首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Disruption of the complex of BECN1 with BCL2 or BCL2L1/BCL-XL is an essential switch that turns on cellular autophagy in response to environmental stress or treatment with BH3 peptidomimetics. Recently, it has been proposed that BCL2 and BCL2L1/BCL-XL may inhibit autophagy indirectly through a mechanism dependent on the proapoptotic BCL2 family members, BAX and BAK1. Here we report that the BH3 mimetic, ABT-737, induces autophagy in parallel with disruption of BCL2-BECN1 binding in 2 different apoptosis-deficient cell types lacking BAX and BAK1, namely in mouse embryonic fibroblasts cells and in human colon cancer HCT116 cells. We conclude that the BH3 mimetic ABT-737 induces autophagy through a BAX and BAK1-independent mechanism that likely involves disruption of BECN1 binding to antiapoptotic BCL2 family members.  相似文献   

5.
BCL2 family in DNA damage and cell cycle control   总被引:13,自引:0,他引:13  
Individual BCL2 family members couple apoptosis regulation and cell cycle control in unique ways. Antiapoptotic BCL2 and BCL-x(L) are antiproliferative by facilitating G0. BAX is proapoptotic and accelerates S-phase progression. The dual functions in apoptosis and cell cycle are coordinately regulated by the multi-domain BCL2 family members (MCL-1) and suggest that survival is maintained at the expense of proliferation. The role of BH3-only molecules in cell cycle is more variable. BAD antagonizes both the cell cycle and antiapoptotic functions of BCL2 and BCL-x(L) through BH3 binding. BID has biochemically separable functions in apoptosis and S-phase checkpoint, determined by post-translational modification. p53-induced PUMA is known only to have apoptotic function. Inhibition of apoptosis is oncogenic, whereas promotion of cell cycle arrest is tumor suppressive. Paradoxically, selected BCL2 family members can be both oncogenic and tumor suppressive. Which of the dual functions predominates is lineage specific and context dependent.  相似文献   

6.
Members of the Bcl-2 family of apoptosis-regulating proteins contain at least one of the four evolutionarily conserved domains, termed BH1, BH2, BH3, or BH4. Here, we report the identification, cloning, physical mapping, and expression pattern of BCL2L12, a novel gene that encodes a BCL2-like proline-rich protein. Proline-rich sites have been shown to interact with Src homology region 3 (SH3) domains of several tyrosine kinases, mediating their oncogenic potential. This new gene maps to chromosome 19q13.3 and is located between the IRF3 and the PRMT1/HRMT1L2 genes, close to the RRAS gene. BCL2L12 is composed of seven coding exons and six intervening introns, spanning a genomic area of 8.8 kb. All of the exon-intron splice sites conform to the consensus sequence for eukaryotic splice sites. The BCL2L12 protein is composed of 334 amino acids, with a calculated molecular mass of 36.8 kDa and an isoelectric point of 9.45. The BCL2L12 protein contains one BH2 homology domain, one proline-rich region similar to the TC21 protein and, five consensus PXXP tetrapeptide sequences. BCL2L12 is expressed mainly in breast, thymus, prostate, fetal liver, colon, placenta, pancreas, small intestine, spinal cord, kidney, and bone marrow and to a lesser extent in many other tissues. We also identified one splice variant of BCL2L12 that is primarily expressed in skeletal muscle.  相似文献   

7.
Bcl-2/adenovirus E1B 19-kDa interacting protein 1 (BNIP1), which is predominantly localized to the endoplasmic reticulum (ER), is a pro-apoptotic Bcl-2 homology domain 3 (BH3)-only protein. Here, we show that the expression of BNIP1 induced not only a highly interconnected ER network but also mitochondrial fragmentation in a BH3 domain-dependent manner. Functional analysis demonstrated that BNIP1 expression increased dynamin-related protein 1 (Drp1) expression followed by the mitochondrial translocation of Drp1 and subsequent mitochondrial fission. Both BNIP1-induced mitochondrial fission and the translocation of Drp1 were abrogated by Bcl-2 overexpression. These results collectively indicate that ER-specific BNIP1 plays an important role in mitochondrial dynamics by modulating the mitochondrial fission protein Drp1 in a BH3 domain-dependent fashion.  相似文献   

