首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Silencing ofNia host genes and transgenes (encoding nitrate reductase) was previously achieved by introducing into tobacco plants the tobaccoNia2 cDNA cloned downstream of the cauliflower mosaic virus (CaMV) 35S promoter. To check whetherNii host genes and transgenes (encoding nitrite reductase, the second enzyme of the nitrate assimilation pathway) were also susceptible to silencing, a transgene consisting of the tobaccoNii1 gene with two copies of the enhancer of the 35S promoter cloned 1 kb upstream of theNii promoter region was introduced into tobacco plants. Among nine independent transformants analysed, two showed silencing ofNii host genes and transgenes in some descendants after selfing, but never after back-crossing with wild-type plants, suggesting that silencing depends on the number of transgene loci and/or on certain allelic or ectopic combinations of transgene loci. In one transformant carrying a single transgene locus in a homozygous state, silencing was triggered in all progeny plants of each generation, 20 to 50 days after germination. Field trial analysis confirmed that silencing was not triggered when the transgene locus of this latter line was present in a hemizygous state. In addition, it was revealed that silencing can be triggered, albeit at low frequency and later during the development, when this transgene locus is brought into the presence of a non-allelic transgene locus by crossing, suggesting that a homozygous state is not absolutely required.  相似文献   

6.
Constructs carrying the entire or part of the tobacco nitrate reductase cDNA (NIA) cloned between the promoter and terminator sequences of the 35S RNA of the cauliflower mosaic virus were introduced into tobacco, in an attempt to improve nitrate assimilation. Several transgenic plants that had elevated NIA mRNA and nitrate reductase (NR) activity were obtained. In addition, a few plants that exhibited a chlorotic phenotype characteristic of NR-deficient mutants were also obtained. One of these plants contained no NIA mRNA, no NR activity and accumulated nitrate. This phenotype was therefore assumed to result from co-suppression of 35S-NIA transgenes and host NIA genes. NR-deficient plants were also found among the progeny of transformants overexpressing NIA mRNA. Genetic analyses indicated that these NR-deficient plants were homozygous for the 35S-NIA transgene, although not all homozygous plants were deficient for NR. The ratio of normal to NR-deficient plants in the progeny of homozygous plants remained constant at each generation, irrespective of the state of expression of the NIA genes (active or inactive) in the previous generation. This ratio also remained unchanged when field trials were performed in two areas of France: Versailles and Bergerac. The analysis of homozygous plants revealed that co-suppression was reversible at some stage of sexual reproduction. Indeed, host genes and transgenes reactivated at each generation, and co-suppression always appeared after a lag period of normal growth, suggesting that the phenomenon is developmentaly regulated. We observed that the triggering of cosuppression was delayed when plants were initially grown under limited light and/or watered with limited nitrate supply (light and nitrate both being required for the expression of the host NIA genes). However, this delay did not affect the final ratio between normal and NR-deficient plants after transfer to nitrate-fertilized fields. Independent transformants exhibited either different co-suppression ratios or no co-suppression at all, irrespective of the transgene copy number, suggesting that genomic sequences surrounding the transgene might play a role in determining co-suppression.  相似文献   

7.
Aspen (Populus tremula) and hybrid aspen (P. tremula × P. tremuloides) were transformed with different gene constructs using two types of promoter. The aim was to determine the influence of the reporter gene rolC, controlled by promoters of viral or plant origin, on genetic and morphologic expression of different transgenic aspen clones. An improved transformation method using leaf discs was developed, by which putative transgenic plantlets were regenerated at high efficiencies (up to 34%) on kanamycin-containing medium. Transgenic aspen carrying the rolC gene from Agrobacterium rhizogenes under control of the cauliflower-35S-promoter are reduced in size with smaller leaves, whereas aspen transgenic for the same rolC gene, but under control of the light inducible rbcS promoter from potato, are only slightly reduced in size compared to untransformed controls. However, all clones carrying 35S-rolC and rbcS-rolC genes revealed light-green colouration of leaves when compared to untransformed aspen. Owing to this special feature, constructs were used in which expression of the rolC gene was inhibited by insertion of a transposable element, Ac, from maize. Transgenic aspen transformed with the 35S-Ac-rolC and rbcS-Ac-rolC genes were morphologically similar to untransformed aspen, but out of 54 independently regenerated 35S-Ac-rolC transgenic aspen clones, 30 clones showed light-green/dark green variegated leaves. In contrast, out of 19 independently transformed rbcS-Ac-rolC aspen clones, only two clones revealed light-green/dark green variegated leaves. The role of bacterial strains in transformation, and molecular genetics of transgenic aspen plants (including the function of the transposable element, Ac, in the aspen genome) are discussed  相似文献   

