首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M E Byrne  D A Rouch  R A Skurray 《Gene》1989,81(2):361-367
Resistance to the aminoglycosides gentamicin, tobramycin and kanamycin (GmTmKmR) in Australian clinical strains of Staphylococcus aureus is commonly carried on the composite transposon Tn4001. The resistance gene aacA-aphD of Tn4001, which encodes a bifunctional AAC(6')-APH(2") modifying enzyme, is flanked by two 1324-bp inverted repeats, IS256L and IS256R, that are identical in sequence. Analysis of the IS256 sequence revealed structural features characteristic of IS elements including 26-bp imperfect terminal inverted repeats and a single open reading frame with coding capacity for a 45.6 kDa protein. The nucleotide sequence of IS256 described here, together with the sequence of the aacA-aphD gene reported previously [Rouch et al., J. Gen. Microbiol. 133 (1987) 3039-3052], completes the entire sequence of Tn4001, which totals 4566 bp.  相似文献   

2.
Tn5096 was constructed by inserting an apramycin resistance gene, aac(3)IV, into IS493 from Streptomyces lividans. By using conventional and pulsed-field gel electrophoresis, Tn5096 and related transposons were shown to insert into many different locations in the Streptomyces griseofuscus chromosome and in two linear plasmids. On insertion into the target site CANTg, 3 bp appeared to be duplicated. Independent transpositions were obtained by delivery of the transposon from a temperature-sensitive plasmid. The frequency of auxotrophy among cultures containing transpositions was about 0.2%.  相似文献   

3.
Summary Tn9 is a transposable element in which a gene (cat) determining chloramphenicol resistance is flanked by directly repeated sequences that are homologous to the insertion sequence IS1. We show here that infection of Escherichia coli K12 (under Rec- Red- Int- conditions) with a bio transducing phage carrying Tn9 results in the formation of bio transductants as frequently as cat transductants (about 1 per 106 to 107 infected cells). Most of the bio transductants do not carry cat, just as most of the cat transductants do not carry bio. In spite of the absence of cat, the bio prophage can transpose a second time, from the E. coli chromosome to different sites on an F gal plasmid. Analysis of the structure of the transposed bio element, by restriction nuclease digestion and by electron microscopy, demonstrates that the integrated bio prophage is flanked by directly repeated IS1 elements. We conclude that there is no genetic information for the ability to transpose encoded in the non-repeated portion of Tn9, i.e. that the directly repeated IS1 elements alone are responsible for Tn9 transposition.  相似文献   

4.
Conjugal crosses with Pseudomonas aeruginosa donors carrying the CAM-OCT and RP4::Tn7 plasmids result in transfer of the Tn7 trimethoprim resistance (Tp(r)) determinant independently of RP4 markers. All Tp(r) exconjugants which lack RP4 markers have CAM-OCT genes and therefore must have received CAM-OCT::Tn7 plasmids formed by transposition of Tn7 from RP4::Tn7 to CAM-OCT. Most crosses yield exconjugants carrying mutant CAM-OCT plasmids which no longer determine either camphor or alkane utilization and thus appear to carry Tn7 inserts in the cam or alk loci, respectively. Transduction and reversion experiments indicated that at least 13 alkane-negative, camphor-positive, Tp(r) CAM-OCT::Tn7 plasmids carry an alk::Tn7 mutation. Determination of linkage between the alk mutation and the Tp(r) determinant of Tn7 on these plasmids is complicated by the presence of multiple copies of the Tn7 element in the genome. Generalized transduction will remove Tn7 from a CAM-OCT alk::Tn7 plasmid to yield alk(+) cells which carry no Tp(r) determinant on the CAM-OCT plasmid (as shown by transfer of the plasmid to a second strain). But the transduction to alk(+) does not remove all Tp(r) determinants from the genome of the recipient cell because the alkane-positive transductants remain trimethoprim resistant. Thus, it appears that copies of Tn7 can accumulate in the genome of P. aeruginosa (CAM-OCT alk::Tn7) strains without leaving their original site. This result is consistent with transposition models that involve replication of the transposable element without excision from the original site.  相似文献   