8.
Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) is a mitochondrial pro-apoptotic protein that has a single Bcl-2 homology 3 (BH3) domain and a COOH-terminal transmembrane (TM) domain. Al-though it belongs to the Bcl-2 family and can hetero-dimerize with Bcl-2, its pro-apoptotic activity is distinct from those of other members of the Bcl-2 family. For example, cell death mediated by BNIP3 is independent of caspases and shows several characteristics of necrosis. Furthermore, the TM domain, but not the BH3 domain, is required for dimerization, mitochondrial targeting and pro-apoptotic activity. BNIP3 plays an important role in hypoxia-induced death of normal and malignant cells. Its expression is markedly increased in the hypoxic regions of some solid tumors and appears to be regulated by hypoxia-inducible fac-tor (HIF), which binds to a site on the BNIP3 promoter. Silencing, followed by methylation, of the BNIP3 gene occurs in a significant proportion of can-cer cases, especially in pancreatic cancers. BNIP3 also has a role in the death of cardiac myocytes in ischemia. Further studies of BNIP3 should provide insight into hypoxic cell death and may contribute to im-proved treatment of cancers and cardiovascular diseases.  相似文献   

9.
Inhibition of prosurvival BCL2 family members can induce autophagy, but the mechanism is controversial. We have provided genetic evidence that BCL2 family members block autophagy by inhibiting BAX and BAK1, but others have proposed they instead inhibit BECN1. Here we confirm that small molecule BH3 mimetics can induce BAX- and BAK1-independent MAP1LC3B/LC3B lipidation, but this only occurred at concentrations far greater than required to induce apoptosis and dissociate canonical BH3 domain-containing proteins that bind more tightly than BECN1. Because high concentrations of a less-active enantiomer of ABT-263 also induced BAX- and BAK1-independent LC3B lipidation, induction of this marker of autophagy appears to be an off-target effect. Indeed, robust autophagic flux was not induced by BH3 mimetic compounds in the absence of BAX and BAK1. Therefore at concentrations that are on target and achievable in vivo, BH3 mimetics only induce autophagy in a BAX- and BAK1-dependent manner.  相似文献   

10.
BNIP3 (formerly NIP3) is a pro-apoptotic, mitochondrial protein classified in the Bcl-2 family based on limited sequence homology to the Bcl-2 homology 3 (BH3) domain and COOH-terminal transmembrane (TM) domain. BNIP3 expressed in yeast and mammalian cells interacts with survival promoting proteins Bcl-2, Bcl-X(L), and CED-9. Typically, the BH3 domain of pro-apoptotic Bcl-2 homologues mediates Bcl-2/Bcl-X(L) heterodimerization and confers pro-apoptotic activity. Deletion mapping of BNIP3 excluded its BH3-like domain and identified the NH(2) terminus (residues 1-49) and TM domain as critical for Bcl-2 heterodimerization, and either region was sufficient for Bcl-X(L) interaction. Additionally, the removal of the BH3-like domain in BNIP3 did not diminish its killing activity. The TM domain of BNIP3 is critical for homodimerization, pro-apoptotic function, and mitochondrial targeting. Several TM domain mutants were found to disrupt SDS-resistant BNIP3 homodimerization but did not interfere with its killing activity or mitochondrial localization. Substitution of the BNIP3 TM domain with that of cytochrome b(5) directed protein expression to nonmitochondrial sites and still promoted apoptosis and heterodimerization with Bcl-2 and Bcl-X(L). We propose that BNIP3 represents a subfamily of Bcl-2-related proteins that functions without a typical BH3 domain to regulate apoptosis from both mitochondrial and nonmitochondrial sites by selective Bcl-2/Bcl-X(L) interactions.  相似文献   

11.
Since their discovery nearly 25 years ago, the BCL-2 family members BNIP3 and BNIP3L (aka Nix) have been labelled ‘atypical’. Originally, this was because BNIP3 and Nix have divergent BH3 domains compared to other BCL-2 proteins. In addition, this atypical BH3 domain is dispensable for inducing cell death, which is also unusual for a ‘death gene’. Instead, BNIP3 and Nix utilize a transmembrane domain, which allows for dimerization and insertion into and through organelle membranes to elicit cell death. Much has been learned regarding the biological function of these two atypical death genes, including their role in metabolic stress, where BNIP3 is responsive to hypoxia, while Nix responds variably to hypoxia and is also down-stream of PKC signaling and lipotoxic stress. Interestingly, both BNIP3 and Nix respond to signals related to cell atrophy. In addition, our current view of regulated cell death has expanded to include forms of necrosis such as necroptosis, pyroptosis, ferroptosis, and permeability transition-mediated cell death where BNIP3 and Nix have been shown to play context- and cell-type specific roles. Perhaps the most intriguing discoveries in recent years are the results demonstrating roles for BNIP3 and Nix outside of the purview of death genes, such as regulation of proliferation, differentiation/maturation, mitochondrial dynamics, macro- and selective-autophagy. We provide a historical and unbiased overview of these ‘death genes’, including new information related to alternative splicing and post-translational modification. In addition, we propose to redefine these two atypical members of the BCL-2 family as versatile regulators of cell fate.  相似文献   

