首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested that the increase in inspiratory flow rate caused by a decrease in the inspiratory-to-expiratory time ratio (I:E) at a constant tidal volume (VT) could increase the efficiency of ventilation in high-frequency ventilation (HFV). To test this hypothesis, we studied the effect of changing I:E from 1:1 to 1:4 on steady-state alveolar ventilation (VA) at a given VT and frequency (f) and at a constant mean lung volume (VL). In nine anesthetized, paralyzed, supine dogs, HFV was performed at 3, 6, and 9 Hz with a ventilator that delivered constant inspiratory and expiratory flow rates. Mean airway pressure was adjusted so that VL was maintained at a level equivalent to that of resting FRC. At each f and one of the I:E chosen at random, VT was adjusted to obtain a eucapnic steady state [arterial pressure of CO2 (PaCO2) = 37 +/- 3 Torr]. After 10 min of each HFV, PaCO2, arterial pressure of O2 (PaO2), and CO2 production (VCO2) were measured, and I:E was changed before repeating the run with the same f and VT. VA was calculated from the ratio of VCO2 and PaCO2. We found that the change of I:E from 1:1 to 1:4 had no significant effects on PaCO2, PaO2, and VA at any of the frequencies studied. We conclude, therefore, that the mechanism or mechanisms responsible for gas transport during HFV must be insensitive to the changes in inspiratory and expiratory flow rates over the VT-f range covered in our experiments.  相似文献   

2.
Tidal volumes used in high-frequency ventilation (HFV) may be smaller than anatomic dead space, but since gas exchange does take place, physiological dead space (VD) must be smaller than tidal volume (VT). We quantified changes in VD in three dogs at constant alveolar ventilation using the Bohr equation as VT was varied from 3 to 15 ml/kg and frequency (f) from 0.2 to 8 Hz, ranges that include normal as well as HFV. We found that VD was relatively constant at tidal volumes associated with normal ventilation (7-15 ml/kg) but fell sharply as VT was reduced further to tidal volumes associated with HFV (less than 7 ml/kg). The frequency required to maintain constant alveolar ventilation increased slowly as tidal volume was decreased from 15 to 7 ml/kg but rose sharply with attendant rapid increases in minute ventilation as tidal volumes were decreased to less than 7 ml/kg. At tidal volumes less than 7 ml/kg, the data deviated substantially from the conventional alveolar ventilation equation [f(VT - VD) = constant] but fit well a model derived previously for HFV. This model predicts that gas exchange with volumes smaller than dead space should vary approximately as the product of f and VT2.  相似文献   

