首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombination sites in the HLA class II region are haplotype dependent   总被引:3,自引:0,他引:3  
We have analyzed DNA sequence polymorphisms of DQ alpha and DQ beta chains from three haplotypes from the DRw52 family: DR5 DQw1 (FPA, GM3106), DRw6 DQw1 (CB6B, 10w9060), and DRw6 DQw3 (AMALA, 10w9064). The results indicate that the DR5 DQw1 and DRw6 DQw1 haplotypes have arisen by recombination between the DR beta 1 and DQ alpha loci. This contrasts with our previous analysis of DR4 DQ"Wa", DR3 DQ"Wa", and DR7 DQw3 haplotypes, all of which appear to have arisen by virtue of recombination between DQ alpha and DQ beta. Thus, there appear to be at least two different sites where recombination has occurred within the DR and DQ subregions. These differing patterns of recombination were interpreted in the context of the three major family groups of class II haplotypes, the DRw53, DRw52, and DR1/2 haplotype families. The data indicate that haplotypes from these family groups tend to undergo recombination at different locations. We propose that these differences in site of recombination are a reflection of differences in the molecular organization of the haplotypes belonging to each family group.  相似文献   

2.
The association of the class II genes of the DRw10 haplotype from a cell line, NASC, initiated from a member of a well characterized family, was analyzed by sequencing cDNA clones corresponding to DR beta I, DQ alpha, and DQ beta genes. An identical haplotype was also identified in the Raji cell line. In addition to typing as DRw10 and DQw1 with HLA typing sera both, the NASC and Raji cell lines were shown to react strongly with the monoclonal antibodies 109d6 (specific for DRw10 beta 1 and DRw53 beta 2 gene products) and Genox 3.5.3 (specific for DQw1) and exhibited the restriction fragment length polymorphism indicative of a DRw10, DQw1 haplotype. The DR beta 1 gene corresponding to the DRw10 specificity was found to have a first domain sequence different from all other DR beta I genes. Sequence analysis of the 3'-untranslated region of this DR beta-chain gene showed a significant divergence from the 3' untranslated region of the DRw53 family of haplotypes and a lesser divergence from that of the DRw52 and DR1/DR2 families. The sequence of the DQ beta genes corresponding to the DQw1 specificity in the DRw10 haplotype was found to be identical to the DQ beta gene from a DR1, DQw1 haplotype. Surprisingly, however, the DQ alpha gene did not resemble other DQw1-like DQ alpha genes, but was identical in sequence to the DQ alpha gene found in DR4 haplotypes. The novel association of DQ alpha and DQ beta genes in the DRw10 haplotype revealed in these studies may result from a double recombinational event. More consequentially, these studies strongly suggest that the DQw1 specificity recognized by Genox 3.5.3 is determined by the DQ beta chain and is not affected by the DQ alpha-chain.  相似文献   

3.
The restriction fragment length polymorphisms have been determined for six restriction enzymes (Bam HI, Bg1 II, Eco RI, Hinc II, Hind III, and Pvu II) and a DQ beta probe on 25 cell lines that are homozygous by consanguinuity at the MHC. These patterns reflect both DR haplotypes and DQ types of the cells tested. At least one non-polymorphic band is present in all the cell lines with every restriction enzyme except Hinc II. This band most probably represents DX beta hybridization. The polymorphic bands indicate that more polymorphism exists in the DQ subregion than is predicted serologically. Each DR haplotype is associated with a unique set of restriction fragments except for DR2 and DR6. The patterns are largely consistent within each DR haplotype. In addition, some bands reflect the established DQ specificities DQw1 and DQw2. Individual bands can be identified that are unique to the haplotypes DR1, DR4, DR5, and DR6 and the DQw1- and DQw2-associated haplotypes. Subdivisions of haplotypes can be identified with this probe. In particular, MVL (DR1), Akiba (DR2), QBL (DR3), FPF (DR5), and APD (DR6) have polymorphisms that distinguish them from other members of their DR haplotype.  相似文献   