12.
BH3 mimetics are small molecules designed or discovered to mimic the binding of BH3-only proteins to the hydrophobic groove of antiapoptotic BCL2 proteins. The selectivity of these molecules for BCL2, BCL-X(L), or MCL1 has been established in vitro; whether they inhibit these proteins in cells has not been rigorously investigated. In this study, we used a panel of leukemia cell lines to assess the ability of seven putative BH3 mimetics to inhibit antiapoptotic proteins in a cell-based system. We show that ABT-737 is the only BH3 mimetic that inhibits BCL2 as assessed by displacement of BAD and BIM from BCL2. The other six BH3 mimetics activate the endoplasmic reticulum stress response inducing ATF4, ATF3, and NOXA, which can then bind to and inhibit MCL1. In most cancer cells, inhibition of one antiapoptotic protein does not acutely induce apoptosis. However, by combining two BH3 mimetics, one that inhibits BCL2 and one that induces NOXA, apoptosis is induced within 6 h in a BAX/BAK-dependent manner. Because MCL1 is a major mechanism of resistance to ABT-737, these results suggest a novel strategy to overcome this resistance. Our findings highlight a novel signaling pathway through which many BH3 mimetics inhibit MCL1 and suggest the potential use of these agents as adjuvants in combination with various chemotherapy strategies.  相似文献   

13.
Melanoma drug resistance is often attributed to abrogation of the intrinsic apoptosis pathway. Targeting regulators of apoptosis is thus considered a promising approach to sensitizing melanomas to treatment. The development of small‐molecule inhibitors that mimic natural antagonists of either antiapoptotic members of the BCL‐2 family or the inhibitor of apoptosis proteins (IAPs), known as BH3‐ or SMAC‐mimetics, respectively, are helping us to understand the mechanisms behind apoptotic resistance. Studies using BH3‐mimetics indicate that the antiapoptotic BCL‐2 protein MCL‐1 and its antagonist NOXA are particularly important regulators of BCL‐2 family signaling, while SMAC‐mimetic studies show that both XIAP and the cIAPs must be targeted to effectively induce apoptosis of cancer cells. Although most solid tumors, including melanoma, are insensitive to these mimetic drugs as single agents, combinations with other therapeutics have yielded promising results, and tests combining them with BRAF‐inhibitors, which have already revolutionized melanoma treatment, are a clear priority.  相似文献   

14.
The B cell lymphoma 2 (BCL2) proteins are a family of evolutionarily related proteins that act as positive or negative regulators of the intrinsic apoptosis pathway. Overexpression of anti-apoptotic BCL2 proteins in cells is associated with apoptotic resistance, which can result in cancerous phenotypes and pathogenic cell survival. Consequently, anti-apoptotic BCL2 proteins have attracted considerable interest as therapeutic targets. We recently reported the development of a novel class of synthetic protein based on scyllatoxin (ScTx) designed to mimic the helical BH3 interaction domain of the pro-apoptotic BCL2 protein Bax. These studies showed that the number and position of native disulfide linkages contained within the ScTx-Bax structure significantly influences the ability for these constructs to target anti-apoptotic BCL2 proteins in vitro. The goal of the present study is to investigate the contribution of two disulfide linkages in the folding and biological activity of ScTx-Bax proteins. Here, we report the full chemical synthesis of three ScTx-Bax sequence variants, each presenting two native disulfide linkages at different positions within the folded structure. It was observed that two disulfide linkages were sufficient to fold ScTx-Bax proteins into native-like architectures reminiscent of wild-type ScTx. Furthermore, we show that select (bis)disulfide ScTx-Bax variants can target Bcl-2 (proper) in vitro and that the position of the disulfide bonds significantly influences binding affinity. Despite exhibiting only modest binding to Bcl-2, the successful synthesis of ScTx-Bax proteins containing two disulfide linkages represents a viable route to ScTx-based BH3 domain mimetics that preserve native-like conformations. Finally, structural models of ScTx-Bax proteins in complex with Bcl-2 indicate that these helical mimetics bind in similar configurations as wild-type Bax BH3 domains. Taken together, these results suggest that ScTx-Bax proteins may serve as potent lead compounds that expand the repertoire of “druggable” protein–protein interactions.  相似文献   