3.
The effects of body position and respiratory frequency (f) on regional gas transport during eucapnic conventional ventilation (CV) and high-frequency ventilation (HFV) were assessed from the washout of nitrogen 13 (13NN) using positron-emission tomography. In one protocol, six dogs were ventilated with CV or HFV at f = 6 Hz and tidal volume (VT) selected supine for eucapnia. A coronal cross section of the lung base was studied in the supine, prone, and right and left lateral decubitus positions. In a second protocol, six dogs were studied prone: apical and basal cross sections were studied in CV and in HFV with f = 3 and 9 Hz at eucapnic VT. Regional alveolar ventilation per unit of lung volume (spVr) was calculated for selected regions and analyzed for gravity-dependent cephalocaudal and right-to-left gradients. In both CV and HFV, nonuniformity in spVr was highest supine and lowest prone. In CV there were vertical gradients of spVr in all body positions: nondependent less ventilated than dependent regions, particularly in the supine position. In HFV there was a moderate vertical gradient in spVr in addition to a preferentially ventilated central region in all body positions. Overall lung spV was unaffected by body position in CV but in HFV was highest supine and lowest prone. Nonuniformity in eucapnic prone HFV was unaffected by f and always higher than in CV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of changing tidal volume (VT) and frequency (f) on the distribution of ventilation during high-frequency ventilation (HFV) were assessed from the washout of nitrogen-13 by positron emission tomography. Six dogs, anesthetized and paralyzed, were studied in the supine position during conventional ventilation (CV) and during HFV at f of 3, 6, and 9 Hz. In CV and HFV at 6 Hz, VT was selected to achieve eucapnic arterial partial pressure of CO2 (37 +/- 3 Torr). At 3 and 9 Hz, VT was proportionally changed so that the product of VT and f remained constant and equal to that at 6 Hz. Mean residence time (MRT) of nitrogen-13 during washout was calculated for apical, midheart, and basal transverse sections of the lung and further analyzed for gravity-dependent, cephalocaudal and radial gradients. An index of local alveolar ventilation per unit of lung volume, or specific ventilation (spV), was calculated as the reciprocal of MRT. During CV vertical gradients of regional spV were seen in all sections with ventral (nondependent) regions less ventilated than dorsal (dependent) regions. Regional nonuniformity in gas transport was greatest for HFV at 3 and 6 Hz and lowest at 9 Hz and during CV. During HFV, a central region at the base of the lungs was preferentially ventilated, resulting in a regional time-averaged tracer concentration equivalent to that of the main bronchi. Because the main bronchi were certainly receiving fresh gas, the presence of this preferentially ventilated area, whose ventilation increased with VT, strongly supports the hypothesis that direct convection of fresh gas is an important mechanism of gas transport during eucapnic HFV. Aside from the local effect of increasing overall lung ventilation, this central area probably served as an intermediate shuttle station for the transport of gas between mouth and deeper alveoli when VT was less than the anatomic dead space.  相似文献   

5.
The regional effects of tidal volume (VT), respiratory frequency, and expiratory-to-inspiratory time ratio (TE/TI) during high-frequency ventilation (HFV) were studied in anesthetized and paralyzed dogs. Regional ventilation per unit of lung volume (spVr) was assessed with a positron camera during the washout of the tracer isotope 13NN from the lungs of 12 supine dogs. From the washout data, functional images of the mean residence time (MRT) of 13NN were produced and spVr was estimated as the inverse of the regional MRT. We found that at a constant VT X f product (where f represents frequency), increasing VT resulted in higher overall lung spV through the local enhancement of the basal spVr and with little effect in the apical spVr. In contrast, increasing VT X f at constant VT increased overall ventilation without significantly affecting the distribution of spVr values. TE/TI had no substantial effect in regional spVr distribution. These findings suggest that the dependency of gas transport during HFV of the form VT2 X f is the result of a progressive regional transition in gas transport mechanism. It appears, therefore, that as VT increases, the gas transport mechanism changes from a relative inefficient dispersive mechanism, dependent on VT X f, to the more efficient mechanism of direct fresh gas convection to alveoli with high regional tidal volume-to-dead-space ratio. A mathematical model of gas transport in a nonhomogeneous lung that exhibits such behavior is presented.  相似文献   

6.
In 10 anesthetized, paralyzed, supine dogs, arterial blood gases and CO2 production (VCO2) were measured after 10-min runs of high-frequency ventilation (HFV) at three levels of mean airway pressure (Paw) (0, 5, and 10 cmH2O). HFV was delivered at frequencies (f) of 3, 6, and 9 Hz with a ventilator that generated known tidal volumes (VT) independent of respiratory system impedance. At each f, VT was adjusted at Paw of 0 cmH2O to obtain a eucapnia. As Paw was increased to 5 and 10 cmH2O, arterial PCO2 (PaCO2) increased and arterial PO2 (PaO2) decreased monotonically and significantly. The effect of Paw on PaCO2 and PaO2 was the same at 3, 6, and 9 Hz. Alveolar ventilation (VA), calculated from VCO2 and PaCO2, significantly decreased by 22.7 +/- 2.6 and 40.1 +/- 2.6% after Paw was increased to 5 and 10 cmH2O, respectively. By taking into account the changes in anatomic dead space (VD) with lung volume, VA at different levels of Paw fits the gas transport relationship for HFV derived previously: VA = 0.13 (VT/VD)1.2 VTf (J. Appl. Physiol. 60: 1025-1030, 1986). We conclude that increasing Paw and lung volume significantly decreases gas transport during HFV and that this effect is due to the concomitant increase of the volume of conducting airways.  相似文献   