4.
Bgl II restriction endonuclease digestion of genomic DNA from lymphoblastoid cell lines homozygous for HLA DR and DQ serological specificities, followed by hybridization with a DQ alpha cDNA probe, identified a genomic polymorphism characterized by two reciprocal patterns, one associated with DR 3, 5 and 8 and the other with DR 1, 2, 4, 7, and 9. The former pattern corresponded precisely to the reactivity of monoclonal antibody SFR20-DQ alpha 5, shown by Western blotting to react with isolated alpha-chains, but not with beta-chains. Additional variants of the DQ alpha genes were identified by using a locus-specific oligonucleotide probe for the DQ alpha gene, indicating differences among the DQ alpha 5-negative set of alleles. This analysis defines a set of DQ alpha allelic markers that are distinct from the well-established DQ serologic specificities DQw1, 2, 3 or "blank." Although most DQ alpha 5+ cells carry the DRw52 specificity associated with the DR beta 2 gene, analysis of DQ alpha polymorphisms on DR5, DQw1; DR8, DQw1; and DRw13, DQw1 cells verified that this DQ alpha family of alleles was not invariably linked to the DR beta 2 locus.  相似文献   

5.
We studied the polymorphisms of HLA-DR and HLA-DQ products from HLA-DRw13 haplotypes by analyzing the restriction of influenza A-specific cloned T cells from an HLA-DRw13,DQw1,Dw19 homozygous individual. The results show that (1) some functional epitopes, which can be borne by either HLA-DR or HLA-DQ molecules, are strictly correlated with the HLA-Dw19 subtype of HLA-DRw13. This clearly indicates that both HLA-DR and HLA-DQ products contribute to the HLA-Dw19 subdivision of HLA-DRw13. (2) At least two different restricting epitopes are borne by DR products: one is correlated with the HLA-DRwl3 serologically defined specificity, which includes Dw19 and Dw18 haplotypes; the other is correlated with the only HLA-Dw19 subtype of HLA-DRwl3. (3) Restricting epitopes borne by DQ molecules have been found on Dw19 cells only. (4) DQ-restricted clones were unable to react with DQwl APC of any other haplotypes tested, including DR1, DR2-long, DR2-short, and DRw14, demonstrating a high degree of functional polymorphism among the serologically defined DQw1 specificities.Abbreviations used in this paper: APC antigen-presenting cells - cpm count per minute - HAU hemagglutinin units - IL-2 interleukin 2 - MHC major histocompatibility complex - mAb monoclonal antibody - PBM peripheral blood mononuclear cells - PHA phytohemagglutinin - pl isoelectric point - PMA phorbol myristic acetate - SD standard deviation  相似文献   

6.
Two major DR7 haplotypes have been defined on the basis of serologic typing: those that type as DQw2 and others that type as DQw3. In order to define the molecular basis for these serologic differences we have isolated and sequenced DQ alpha, DR beta I, and DQ beta cDNA clones from both representative haplotypes. These studies reveal that although the DQ alpha and DR beta I genes of both haplotypes are identical, the DQ beta genes are very different. These data suggest that the serologic differences of these two DR7 haplotypes are the result of a recombinational event that occurred between the DQ alpha and DQ beta genes. In addition, they emphasize the role of DQ recombination in generating "hybrid" HLA-DQ heterodimers.  相似文献   

7.
Among cells that bear the serologically defined Ia alloantigen DR7, four T cell-defined HLA-D specificities have been described: Dw7, Dw17, Dw11, and Dw7L. Ia molecules expressed by cells homozygous for these specificities have been compared by using immunofluorescence and two-dimensional gel electrophoresis in order to identify the DR and DQ polymorphisms among the family of DR7-associated HLA-D specificities. Cells homozygous for each of the four HLA-D specificities have in common one DR molecule that is indistinguishable by these methods. Two DR-specific monoclonal antibodies, IIIE3 and 109d6, detect a second distinct DR molecule on Dw7, Dw17, and Dw7L cells. This second DR molecule is also very similar from cells of the three specificities. In contrast, a second DR molecule was not detected on four Dw11 homozygous cells. Therefore, these data raise the possibility that all DR homozygous cells do not express the same number of DR molecules. The DQ molecules expressed by DQw2-positive Dw7, Dw17, and Dw7L cells are also very similar, whereas DQw3-positive Dw11 DQ molecules are structurally different. Therefore, no DR or DQ structural polymorphisms were detected to correlate with the Dw7, Dw17, and Dw7L T cell-defined Ia polymorphisms.  相似文献   