8.
Osmotin and osmotin-like proteins are stress proteins belonging to the plant PR-5 group of proteins induced in several plant species in response to various types of biotic and abiotic stresses. We report here the overexpression of tobacco osmotin in transgenic mulberry plants under the control of a constitutive promoter (CaMV 35S) as well as a stress-inducible rd29A promoter. Southern analysis of the transgenic plants revealed the stable integration of the introduced genes in the transformants. Real-time PCR analysis provided evidence for the expression of osmotin in the transgenic plants under both the constitutive and stress-inducible promoters. Transgenic plants with the stress-inducible promoter were observed to better tolerate salt and drought stress than those with the constitutive promoter. Transgenic plants when subjected to simulated salinity and drought stress conditions showed better cellular membrane stability (CMS) and photosynthetic yield than non-transgenic plants under conditions of both salinity and drought stress. Proline levels were very high in transgenic plants with the constitutive promoter relative to those with the stress-inducible promoter. Fungal challenge undertaken with three fungal species known to cause serious losses to mulberry cultivation, namely, Fusarium pallidoroseum, Colletotrichum gloeosporioides and Colletotrichum dematium, revealed that transgenic plants with osmotin under control of the constitutive promoter had a better resistance than those with osmotin under the control of the stress-inducible promoter. Evaluation in next generation was undertaken by studying bud break in transgenic and non-transgenic plants under simulated drought (2% polyethylene glycol) and salt stress (200 mM NaCl) conditions. The axillary buds of the selected transgenic lines had a better bud break percentage under stressed conditions than buds from non-transgenic mulberry lines. A biotic assay with Bombyx mori indicated that osmotin protein had no undesirable effect on silkworm rearing and feeding. We therefore conclude that 35S transgenic plants are better suited for both abiotic stress also biotic challenges (fungal), while the rd29A transgenic plants are more responsive to drought.  相似文献   

9.
Summary 30000 transgenic petunia plants carrying a single copy of the maize A1 gene, encoding a dihydroflavonol reductase, which confers a salmon red flower colour phenotype on the petunia plant, were grown in a field test. During the growing season plants with flowers deviating from this salmon red colour, such as those showing white or variegated phenotypes and plants with flowers exhibiting only weak pigmentation were observed with varying frequencies. While four white flowering plants were shown at the molecular level to be mutants in which part of the A1 gene had been deleted, other white flowering plants, as well as 13 representative plants tested out of a total of 57 variegated individuals were not mutants but rather showed hypermethylation of the 35S promoter directing A1 gene expression. This was in contrast to the homogeneous fully red flowering plants in which no methylation of the 35S promoter was observed. While blossoms on plants flowering early in the season were predominantly red, later flowers on the same plants showed weaker coloration. Once again the reduction of the A1-specific phenotype correlated with the methylation of the 35S promoter. This variation in coloration seems to be dependent not only on exogenous but also on endogenous factors such as the age of the parental plant from which the seed was derived or the time at which crosses were made.  相似文献   