7.
To identify a general relationship between eucapnic oscillatory flow (Vosc) and frequency (f) in high-frequency ventilation (HFV), we searched the literature for eucapnic HFV data in different mammalian species. We found suitable results for rat, rabbit, monkey, dog, human, and horse, which we expressed in terms of two dimensionless variables, Q = Vosc/Va and F = f/(VA/VD), with VA the alveolar ventilation and VD the volume of the conducting airways. The experimental HFV data define the linear regression equation in Q = 0.54 In F + 0.92 (R = 0.94). Krogh's equation for conventional ventilation (CV), Vosc = VA + fVD, in dimensionless terms becomes Q = 1 + F, which is valid for low F. The intersection of the CV and HFV equations at F = 5.0 defines a transition frequency, ft = 5.0 (VA/VD). At that point the alveolar ventilation per breath, VA/f, represents 20% of VD, and tidal volume (VT) equals 1.20 VD. For eucapnia ft ranges from 5.9 Hz in the rat to 0.9 Hz in the dog. The dimensional form of our HFV equation, VA = 0.13 (VT/VD)1.2 (VTf) is very similar to other empirical equations reported for dogs in noneucapnic settings. Therefore the dimensionless equation should also be valid within a species at noneucapnic settings.  相似文献   

8.
We studied gas exchange in anesthetized ducks and geese artificially ventilated at normal tidal volumes (VT) and respiratory frequencies (fR) with a Harvard respirator (control ventilation, CV) or at low VT-high fR using an oscillating pump across a bias flow with mean airway opening pressure regulated at 0 cmH2O (high-frequency ventilation, HFV). VT was normalized to anatomic plus instrument dead space (VT/VD) for analysis. Arterial PCO2 was maintained at or below CV levels by HFV with VT/VD less than 0.5 and fR = 9 and 12 s-1 but not at fR = 6 s-1. For 0.4 less than or equal to VT/VD less than or equal to 0.85 and 3 s-1. less than or equal to fR less than or equal to 12 s-1, increased VT/VD was twice as effective as increased fR at decreasing arterial PCO2, consistent with oscillatory dispersion in a branching network being an important gas transport mechanism in birds on HFV. Ventilation of proximal exchange units with fresh gas due to laminar flow is not the necessary mechanism supporting gas exchange in HFV, since exchange could be maintained with VT/VD less than 0.5. Interclavicular and posterior thoracic air sac ventilation measured by helium washout did not change as much as expired minute ventilation during HFV. PCO2 was equal in both air sacs during HFV. These results could be explained by alterations in aerodynamic valving and flow patterns with HFV. Ventilation-perfusion distributions measured by the multiple inert gas elimination technique show increased inhomogeneity with HFV. Elimination of soluble gases was also enhanced in HFV as reported for mammals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The factors responsible for the apnea observed during high-frequency ventilation (HFV) were evaluated in 14 pentobarbital sodium-anesthetized cats. A multiple logistic regression analysis provided an estimate of the probability of apnea during HFV as a function of four respiratory variables: mean airway pressure (Paw), tidal volume (VT), frequency, and arterial PCO2 (PaCO2). When mean Paw was 2 cmH2O, PaCO2, VT, and their interaction contributed significantly to the probability of apnea during HFV. At a low value of PaCO2 (25 Torr), the probability of apnea had a minimum value of 0.19 and gradually increased toward 1.0 as VT increased from 0.5 to 7 ml/kg. At higher levels of PaCO2 (30 and 35 Torr) the probability of apnea was zero in the low range of VT but sharply approached 1.0 above a VT of approximately 2.0 ml/kg. However, when Paw was increased to 6 cmH2O, only PaCO2 was an important determinant of apnea. In this case, the probability of apnea was 0.51 when PaCO2 was 25 Torr but decreased to 0.22 when PaCO2 was raised to 25 Torr. At neither Paw was the probability of apnea dependent on frequency. These results suggest that chemoreceptor inputs, in addition to both static and dynamic lung mechanoreceptor afferents, are responsible for determining the output of the central respiratory centers during HFV.  相似文献   