8.
The HLA-D region is composed of three subregions termed DR, DQ, and DP. We previously reported the sequence of a DR5 beta I and two DR5 beta III cDNA from the DR5 cell line Swei. We now report on the nucleotide and deduced amino acid sequence of the DQ alpha and DQ beta cDNA from the same DR5 cell line, which also types as DQw3. Comparison with other available DQ sequences indicates that DQ alpha has one region of major variability, whereas DQ beta appears to have four regions of variability. In addition, these comparisons indicate that DQw3 alpha from DR5 is different from DQw3 alpha from DR4, but identical to DQw2 alpha from DR3. In contrast, DQw3 beta from DR5 is very similar to DQw3 beta from DR4. These data indicate that at least for DQw2 and DQw3 it is the DQ beta chain that is responsible for DQ typing. Most sequence differences in DQ alleles can be attributed to point mutations; however, codon additions/deletions in the DQ alpha chain may contribute to variability. In addition, regions of possible gene conversion in the DQ alpha and DQ beta chains is suggested by the presence of a chi-like sequence in each chain. Finally, comparison of available haplotypes suggest recombination events may take place between DQ beta and DQ alpha, between DQ alpha and DR beta I, and between DR beta I and DR beta III.  相似文献   

9.
The polymorphism of HLA class II molecules in man is particularly evident when comparisons between population groups are made. This study describes a DR3 haplotype commonly present in the American black population. Unlike the Northern European population in which almost all DR3 individuals are DQw2, approximately 50% of DR3-positive American blacks express a serologically undefined DQ allelic product. DNA restriction fragment analysis with the use of several unrelated individuals and an informative family has allowed us to identify unique DQ alpha- and beta-fragments associated with the DR3, DQw- haplotype. Based on fragment size, the DQ alpha genes of the DR3, DQw- and DRw8, DQw- haplotypes are similar as are the DQ beta genes of DR3, DQw-; DRw8, DQw-; and DR4, DQw- haplotypes. In addition, a DX beta gene polymorphism has been identified which is associated with some DR3 haplotypes including the American black DR3, DQw- haplotype. cDNA sequence analysis has revealed a DQw2-like alpha gene and a DQ beta gene which is similar to that previously described for a DR4, DQw- haplotype. It is postulated that recombination between DQ alpha and DQ beta genes and between the DQ and DX subregions has generated the various DR3 haplotypes and has played an important role in creating diversity in the HLA-D region.  相似文献   

10.
We have compared the sequence polymorphism of HLA class II genes of two distinct DRw6 haplotypes. cDNA libraries were constructed from two lymphoblastoid cell lines: CB6B (10w9060) which types as DRw13 DQw1, and AMALA (10w9064) which types as DRw14 DQw3. Multiple sequence differences were found at the DR beta I, DQ alpha, and DQ beta loci when these two haplotypes were compared. The DR beta I allele found in the DRw14 DQw3 haplotype appears to have diverged primarily as a result of a gene conversion event with a DR1 allele acting as donor. In contrast, the DRw13 DQw1 haplotype appears to have arisen by means of a recombination event between the DR and DQ subregions. Thus, multiple genetic mechanisms, including point mutation, gene conversion, and recombination, have generated diversity among DRw6 haplotypes.  相似文献   

11.
We have analyzed genomic DNA in a large number of independent examples of five HLA-DQw2-bearing extended haplotypes for their associated subtypes by restriction fragment length polymorphism (RFLP) using DRB, DQA, and DQB probes after Taq I and Pst I digestion and Southern blotting. In addition to three previously described HLA-DQw2 subtypes, DQw2a, DQw2b, and DQw2c, we observed a fourth subtype, HLA-DQw2d, characterized by 5.8 kilobase (kb) DRB/Taq I, 2.4, 2.3, and 1.8 kb DQB/Taq I, and 8.0 and 2.3 kb DQA/Pst I fragments. All 22 independent examples of the extended haplotype [HLA-B8,SCO1,DR3] carried DQw2a and all 11 independent examples of [HLA-B18,F1C30,DR3] carried DQw2b. In addition, all independent examples (21 and 4, respectively) of two DR7-carrying extended haplotypes, [HLA-B44,FC31,DR7] and [HLA-Bw47,FC91,0,DR7], carried DQw2c and all independent examples of [HLA-Bw57,SC61,DR7] carried DQw2d. Our results show that the DNA in the DR/DQ region of extended haplotypes is relatively fixed and that different DQw2 subtypes characterize different DQw2-bearing extended haplotypes.  相似文献   