5.
6.
The kinetics of accumulation of resident transposon copies in a dividing population has been defined using a special experimental system. Analysis of the kinetics made it possible to estimate the probability of transposition for Tn5 as 2.5 X 10(-4) and for Tn10 as 2.3 X 10(-6) per cell per generation. Transposition of the composite elements does not depend on RecBC or RecF pathways of recombination. The fraction of the bacterial population with tandem duplications in the proA region of the genome is permanent for Escherichia coli. It is independent of the recombination pathways (RecBC of RecF) and the integrity of DNA polymerase I.  相似文献   

7.
8.
Summary The plasmids R15 and RP4:: Tn1 form fused structures (85 Md and 92 Md cointegrates). The cointegrates do not resolve practically in recA Escherichia coli cells and have a mean life-time of more than 50 generations in a recA + background.The 85 Md cointegrates were generated at a frequency of 4×10–4 per R15 transconjugant during a mating between E. coli [R15; RP4:: Tn1] and E. coli [FColVBtrp:: Tn1755]. These plasmids carry two directly repeated copies of the mobile element IS8 at the junctions between R15 and RP4:: Tn1. The transposition of IS8 from RP4:: Tn1 to the R15 plasmid and the formation of hybrid molecules promoted by this process appear to be induced by the IS8 element of the Tn1755 structure during or after conjugal transfer of FColVBtrp:: Tn1755 into E. coli [R15; RP4:: Tn1] cells.The formation of the 92 Md cointegrates occurs at a frequency of 2×10–5. The fused molecules of R15 and RP4:: Tn1 carry two direct copies of an 8.65 Md R15 fragment at the junctions between these replicons. The fragment has specific features of a new transposon. This element designated Tn2353 determines resistance to Hg, Sm and Su and contains two sites for each BamHI, BglII and SalI and three sites for both EcoRI and PstI. The physical map and some other characteristics of Tn2353 are presented.Abbreviations Ap ampicillin - EtBr ethidium bromide - Km kanamycin - Md megadaltons - Sm streptomycin - Su sulfanilamide - Tc tetracycline - [] brackets indicate plasmid-carrier state  相似文献   

9.
The recombinant plasmid pIP1713 was constructed to analyse the transpositional activity of the insertion sequence IS1181 in Staphylococcus aureus RN4220, Staphylococcus carnosus TM300 and Listeria monocytogenes EGD. This 11.3-kb plasmid contains two genetically different elements: (i) a pE194ts-derived replicon, the ermC gene of which confers resistance to erythromycin in Gram-positive bacteria of several species, and (ii) a copy of IS1181, cloned from S. aureus BM3121, in which the tetracycline resistance gene, tet(T), has been inserted between the transposase-encoded gene and the downstream inverted repeat. When introduced by electroporation into the three bacterial hosts, pIP1713 delivered IS1181Ωtet(T) to various chromosomal sites. Cointegrate structures between pIP1713 and the host chromosome were occasionally detected. Transposition was associated with 8-bp repeats at the insertion sites. IS1181Ωtet(T) could be used for random mutagenesis in Gram-positive bacteria.  相似文献   

10.
35S incorporation studies showed that Candida tropicalis tRNA contained two thionucleosides, one of which was identified as 5-methyl-2-thiouridine. The other thionucleoside was alkali labile, and it appeared to be an ester. Pulse-chase experiments suggested that the two thionucleosides were structurally related. 5-Methyl-2-thiouridine was present in one of the lysine tRNAs. This is the first report of the presence of this nucleoside in a yeast tRNA.  相似文献   