15.
BNIP1, a member of the BH3-only protein family, was first discovered as one of the proteins that are capable of interacting with the antiapoptotic adenovirus E1B 19-kDa protein. Here we disclose a totally unexpected finding that BNIP1 is a component of the complex comprising syntaxin 18, an endoplasmic reticulum (ER)-located soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE). Functional analysis revealed that BNIP1 participates in the formation of the ER network structure, but not in membrane trafficking between the ER and Golgi. Notably, a highly conserved leucine residue in the BH3 domain of BNIP1 plays an important role not only in the induction of apoptosis but also in the binding of alpha-SNAP, an adaptor that serves as a link between the chaperone ATPase NSF and SNAREs. This predicts that alpha-SNAP may suppress apoptosis by competing with antiapoptotic proteins for the BH3 domain of BNIP1. Indeed, overexpression of alpha-SNAP markedly delayed staurosporine-induced apoptosis. Our results shed light on possible crosstalk between apparently independent cellular events, apoptosis and ER membrane fusion.  相似文献   

16.
This report studied the identification and sequence of a full-length cDNA for the bovine BCL2 antiapoptotic family member, BCL2-related protein A1 (BCL2A1), and its localized and quantitative expression in the placenta to clarify the regulatory mechanism of trophoblast cell proliferation and differentiation during implantation and placental development. We cloned a full-length bovine BCL2A1 cDNA with 725 nucleotides and an open-reading frame corresponding to a protein of 175 amino acids. The predicted amino acid sequence shared 78% homology with human BCL2A1. All BCL2 homology domains (BH1, BH2, BH3, and BH4) in bovine BCL2A1 were conserved as well as in other mammalian BCL2A1. In the placentomes, in situ hybridization demonstrated that the BCL2A1 was limited in binucleate cells expressing various pregnancy-specific molecules like placental lactogen. BCL2-associated X protein (BAX) was also expressed in binucleate cells. Quantitative real-time RT-PCR detection exhibited a high-level expression of BCL2A1 in the conceptus at Day 21 of gestation, and it was expressed and increased in the extraembryonic membrane, cotyledon, and intercotyledon from implantation to term. BAX expression intensity increased with progression of gestation and remained elevated in postpartum. Caspase-3 protein (CASP3) and mRNA (CASP3) were detected from late gestation to postpartum in placenta as well as in the results of TUNEL detection. We believe that the apoptosis of binucleate cells may be regulated by the balance of the BCL2A1 and BAX. BCL2A1 genes produced a BCL2A1 protein in the mammalian cell-expression system. This molecule is a new candidate for antiapoptotic maintenance of the binucleate cells that support placental functions throughout gestation in bovine.  相似文献   

17.
Members of the BCL2 family of proteins are key regulators of programmed cell death, acting either as apoptotic agonists or antagonists. Here we describe the solution structure of BID, presenting the structure of a proapoptotic BCL2 family member. An analysis of sequence/structure of BCL2 family members allows us to define a structural superfamily, which has implications for general mechanisms for regulating proapoptotic activity. It appears two criteria must be met for proapoptotic function within the BCL2 family: targeting of molecules to intracellular membranes, and exposure of the BH3 death domain. BID's activity is regulated by a Caspase 8-mediated cleavage event, exposing the BH3 domain and significantly changing the surface charge and hydrophobicity, resulting in a change of cellular localization.  相似文献   