10.
Lung volumes in sex-, age-, height-, and weight-matched Black subjects are 10-15% lower than those in Caucasians. To determine whether this decreased lung volume affected the ventilatory adaptation to exercise, minute ventilation (VE), its components, frequency (f) and tidal volume (VT), and breathing pattern were observed during incremental cycle-ergometer exercise. Eighteen Caucasian (age 8-30 yr) and 14 Black (age 8-25 yr) subjects were studied. Vital capacity (VC) was lower (P less than 0.001) in the Black subjects [90.6 +/- 8.6 (SD) vs. 112.9 +/- 9.9% predicted], whereas functional residual capacity/total lung capacity was higher (P less than 0.05). VE, mixed expired O2 and CO2, VT, f, and inspiratory (TI), expiratory (TE), and total respiratory cycle (TT) duration were measured during the last 30 s of each 2-min load. Statistical comparisons with increasing power output were made at rest and from 0.6 to 2.4 W/kg in 0.3-W/kg increments. VE was higher in Blacks at all work loads and reached significance (P less than 0.05) at 0.6 and 1.5 W/kg. VE/VO2 was also higher throughout exercise, reaching significance (P less than 0.01) at 1.2, 1.5, and 1.8 W/kg. The Black subjects attained any given level of VE with a higher f (P less than 0.001) and lower VT. TI and TE were shortened proportionately so that TI/TT was not different. Differences in lung volume and the ventilatory response to exercise in these Black and Caucasian subjects suggest differences in the respiratory pressure-volume relationships or that the Black subjects may breathe higher on their pressure-volume curve.  相似文献   

11.
Using measurements of aerosol recovery following a 5-s breath hold [NRC(5)] as indices of lung air space dimensions, we evaluated the in vivo changes in these dimensions associated with changes in lung volume (VL). In anesthetized dogs, single breaths of a 1.2-micron monodisperse aerosol were introduced into the respirator's cycle at a number of isovolume points on the inflation and deflation limb of the pressure-volume curve for the dog's lungs. At isovolume, NRC(5) measured off the inflation limb was slightly larger than NRC(5) measured off the deflation limb, implying a larger mean air space dimension for the air space configuration on the inflation vs. the deflation limb. Since a constant aerosol tidal volume (VT) was used for all VL in all dogs, the proportion of the lung filled with aerosol, VT/VL = Pn (where Pn is defined as an index of aerosol penetration into the lung periphery), varied along with VL. In all dogs, we found that, for NRC(5) measurements with Pn less than 0.33, NRC(5) steadily increased with increasing VL, which implies an increasing mean air space dimension as VL increases. However, when we account for the effect that changes in Pn with increasing VL have on NRC(5), we conclude that the observed increase in NRC(5) with VL is primarily due to decreases in Pn and not increases in the mean air space dimension as VL increases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Ventilation and breathing pattern were studied in kittens at 1, 2, 3, 4, and 8 wk of life during quiet wakefulness (W), quiet sleep (QS), and active sleep (AS) with the barometric method. Tidal volume (VT), respiratory frequency (f), ventilation (VE), inspiratory time (TI), expiratory time (TE), mean inspiratory flow (VT/TI), and respiratory "duty cycle" (TI/TT) were measured. VT, VE, TI, TE, and VT/TI increased; f decreased and TI/TT remained constant during postnatal development in wakefulness and in both sleep states. No significant difference was observed between AS and QS for all the ventilatory parameters except TI/TT, which was greater in QS than in AS at 2 wk. VE was larger in W than in both AS and QS at all ages. This was mainly due to a greater f, TI/TT remaining constant. VT/TI, which represents an index of the central inspiratory activity, was larger in W than in sleep, VT not being significantly different whatever the stage of consciousness. The results of this study show that in the kitten 1) unlike in the adult cat, ventilation and breathing pattern are similar in QS and in AS; 2) in sleep, the central inspiratory drive appears to be independent of the type of sleep; and 3) in wakefulness, the increase of the central inspiratory activity could be related to important excitatory inputs.  相似文献   