12.
Human genomic DNA samples from Melanesians, Micronesians, and Caucasoids of known HLA-DR type were examined with cDNA probes for HLA-DR alpha, -DR beta, -DQ alpha, and -DQ beta chain genes. DR beta hybridizations with TaqI-digested DNA did not detect any new DR specificities in the Pacific. However, within the DR5 specificity a common DNA subtype was found in Pacific Islanders that was not seen in Caucasoids. Altogether, four DNA subtypes of DR5 are described. With the DQ alpha and DQ beta probes, significantly more variation could be demonstrated between populations. For example, DR2 was associated with a DQ beta TaqI pattern in the Pacific that was very rare in Caucasoids and additional RFLP analysis with other enzymes showed that this pattern is probably associated with the Dw12 subtype of DR2. DRw8-positive samples showed two different DQ alpha TaqI patterns, and these correlated with DQw1 and DQw3 specificities. DR alpha hybridizations with BglII-digested DNA also revealed different linkage relationships of the HLA-class II region genes between Pacific and Caucasoid specimens. The different population linkage disequilibrium relationships have permitted tentative assignment of TaqI fragments to either the DR beta 1 or DR beta 2 genes and are highly suggestive that the DQw1 specificity is encoded by the DQ alpha chain gene. This study shows the value of population comparisons in contributing to knowledge of the genetic organization of the genome.  相似文献   

13.
HLA-DQ molecules were isolated from a panel of HLA-DR-DQ homozygous cell lines, partially of consanguineous origin, derived by the use of monoclonal antibody SPV-L3, and subsequently analyzed by gel electrophoretic techniques. It is demonstrated that both the DQ alpha and beta chain exhibit an extensive isoelectric point polymorphism. Within a panel of 29 B-cell lines tested, at least 5 distinct alpha and 6 distinct DQ beta chain gene products were observed. Of the 30 theoretically possible DQ alpha-beta dimers, only 10 could be identified within the panel: 5 different dimers are associated with the DQw1 allospecificity; HLA-DQw2 and -DQw3 are associated with 2 types of dimers, whereas another DQ alpha-beta combination was expressed by a cell line with a so-called DQ-blank specificity. The relation between the specificities 2B3 and TA10 appeared to be complicated as far as DQ beta chain isoelectric point differences are concerned: monoclonal antibody IIB3 seems to be reactive with four distinct DQ beta chain alleles whereas monoclonal antibody TA10 only reacted with one type of DQ beta chain. These results suggest that the polymorphic DQ alpha and beta chains may both contribute to the definition of the HLA-DQ allospecificity. A particular DQ beta chain was present in two types of HLA-DQw1 molecules, as well as in one type of HLA-DQw2 and -DQw3 (2133 positive) molecule, and formed dimers with electrophoretic distinct DQ alpha chains. On the other hand, HLA-DQw2 molecules isolated from HLA-DR3-positive cells and one type of HLA-DQw3 (TA10 positive) molecule were found to be constructed of identical alpha chains but appeared to differ in the composition of their DQ beta chain gene products. The implications of these findings will be discussed.  相似文献   

14.
Expressible HLA class II alpha- and beta-chain cDNA were used for DNA-mediated gene transfer to produce L cell transfectants expressing single types of human class II molecules. Cloned transfectants expressing nine different class II molecules were isolated: DR alpha: DR1 beta I, DR alpha: DR4 beta I, DR alpha: DR5 beta I, DR alpha: DR5 beta III (DRw52), DR alpha: DR7 beta I, DR alpha: DR4/7 beta IV (DRw53), DQ7 alpha: DQw2 beta, DQ7 alpha: DQw3 beta, and DPw4 alpha: DPw4 beta. These class II-expressing transfectants were used to analyze by flow cytometry the molecular specificities of 20 anti-class II mAb. These analyes indicate that some mAb are more broadly reactive than was previously thought based on immunochemical studies. In contrast, the narrow molecular specificities of other anti-class II mAb were confirmed by this approach. Transfectants expressing human class II molecules should be valuable reagents for studies of B cell and T cell defined epitopes on these molecules.  相似文献   