10.
Co-syppression of host genes and 35S transgenes encoding nitrate reductase was previously reported in transgenic tobacco plants (Nicotiana tabacum cv. Paraguay or Burley) using either a full-length cDNA or fragments devoid of the 3 and/or 5 UTR. Co-suppression was previously shown to affect a limited fraction of the progeny of one transgenic tobacco line homozygous for a single transgene locus, and the phenomenon occurred at each generation. In this work, 38 combinations of transgene loci derived from 13 independent transgenic lines homozygous for a single transgene locus were field-tested under two different conditions in an attempt to determine the corresponding frequencies of co-suppression, i.e. the percentage of plants showing co-suppression.Each of the 13 homozygous lines exhibited a different frequency of co-suppression, ranging from 0% to 57%. High frequencies were found to be associated with transgene loci carrying a high number of copy of the transgene, suggesting a transgene dose effect. Combinations carrying 2 non-allelic transgene loci in a hemizygous state exhibited frequencies of co-suppression between those of each of the 2 transgene loci in a homozygous state, while combinations carrying 2 non-allelic transgene loci in a homozygous state exhibited frequencies of co-suppression higher than the sum of those of the 2 transgene loci alone in a homozygous state, clearly confirming a transgene dose effect.Co-suppression frequencies were increased when the plants were grown initially in vitro, suggesting some environmental effect. The roles of transgene copy number, number of transgene loci and environmental factors are discussed in the light of a threshold hypothesis.  相似文献   

11.
Tomato plants ( Lycopersicon esculentum Mill. cv. Pera) were transformed via Agrobacterium tumefaciens with the binary vector pKYLX71 containing a tomato basic peroxidase (EC 1.11.1.7) gene, tpx1 , under the control of the cauliflower mosaic virus (CaMV35S) promoter. Transgenic plants showed a 2–5-fold increase in the activity of the peroxidase ionically bound to the cell wall, whereas soluble peroxidase activity remained similar or even lower than wild-type plants. Isoelectric focusing showed the presence of a new isoperoxidase of pI ca 9 in the ionically bound extract. Western blot also showed the presence of a new band at 41 kDa that was absent in the wild-type extract. A 40–220% increment of lignin content of the leaf was found in transgenic plants. Shoot phenotype of transgenic plants was similar to wild type, although under stress, the plants appeared wilted and the new leaves had a reduced area and were thicker than wild-type or older transgenic leaves. The root system was underdeveloped in transgenic plants, but the rooting ability of the stem was not affected by the overexpression of peroxidase. Finally, the morphogenetic response of cotyledon and hypocotyl explants from transgenic plants was evaluated. In the case of cotyledons, the percentage of explants with shoot was not different from wild-type plants. For hypocotyl, one of the transgenic lines showed a 30% reduction in the percentage of shoot organogenesis. The results are discussed in relation to the role of tpx1 in lignin synthesis.  相似文献   

12.
13.
Transgenic rice plants in which the content of dienoic fatty acids was increased as a result of co-suppression of fatty acid desaturase were more tolerant to high temperatures than untransformed wild-type plants, as judged by growth rate and chlorophyll content. When untransformed wild-type and transgenic rice seedlings were incubated at 35 °C, seedlings of the transgenic rice lines showed approximately 1.6 and 2.1 times the growth of untransformed wild-type seedlings, as assayed by shoot and root mass, respectively. The chlorophyll content of the transgenic leaves after 9 d at 35 °C was also higher than that of wild-type rice. The maximum photochemical efficiency of photosystem 2 was also higher in transgenic plants than in wild-type plants upon high temperature stress.  相似文献   

14.
Ethylene production was measured during vegetative and reproductive development in normal tobacco plants and in transgenic tobacco plants carrying antisense genes for tomato ACC oxidase driven by the 35S CaMV promoter (Hamilton et al., 1990). When expressed in three independently derived transgenic plants, the antisense ethylene gene failed to affect ethylene production in young/mature leaves or in stems but it did inhibit ethylene production in roots by 37–58%. Ethylene production in developing flowers (i.e. from small unopened flower buds up until open flowers at anthesis) was not affected in transgenic plants but ethylene production in fruits was inhibited by 35%. The most dramatic effect on ethylene production in transgenic plants was seen immediately after wounding leaf tissue, in which case the antisense gene inhibited wound ethylene production by 72%. Thus, the antisense gene composed of a 35S CaMV promoter driving a heterologous ACC oxidase sequence had differential effects on ethylene production in tobacco plants.  相似文献   