13.
The regional pleural surface expansion of an excised dog lung was measured during high-frequency ventilation (HFV) using synchronized stroboscopic photography to stop lung motion at 20 evenly spaced intervals over a respiratory cycle during ventilation at 1 Hz with a volume of 100 ml, 15 Hz with 100 ml, or 30 Hz with 50 ml. The lungs were also photographed during quasi-static deflation. The pleural surface was marked with ink dots to form 84 approximately square figures. The side lengths and areas of each of the 84 "squares" were measured for each frame of each photo sequence. At 1 Hz and during the quasi-static deflation the lung ventilated nearly synchronously, although minor nonuniformities were noted on both small and large length scales. At 15 and 30 Hz, the lung expanded asynchronously and nonuniformly, with a 78% increase in surface expansion per 100 ml of tracheal tidal volume, as frequency was increased from 1 to 30 Hz. These nonuniformities in expansion suggest marked interregional airflow and elastic wave propagation in the parenchyma during HFV.  相似文献   

14.
Although high frequency ventilation (HFV) is an effective mode of ventilation, there is limited information available in regard to lung dynamics during HFV. To improve the knowledge of lung function during HFV we have developed a novel lung imaging and analysis technique. The technique can determine complex lung motion information in vivo with a temporal resolution capable of observing HFV dynamics. Using high-speed synchrotron based phase contrast X-ray imaging and cross-correlation analysis, this method is capable of recording data in more than 60 independent regions across a preterm rabbit lung in excess of 300 frames per second (fps). This technique is utilised to determine regional intra-breath lung mechanics of preterm rabbit pups during HFV. Whilst ventilated at fixed pressures, each animal was ventilated at frequencies of 1, 3, 5 and 10 Hz. A 50% decrease in delivered tidal volume was measured at 10 Hz compared to 1 Hz, yet at the higher frequency a 500% increase in minute activity was measured. Additionally, HFV induced greater homogeneity of lung expansion activity suggesting this ventilation strategy potentially minimizes tissue damage and improves gas mixing. The development of this technique permits greater insight and further research into lung mechanics and may have implications for the improvement of ventilation strategies used to support severe pulmonary trauma and disease.  相似文献   

15.
High-frequency external body vibration, combined with constant gas flow at the tracheal carina, was previously shown to be an effective method of ventilation in normal dogs. The effects of frequency (f) and amplitude of the vibration were investigated in the present study. Eleven anesthetized and paralyzed dogs were placed on a vibrating table (4-32 Hz). O2 was delivered near the tracheal carina at 0.51.kg-1.min-1, while mean airway pressure was kept at 2.4 +/- 0.9 cmH2O. Table vertical displacement (D) and acceleration (a), esophageal (Pes), and tracheal (Ptr) peak-to-peak pressures, and tidal volume (VT) were measured as estimates of the input amplitude applied to the animal. Steady-state arterial PCO2 (PaCO2) and arterial PO2 (PaO2) values were used to monitor overall gas exchange. Typically, eucapnia was achieved with f greater than 16 Hz, D = 1 mm, a = 1 G, Pes = Ptr = 4 +/- 2 cmH2O, and VT less than 2 ml. Inverse exponential relationships were found between PaCO2 and f, a, Pes, and Ptr (exponents: -0.69, -0.38, -0.48, and -0.54, respectively); PaCO2 decreased linearly with increased displacement or VT at a fixed frequency (17 +/- 1 Hz). PaO2 was independent of both f and D (393 +/- 78 Torr, mean +/- SD). These data demonstrate the very small VT, Ptr, and Pes associated with vibration ventilation. It is clear, however, that mechanisms other then those described for conventional ventilation and high-frequency ventilation must be evoked to explain our data. One such possible mechanism is forcing of flow oscillation between lung regions (i.e., forced pendelluft).  相似文献   