18.
19.
In most cases, macroautophagy/autophagy serves to alleviate cellular stress and acts in a pro-survival manner. However, the effects of autophagy are highly contextual, and autophagic cell death (ACD) is emerging as an alternative paradigm of (stress- and drug-induced) cell demise. AT 101 ([-]-gossypol), a natural compound from cotton seeds, induces ACD in glioma cells as confirmed here by CRISPR/Cas9 knockout of ATG5 that partially, but significantly rescued cell survival following AT 101 treatment. Global proteomic analysis of AT 101-treated U87MG and U343 glioma cells revealed a robust decrease in mitochondrial protein clusters, whereas HMOX1 (heme oxygenase 1) was strongly upregulated. AT 101 rapidly triggered mitochondrial membrane depolarization, engulfment of mitochondria within autophagosomes and a significant reduction of mitochondrial mass and proteins that did not depend on the presence of BAX and BAK1. Conversely, AT 101-induced reduction of mitochondrial mass could be reversed by inhibiting autophagy with wortmannin, bafilomycin A1 and chloroquine. Silencing of HMOX1 and the mitophagy receptors BNIP3 (BCL2 interacting protein 3) and BNIP3L (BCL2 interacting protein 3 like) significantly attenuated AT 101-dependent mitophagy and cell death. Collectively, these data suggest that early mitochondrial dysfunction and HMOX1 overactivation synergize to trigger lethal mitophagy, which contributes to the cell killing effects of AT 101 in glioma cells.

Abbreviations: ACD, autophagic cell death; ACN, acetonitrile; AT 101, (-)-gossypol; BAF, bafilomycin A1; BAK1, BCL2-antagonist/killer 1; BAX, BCL2-associated X protein; BH3, BCL2 homology region 3; BNIP3, BCL2 interacting protein 3; BNIP3L, BCL2 interacting protein 3 like; BP, Biological Process; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; CC, Cellular Component; Con, control; CQ, chloroquine; CRISPR, clustered regularly interspaced short palindromic repeats; DMEM, Dulbecco’s Modified Eagle Medium; DTT, 1,4-dithiothreitol; EM, electron microscopy; ER, endoplasmatic reticulum; FACS, fluorescence-activated cell sorting; FBS, fetal bovine serum; FCCP, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GO, Gene Ontology; HAcO, acetic acid; HMOX1, heme oxygenase 1; DKO, double knockout; LC-MS/MS, liquid chromatography coupled to tandem mass spectrometry; LPL, lipoprotein lipase, MEFs, mouse embryonic fibroblasts; mPTP, mitochondrial permeability transition pore; MTG, MitoTracker Green FM; mt-mKeima, mito-mKeima; MT-ND1, mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1; PBS, phosphate-buffered saline; PE, phosphatidylethanolamine; PI, propidium iodide; PRKN, parkin RBR E3 ubiquitin protein ligase; SDS, sodium dodecyl sulfate; SQSTM1/p62, sequestome 1; STS, staurosporine; sgRNA, single guide RNA; SILAC, stable isotope labeling with amino acids in cell culture; TFA, trifluoroacetic acid, TMRM, tetramethylrhodamine methyl ester perchlorate; WM, wortmannin; WT, wild-type  相似文献   


20.
Intrinsically disordered regions in autophagy proteins   总被引:1,自引:0,他引:1  
Autophagy is an essential eukaryotic pathway required for cellular homeostasis. Numerous key autophagy effectors and regulators have been identified, but the mechanism by which they carry out their function in autophagy is not fully understood. Our rigorous bioinformatic analysis shows that the majority of key human autophagy proteins include intrinsically disordered regions (IDRs), which are sequences lacking stable secondary and tertiary structure; suggesting that IDRs play an important, yet hitherto uninvestigated, role in autophagy. Available crystal structures corroborate the absence of structure in some of these predicted IDRs. Regions of orthologs equivalent to the IDRs predicted in the human autophagy proteins are poorly conserved, indicating that these regions may have diverse functions in different homologs. We also show that IDRs predicted in human proteins contain several regions predicted to facilitate protein–protein interactions, and delineate the network of proteins that interact with each predicted IDR‐containing autophagy protein, suggesting that many of these interactions may involve IDRs. Lastly, we experimentally show that a BCL2 homology 3 domain (BH3D), within the key autophagy effector BECN1 is an IDR. This BH3D undergoes a dramatic conformational change from coil to α‐helix upon binding to BCL2s, with the C‐terminal half of this BH3D constituting a binding motif, which serves to anchor the interaction of the BH3D to BCL2s. The information presented here will help inform future in‐depth investigations of the biological role and mechanism of IDRs in autophagy proteins. Proteins 2014; 82:565–578. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号