15.
16.
Yoo SY  Bomblies K  Yoo SK  Yang JW  Choi MS  Lee JS  Weigel D  Ahn JH 《Planta》2005,221(4):523-530
Positive selection of transgenic plants is essential during plant transformation. Thus, strong promoters are often used in selectable marker genes to ensure successful selection. Many plant transformation vectors, including pPZP family vectors, use the 35S promoter as a regulatory sequence for their selectable marker genes. We found that the 35S promoter used in a selectable marker gene affected the expression pattern of a transgene, possibly leading to a misinterpretation of the result obtained from transgenic plants. It is likely that the 35S enhancer sequence in the 35S promoter is responsible for the interference, as in the activation tagging screen. This affected expression mostly disappeared in transgenic plants generated using vectors without the 35S sequences within their T-DNA region. Therefore, we suggest that caution should be used in selecting a plant transformation vector and in the interpretation of the results obtained from transgenic approaches using vectors carrying the 35S promoter sequences within their T-DNA regions.  相似文献   

17.
Variegated flower phenotypes were generated using the Arabidopsis transposon Tag1 and the maize R regulatory gene. Tag1 was inserted between the CaMV 35S promoter and the maize R gene and transformed into tobacco plants. In half of the transgenic plants, variegated flower patterns were observed. Each line had a different pattern, with varying intensities with three lines showing only tiny sectors indicative of late excision and one showing large sectors indicative of earlier excision.  相似文献   

18.
A chimeric gene consisting of a gene from Escherichia coli thatencodes glutathione reductase (GR), the 35S promoter of cauliflowermosaic virus and the terminator sequences of the gene for nopalinesynthase, was introduced into tobacco (Nicotiana tabacum SRI)cells via a Ti plasmid vector. Expression of the bacterial genein transformed plants and their descendants was confirmed byimmunochemical analysis. GR activity in leaf extracts variedamong transgenic plants, ranging from about 1.0 to 3.5 timesthe control level. These transgenic plants exhibited lower susceptibilityto paraquat than control plants in terms of the extent of visiblefoliar damage, a result that suggests that GR may play an importantrole in the detoxification of active oxygen in the cytoplasmicmatrix of plant cells. However, the transgenic plants were nomore resistant to ozone than were the controls, both in termsof the extent of visible foliar damage and with respect to photosyntheticactivity. (Received January 28, 1991; Accepted May 9, 1991)  相似文献   

19.
We modulated the level of a hormone gene expression in poplars using either 35S promoter (p35S) of cauliflower mosaic virus (CaMV) or aux promoter (pAUX) of A. rhizogenes. The transgenic poplars (Populus alba × P. tremula var. glandulosa), in which the bacterial trans-zeatin secretion (tzs) gene was attached either to the 35S promoter or to the aux promoter, were compared for their performance in tissue culture as well as in nursery. Northern blot analysis of total RNA probed with tzs coding region showed that the total tzs mRNA expression by p35S was approximately 200–300-fold higher than that driven by pAUX. In contrast, the cellular zeatin content of p35S-tzs transgenic poplars was merely 13-fold of those found in pAUX-tzs plants. Due to different levels of cellular zeatin levels, the two types of transgenic poplars showed different morphogenetic as well as growth responses. The p35S-tzs transgenic plants showed morphological characteristics typical of those treated with cytokinin in culture. These include multiple axillary shoot formation, thick stems, narrow leaves and absence of roots. In contrast, the pAUX-tzs plants had slightly higher cellular cytokinin levels than did control plants and showed a lower degree of cytokinin-related phenotypes, including a few axillary shoots in root-inducing media. Since p35S-tzs did not develop roots, only pAUX-tzs transgenic poplars could be transplanted to the nursery where they resumed a close-to-normal growth. Nevertheless, pAUX-tzs plants transferred to the nursery developed cytokinin-related phenotypes, including greater number of shoots, smaller leaves and slightly retarded growth in height, but with a high total biomass.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号