16.
It has been suggested that radial movement of the central airway walls during oscillatory flow might contribute to the increased frequency dependence of compliance seen in chronic obstructive pulmonary disease (COPD) (J. Appl. Physiol. 26: 670-677, 1969). Radial airway wall motion has also been invoked to explain the frequency-dependent decreases in the efficiency of gas exchange during low-volume high-frequency ventilation (HFV) in histamine-bronchoconstricted dogs and in patients with respiratory insufficiency. To test the possibility that airway wall motion increases with bronchoconstriction, we measured central airway diameters using cinebronchoradiography in anesthetized tracheostomized dogs during oscillatory HFV [50 and 100 ml tidal volume (VT) at frequencies (f) of 2, 6, and 12 Hz], under control conditions, during electrical stimulation of the vagi, and after exposure to histamine aerosol. Cineradiobronchograms from two dogs were evaluated quantitatively for tracheal diameter and for lengths and diameters of a number of major airways. Under control conditions, the diameter of the airways fluctuated 7-9% of the mean with VT of 50 ml and 9-18% with VT of 100 ml in the range of frequencies studied. Bronchoconstriction produced by aerosolized histamine increased radial airway wall movement to 10-47% with VT of 50 ml, and during vagal stimulation diameters changed 7-20% at VT of 50 ml. After histamine, the central airways displayed large diameter changes during HFV, whereas more peripheral airways were markedly constricted and did not change in diameter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We examined the effects of oscillatory frequency (f), tidal volume (VT), and mean airway pressure (Paw) on respiratory gas exchange during high-frequency oscillatory ventilation of healthy anesthetized rabbits. Frequencies from 3 to 30 Hz, VT from 0.4 to 2.0 ml/kg body wt (approximately 20-100% of dead space volume), and Paw from 5 to 20 cmH2O were studied. As expected, both arterial partial pressure of O2 and CO2 (PaO2 and PaCO2, respectively) were found to be related to f and VT. Changing Paw had little effect on blood gas tensions. Similar values of PaO2 and PaCO2 were obtained at many different combinations of f and VT. These relationships collapsed onto a single curve when blood gas tensions were plotted as functions of f multiplied by the square of VT (f. VT2). Simultaneous tracheal and alveolar gas samples showed that the gradient for PO2 and PCO2 increased as f. VT2 decreased, indicating alveolar hypoventilation. However, venous admixture also increased as f. VT2 decreased, suggesting that ventilation-perfusion inequality must also have increased.  相似文献   