15.
Analysis of DR beta and DQ beta chain cDNA clones from a DR7 haplotype   总被引:3,自引:0,他引:3  
A cDNA library was constructed from a DR7, DRw53, DQw2 homozygous cell line, cDNA clones corresponding to DR beta and DQ beta chains were isolated, and the nucleotide sequences of the polymorphic first domains of these chains were determined. A novel screening strategy allowed rapid and simple identification of cDNA clones corresponding to both DR beta chains (DR7 beta1 and DR7 beta2): DR7 beta2 clones have a recognition site for the enzyme BssHII, whereas DR7 beta1 clones do not. The DR7 beta 1 sequence differs significantly from all previously described DR beta chains. As predicted by the presence of the BssHII site in DR7 beta 2 clones, the DR7 beta 2 sequence differs from the DR7 beta 1 sequence. The sequence of the DRw53-associated DR7 beta 2 chain is identical to the reported sequence of the DRw53-associated DR4 beta 2 chain. In addition, the sequence of the DQ beta chain from the DR7, DQw2 cell line is identical to the reported sequence of a DQ beta chain from a DR3, DQw2 cell. These findings raise interesting questions about the evolution of the DR3, DR4, and DR7 haplotypes.  相似文献   

16.
Biochemistry of HLA-DRw6: evidence for seven distinct haplotypes   总被引:2,自引:0,他引:2  
The DRw6 specificity, which has a frequency of 11% in the Caucasian population, cannot be positively defined, since no monospecific allo-antiserum is available. This particular status among DR specificities led us to study the DRw6 haplotypes at the molecular level. We performed 2D-PAGE analysis of HLA-DR molecules in 44 different DRw6 haplotypes. The data were obtained from six homozygous typing cells, eight families informative for the segregation of the DRw6 haplotype, and 15 unrelated donors. Five unique beta-chain electrophoretic patterns were detected, indicating the existence of five structurally distinct DRw6 beta-chains. Each haplotype expresses one or two beta-chains. The different combinations of the DR beta-chains present in a single haplotype allow to characterize seven unique DRw6 haplotypes. In contrast to what has been previously found for DR2 and DR4, there is no DR beta-chain common to all the DRw6 cells. Correlation of the biochemical data with the recent serologic (DRw13 vs DRw14) and cellular (Dw9, Dw18, Dw19) splits of the DRw6 specificity will be discussed.  相似文献   

17.
A cDNA library was constructed from a homozygous B lymphoblastoid cell line (REM) obtained from an individual of a long isolated American Indian tribe, the Warao. The REM cell line expresses serologically defined determinants, DR2 and DQw3, and the T lymphocyte-defined (Dw/LD) specificity, LD-5a. T cells can recognize differences between FJO (a DR2/DQw1 cell line that expresses the Dw specificity MN2) and REM for both DR and DQ molecules. cNDA clones encoding the polymorphic DR beta 1-, DR beta 2-, DQ beta-, and DQ alpha-chains were sequenced and compared with other DR and DQ gene sequences. The DR beta 1-sequence of REM is identical to the DR beta 1-sequence of FJO; the DR beta 2-sequence is also identical to that of FJO except for one amino acid difference at position 67 in the polymorphic first domain (Leu in REM, Phe in FJO) due to a single point mutation. The DQ beta-sequence is identical to that of DR4/DQw3 haplotype; the DQ alpha is different from the DQ alpha of DR4/DQw3 haplotype and identical to the DQ alpha of both the DR3/DQw2 haplotype of a Raji cell line and the DR5/DQw3 haplotype in deduced amino acid sequence. Taken together, these findings suggest that: 1) a single amino acid difference (position 67) in the third hypervariable region of the first domain of the DR beta 2-chain in the DR2 haplotype is apparently sufficient for stimulating T cell responses; 2) the DQw3 serologic specificity may be defined mainly by the DQ beta-rather than DQ alpha-chain; and 3) multiple genetic events have probably occurred to generate the rarely found REM (DR2/LD-5a/DQw3) haplotype.  相似文献   