11.
IS256 is the founding member of the IS256 family of insertion sequence (IS) elements. These elements encode a poorly characterized transposase, which features a conserved DDE catalytic motif and produces circular IS intermediates. Here, we characterized the IS256 transposase as a DNA-binding protein and obtained insight into the subdomain organization and functional properties of this prototype enzyme of IS256 family transposases. Recombinant forms of the transposase were shown to bind specifically to inverted repeats present in the IS256 noncoding regions. A DNA-binding domain was identified in the N-terminal part of the transposase, and a mutagenesis study targeting conserved amino acid residues in this region revealed a putative helix-turn-helix structure as a key element involved in DNA binding. Furthermore, we obtained evidence to suggest that the terminal nucleotides of IS256 are critically involved in IS circularization. Although small deletions at both ends reduced the formation of IS circles, changes at the left-hand IS256 terminus proved to be significantly more detrimental to circle production. Taken together, the data lead us to suggest that the IS256 transposase-mediated circularization reaction preferentially starts with a sequence-specific first-strand cleavage at the left-hand IS terminus.IS256 is an insertion sequence widespread in the genomes of multiresistant enterococci and staphylococci (3). The element, which is 1,324 bp in size, consists of a single open reading frame encoding a transposase protein flanked by noncoding regions (NCRs) harboring imperfect inverted repeats (IRs) (see Fig. Fig.1A).1A). IS256 occurs in multiple free copies in its host genomes but is also known to form the ends of composite transposon Tn4001 conferring aminoglycoside resistance (29). In Staphylococcus epidermidis, IS256 has been identified as a typical marker of hospital-acquired multiresistant and biofilm-forming clones causing opportunistic infections in immunocompromised patients (11, 20-22, 26, 34). The element has been shown to trigger heterogeneous biofilm expression by reversible transposition into biofilm-associated genes and regulators (4, 5, 19, 49, 56). Also, IS256 has the capacity to influence antibiotic resistance, either by insertion into regulatory genes or by modulating antibiotic resistance gene expression through formation of strong hybrid promoters resulting from transposition into the neighborhood of antibiotic resistance genes (6, 18, 31, 32). Finally, multiple genomic IS256 copies may serve as crossover points for homologous recombination events and thereby play an important role in genome flexibility, adaptation, and evolution of staphylococcal and enterococcal genomes (29, 42, 55).Open in a separate windowFIG. 1.IS256 transposase binding to IS termini. (A) Genetic organization of IS256. The transposase gene (tnp) is flanked by NCRs that harbor imperfect IRs (IRL and IRR) at the ends of the element. The nucleotide sequence of the IRs is indicated by uppercase boldface letters, with nucleotide numbering referring to GenBank accession no. M18086. Insertion of IS256 into the S. epidermidis icaC gene on plasmid pIL2 (27) is shown, and black boxes mark the 8-bp target site duplications (TSDs) generated upon transposition of the element. Black bars at the top indicate localizations of DNA fragments used in the EMSAs presented in panels B to D. (B to D) EMSAs of purified IS256 transposase protein (CBP-Tnp) with various IS256-specific DNA fragments. A 15.5 nM concentration of an IS terminus (left)-carrying DNA fragment (B) or an IS terminus (right)-carrying DNA-fragment (C), as well as an interal IS256 fragment (D), were used with increasing amounts of protein. All experiments were performed in the presence of unspecific competitor [50 μg of poly(dI-dC) ml−1]. Molar ratios between DNA and protein comprised a range of 1:3 (50 nM CBP-Tnp) to 1:52 (800 nM CBP-Tnp).Given its important biological role, it is surprising that very little is known about the molecular function of IS256 and its lifestyle. Empirical analyses of IS256 insertion sites in various bacterial genomes and loci did not reveal nucleotide sequence specificity for target site selection (3, 29, 56). Typically, IS256 generates 8- or 9-bp target site duplications (TSDs) upon transposition that are caused by staggered nicks of the target DNA and refill of the resulting gaps by the host repair system (43). In the course of phase variation events, IS256 TSDs can be completely removed, with the original host sequence being restored (56). Such precise IS256 excisions are caused by an illegitimate recombination event that requires fully intact TSDs but no functional IS256 transposase (14). IS256 transposition itself was found to involve the formation of double-stranded circular IS256 molecules in which the insertion sequence (IS) ends abut, bridged by a few base pairs of host DNA originating from the original insertion site (27, 39). IS256 circle formation is a strictly transposase-dependent process and IS circles are regarded as transposition intermediates which are likely to be relinearized during transposition. However, details of the transposition reaction, including circle formation, putative relinearization, target site selection, and insertion of the element are far from being understood at the molecular level. We experimentally addressed here, for the first time for a bacterial transposase of the IS256 family, the DNA-binding properties of this protein. We identified a DNA-binding domain in the N-terminal region of the protein. The domain contains a putative classical helix-turn-helix (HTH) motif that is demonstrated to be involved in sequence-specific interactions of the IS256 transposase with the IRs present in the NCRs of the element. Moreover, we suggest a role for the terminal nucleotides of the IS256 nucleotide sequence in first-strand cleavage and subsequent circularization of the element.  相似文献   