18.
Positive airway pressure (Paw) during high-frequency oscillatory ventilation (HFOV) increases lung volume and can lead to lung overdistention with potentially serious adverse effects. To date, no method is available to monitor changes in lung volume (DeltaVL) in HFOV-treated infants to avoid overdistention. In five newborn piglets (6-15 days old, 2.2-4.2 kg), we investigated the use of direct current-coupled respiratory inductive plethysmography (RIP) for this purpose by evaluating it against whole body plethysmography. Animals were instrumented, fitted with RIP bands, paralyzed, sedated, and placed in the plethysmograph. RIP and plethysmography were simultaneously calibrated, and HFOV was instituted at varying Paw settings before (6-14 cmH(2)O) and after (10-24 cmH(2)O) repeated warm saline lung lavage to induce experimental surfactant deficiency. Estimates of Delta VL from both methods were in good agreement, both transiently and in the steady state. Maximal changes in lung volume (Delta VL(max)) from all piglets were highly correlated with Delta VL measured by RIP (in ml) = 1.01 x changes measured by whole body plethysmography - 0.35; r(2) = 0.95. Accuracy of RIP was unchanged after lavage. Effective respiratory system compliance (Ceff) decreased after lavage, yet it exhibited similar sigmoidal dependence on Delta VL(max) pre- and postlavage. A decrease in Ceff (relative to the previous Paw setting) as Delta VL(max) was methodically increased from low to high Paw provided a quantitative method for detecting lung overdistention. We conclude that RIP offers a noninvasive and clinically applicable method for accurately estimating lung recruitment during HFOV. Consequently, RIP allows the detection of lung overdistention and selection of optimal HFOV from derived Ceff data.  相似文献   

19.
In order to estimate optimum parameters for artificial ventilation of adult guinea pigs, the effect of four hours intermittent positive pressure ventilation (IPPV) was studied using different tidal volumes (VT), respiratory frequencies (f), and minute volumes (Ve). Total compliance was measured by placing the animal in a whole body plathysmograph, the arterial blood gases, pH and base excess by catheterizing the carotid artery. In Series I 9 guinea pigs were ventilated at parameters adapted to the spontaneous breathing pattern (VT = 2 ml, f = 70 breaths.min-1). This ventilatory pattern resulted in severe disorders in compliance, gas exchange, and acid-base balance. In Series II 3 different VT (2, 6, 10 ml) were studied by changing f so that Ve was kept constant. The results demonstrated a favourable effect of slow and deep ventilation upon lung mechanics and oxygenation. In Series III 3 different Ve (300, 250, 200 ml.min-1) were tested using a constant VT = 10 ml. Optimum parameters for artificial ventilation of adult guinea pigs were: VT = 10 ml and f = 20 breath--min-1 which resulted in stable compliance, good O2-saturation, normocapnia and normal acid-base balance.  相似文献   

20.
The purpose of this study was to determine the neural output of pulmonary stretch receptors (PSRs) in response to conditions that, in previous studies (J. Appl. Physiol. 65: 179-186, 1988 and Respir. Physiol. 80: 307-322, 1990), produced apnea in anesthetized cats. These conditions included changes in airway pressure (Paw; 2 or 6 cmH2O), stroke or tidal volume (1-4 ml/kg), frequency [conventional mechanical ventilation (CMV) vs. high-frequency ventilation (HFV) at 10, 15, and 20 Hz], and levels of inspired CO2 (0, 2, and 5%). These data were needed to assess properly the specific contribution of the PSRs to the apnea found with certain combinations of the above variables. Each PSR was subjected to HFV over a range of mechanical and chemical settings, and its activity was recorded. PSRs exhibited continuous activity associated with pump stroke in 11 of 12 fibers tested. PSRs fired more rapidly when mean Paw was 6 cmH2O [45.3 +/- 0.8 (SE) impulses/s] than when it was 2 cmH2O (31.7 +/- 0.9 impulses/s, P = 0.0001). At both pressures, PSR activity increased as the volume of inflation, or tidal volume, was increased from 1 to 4 ml/kg. At Paw of 2 cmH2O, the number of impulses per second for HFV was not different from that for CMV (averaged over the respiratory cycle), under conditions previously demonstrated as apneogenic for both modes of ventilation. Therefore the absolute amount of information being sent to the brain stem processing centers via PSRs during HFV did not differ from that during CMV. Thus any PSR contribution to HFV-induced apnea must have been the result of changes in the pattern of the signal or the central nervous system's processing of it rather than an increase in the amount of inhibitory afferent signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号