18.
On chromosome 6, in the HLA region, the DQ subregion is located immediately centromeric to the DR subregion. Even though only three serological specificities to date have been officially recognized (DQwl, DQw2, and DQw3), it seems likely that the phenotypical polymorphism expressed by DQ molecules is much more complex. There are reasons to believe that fixed alpha-beta combinations exist, each of them associated with a different DR allele. DQw1 is a determinant present on DQ molecules that are found associated with DRI-, DR2-, and DRw6-positive haplotypes. By restriction fragment length polymorphism analysis, we recognized three allelic DQ-alpha and three allelic DQ-beta patterns associated with DQw1 . In addition, one of these alpha/beta pairs associated with DR1, two with DR2, and a fourth with DRw6. We have obtained evidence using nucleotide sequencing that there are as many allelic forms of DQ-alpha and DQ-beta genes as there are different molecular DQ-alpha and DQ-beta patterns. The DQ-alpha and DQ-beta chains of DQwl-positive molecules each are encoded by at least three distinctly different allelic genes, and particular alpha/beta gene combinations are associated with the same DR alleles as their corresponding molecular alpha/beta pairs.  相似文献   

19.
Two hundred and thirty Russian Moscovities (108 healthy individuals and 122 cadaver kidney donors) were typed for antigens HLA-DR1-DRw10, HLA-DRw52-DRw53, and HLA-DQw1 and DQw3. HLA-DR1, 2, 3, 4, 5 and 7 were investigated in all individuals, the other having been only studied in portions of the material. The HLA class 2 antigens' polymorphism in Russian population has been shown to have features common to all Caucasians. Most widely distributed antigen is DR2 (phenotype frequency is 36%). Antigens DRw8, DR9 and DRw10 are rare. DR allele distribution demonstrated perfect fits to Hardy--Weinberg expectations. Antigens DR5 and DR4 are considered most difficult to define at early stage of the study.  相似文献   

20.
Fc gamma receptor-dependent mononuclear phagocyte system (MPS) clearance of opsonized erythrocytes is prolonged in healthy adults with the class II alloantigens HLA-DR2, DR3, or DQw1, despite normal receptor-specific Fc ligand binding by monocytes in these groups. To investigate the basis for the MPS dysfunction, we determined the phagocytic capacity of blood monocytes from 66 disease-free adults and analyzed the data according to the HLA type of the subjects. The data demonstrate decreased phagocytosis of IgG-sensitized erythrocytes (EA) by monocytes from HLA-DR2, DR3, or DQw1-positive subjects compared with normals without these B cell alloantigens (2.87 +/- 0.83 erythrocytes/monocyte vs 3.87 +/- 1.05, p less than 0.004; 3.01 +/- 0.94 vs 3.87 +/- 1.05, p less than 0.02; 3.18 +/- 0.89 vs 3.87 +/- 1.05, p less than 0.02, respectively). Because HLA-DR2 and DQw1 are in linkage disequilibrium, we compared EA phagocytosis in subjects with DQw1 alone to normals without HLA-DR2, DR3, or DQw1. Among subjects positive only for DQw1, no significant decrease in phagocytosis could be seen (3.46 +/- 0.95 vs 3.87 +/- 1.05, p = NS). To determine whether these differences represented an Fc receptor-specific dysfunction or a more generalized decrease in phagocytic activity, we compared the quantitative phagocytosis of EA with that of neuraminidase-treated erythrocytes (EN), which is Fc receptor independent and beta-glucan receptor mediated. No segregation of phagocytic capacity for EN by HLA class II phenotypes could be demonstrated (DR2, 2.68 +/- 1.30 erythrocytes/monocyte; DR3, 2.95 +/- 1.30; DQw1, 2.84 +/- 1.15; others, 3.06 +/- 1.14). Our data indicate that the decrease in phagocytosis by blood monocytes from normal individuals with HLA-DR2 or DR3, the class II alloantigens associated with systemic lupus erythematosus and other autoimmune diseases, is specific for the Fc receptor-mediated process. This alteration of Fc receptor function among immunogenetically defined individuals may contribute to their predisposition to autoimmune disease. These differences may also apply to other Fc receptor-initiated cellular functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号