12.
We have analysed the transposition and target selection strategy of IS1655, a typical IS30 family member resident in Neisseria meningitidis. We have redefined IS1655 as a 1080 bp long element with 25 bp imperfect inverted repeats (IRs), which generates a 3 bp target duplication and have shown that it transposes using an intermediate with abutted IRs separated by 2 bp. IS1655 exhibits bipartite target specificity inserting preferentially either next to sequences similar to its IRs or into an unrelated but well defined sequence. IR-targeting leads to the formation of a new junction in which the targeted IR and one of the donor IRs are separated by 2 bp. The non-IR targets were characterized as an imperfect 19 bp palindrome in which the central five positions show slight GC excess and the distal region is AT-rich. Artificial targets designed according to the consensus were recognized by the element as hot spots for insertion. The organization of IS1655 is similar to that of other IS30 family members. Moreover, it shows striking similarity to IS30 in transposition strategy even though their transposases differ in their N-terminal regions, which, for IS30, appears to determine target specificity. Comparative analysis of the transposases and the evolutionary aspects of sequence variants are also briefly discussed.  相似文献   

13.
The aacA-aphD aminoglycoside resistance determinant of the Staphylococcus aureus transposon Tn4001, which specifies resistance to gentamicin, tobramycin and kanamycin, has been cloned and shown to express these resistances in Escherichia coli. The determinant encoded a single protein with an apparent size of 59 kDa which specified both aminoglycoside acetyltransferase [AAC(6')] and aminoglycoside phosphotransferase [APH(2")] activities. Nucleotide sequence analysis of the determinant showed it to be capable of encoding a 479-amino-acid protein of 56.9 kDa. analysis of Tn1725 insertion mutants of the determinant indicated that resistance to tobramycin and kanamycin is due to the AAC activity specified by, approximately, the first 170 amino acids of the predicted protein sequence and is consistent with the gentamicin resistance, specified by the APH activity, being encoded within the C-terminal region of the protein. Comparison of the C-terminal end of the predicted amino acid sequence with the reported sequences of 13 APHs and a viomycin phosphotransferase revealed a region which is highly conserved among these phosphotransferases.  相似文献   

14.
Tn5 transposase (Tnp) overproduction is lethal to Escherichia coli. The overproduction causes cell filamentation and abnormal chromosome segregation. Here we present three lines of evidence strongly suggesting that Tnp overproduction killing is due to titration of topoisomerase I. First, a suppressor mutation of transposase overproduction killing, stkD10, is localized in topA (the gene for topoisomerase I). The stkD10 mutant has the following characteristics: first, it has an increased abundance of topoisomerase I protein, the topoisomerase I is defective for the DNA relaxation activity, and DNA gyrase activity is reduced; second, the suppressor phenotype of a second mutation localized in rpoH, stkA14 (H. Yigit and W. S. Reznikoff, J. Bacteriol. 179:1704–1713, 1997), can be explained by an increase in topA expression; and third, overexpression of wild-type topA partially suppresses the killing. Finally, topoisomerase I was found to enhance Tn5 transposition up to 30-fold in vivo.  相似文献   

