morpholino oligonucleotides led to anteriorization of the neuroectoderm, expansion of the dorsal organizer, and loss of the posterior body structure-a more severe phenotype than with inhibition of each Wnt alone-indicating a redundant role for Wnt3a and Wnt8. The ventrally expressed homeobox genes vox, vent, and ved mediated Wnt3a/Wnt8 signaling to restrict the organizer domain. Of posterior body-formation genes, expression of the caudal-related cdx1a and cdx4/kugelig, but not bmps or cyclops, was strongly reduced in the wnt3a/wnt8 morphant embryos. Like the wnt3a/wnt8 morphant embryos, cdx1a/cdx4 morphant embryos displayed complete loss of the tail structure, suggesting that Cdx1a and Cdx4 mediate Wnt-dependent posterior body formation. We also found that cdx1a and cdx4 expression is dependent on Fgf signaling. hoxa9a and hoxb7a expression was down-regulated in the wnt3a/wnt8 and cdx1a/cdx4 morphant embryos, and in embryos with defects in Fgf signaling. Fgf signaling was required for Cdx-mediated hoxa9a expression. Both the wnt3a/wnt8 and cdx1a/cdx4 morphant embryos failed to promote somitogenesis during mid-segmentation. These data indicate that the cdx genes mediate Wnt signaling and play essential roles in the morphogenesis of the posterior body in zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号