15.
We provide evidence that a prokaryotic insertion sequence (IS) element is active in a vertebrate system. The transposase of Escherichia coli element IS30 catalyzes both excision and integration in extrachromosomal DNA in zebrafish embryos. The transposase has a pronounced target preference, which is shown to be modified by fusing the enzyme to unrelated DNA binding proteins. Joining the transposase to the cI repressor of phage λ causes transposition primarily into the vicinity of the λ operator in E. coli, and linking to the DNA binding domain of Gli1 also directs the recombination activity of transposase near to the Gli1 binding site in zebrafish. Our results demonstrate the possibility of fusion transposases to acquire novel target specificity in both prokaryotes and eukaryotes.  相似文献   

16.
Castro JP  Carareto CM 《Genetica》2004,121(2):107-118
The molecular mechanisms that control P element transposition and determine its tissue specificity remain incompletely understood, although much information has been compiled about this element in the last decade. This review summarizes the currently available information about P element transposition, P-M hybrid dysgenesis and P cytotype features, P element-encoded repressors, and regulation of transposition.  相似文献   

17.
We report that the major product of IS15-promoted transposition is a cointegrate. When present in the multicopy plasmid pBR322, IS15 and its progenitor IS15-delta mediate the formation of cointegrates at frequencies of 3.5 X 10(-4) and 2.9 X 10(-5), respectively. We have studied the stability of the cointegrates generated by IS15 and IS15-delta. While these structures are resolved in a rec+ host, they were stable in a rec- host. These observations suggest that neither IS15 nor IS15-delta encode a resolvase and that cointegration is an end product of their transposition process. These properties of IS15-delta and IS15 can explain the transitions from IS15-delta to IS15 and from IS15 to IS15-delta observed in vivo.  相似文献   

18.
Conjugative transposons have been identified in several bacterial species, most notably the Gram-positive Enterococci and the Gram-negative Bacteroides. In Bacteroides species, these elements encode a complete conjugative machinery, which mediates their own intercellular transfer, and they can mobilize in trans co-resident elements. One such mobilizable element is the antibiotic resistance transposon, Tn4555, which was previously found to integrate into a specific genome target site via a site-specific recombination mechanism. In this work, we demonstrate that three Tn4555 genes were involved in integration of the element. These were int encoding a lambda-type integrase, which was absolutely required for integration of the transposon, and two accessory genes, which increased the frequency of integration. Interestingly, one of these accessory gene products, TnpA, directed the insertion of Tn4555 into the genome target site; in the absence of tnpA, the insertion pattern was essentially random. This is the first example of a site-specific recombinase that uses a specific targeting protein.  相似文献   

19.
A P Dobritsa  Z A Ivanova  V B Fedoseeva 《Gene》1983,22(2-3):237-243
We have demonstrated the possibility of transposition of the plasmid RP4::Tn1 fragment (21.2 kb) carrying the tetracycline resistance (Tcr) gene and flanked by two Tn1 copies. The new transposon, designated Tn1756, bears lethal genes that kill host cells. Therefore, its transposition can only be revealed in the presence of lethality-compensating helper regions of the plasmid RP4. Thus, RP4::Tn1 consists of two transposons, Tn1755 (Tn1-Kmr-Tn1) and Tn1756 (Tn1-Tcr-Tn1), sharing the Tn1 sequences. Both of these transposons are capable of recA-independent translocation to other plasmids. Therefore, transposition of DNA fragments flanked by two inverted Tn1 sequences does not depend on Tn1 orientation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号