首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a degenerate RT-PCR-based screening method, we isolated the homeobox gene, Gbx1, from the shank skin of 13-day-old chick embryos. By in situ hybridization analysis we showed that the Gbx1 was expressed in the epidermis of the skin and the mucous epithelium of the intestine, and that among many homeobox genes isolated, expression of the Gbx1 strongly increased in the epidermis when the skin was cultured with 20 microM retinol, which induces epidermal mucous metaplasia. The Gbx1 expression in the epidermis was increased by interaction with the retinol-pretreated dermal fibroblasts, resulting in mucous metaplasia. These results suggest that the Gbx1 regulates the differentiation and transdifferentiation of the epithelium and controls the morphology of the epithelium. We isolated the chick Gbx1 cDNA clones. The amino acid sequences in homeodomain and its downstream encoded by human and chick Gbx1 cDNA were almost the same, but those upstream of the homeodomain were rather different.  相似文献   

2.
Excess retinoids can cause developing mouse vibrissa follicles to be transformed into mucous glands in organ culture. The objective was to test the hypothesis that retinoids act in this system by altering morphogenetic properties of the dermis. After inititation by retinoic acid (RA) in organ culture, glands were shown to develop further in embryonic skin grafted to the chick chorioallantoic membrane (CAM). Recombinants of 12.5 day mouse epidermis with untreated or RA-treated mouse or chick dermis were then grafted to CAM for 7 days. For homospecific recombinants, 13.5 day mouse dermis originated from 11.5 day skin cultured for 2 days, with or without 5.2 microgram/ml RA. For heterospecific recombinants, 12 day dermis came from chick embryos, previously injected with 250 microgram RA. Glands were absent from the homospecific recombinants including untreated mouse dermis, but appeared in 26% of those with RA-treated dermis. Among heterospecific recombinants, 75% of those with RA-treated chick dermis and 29% of those with untreated dermis had glands. Untreated 10-12 day chick skin contained two forms of endogenous vitamin A, retinol (4.5 microgram/g protein) and dehydroretinol (3.7 microgram/g protein), while 13-14 day mouse skin contained only retinol (1.8 microgram/g protein), as shown by high performance liquid chromatography. RA injection increased retinol and dehydroretinol in chick skin, while RA was undetectable. Thus RA can act through mouse dermis to form epithelial glands and through chick dermis to increase the incidence of glands. The glands in recombinants with untreated chick dermis may result from the higher levels of endogenous retinoids in chick skin, compared with mouse skin.  相似文献   

3.
Epidermal mucous metaplasia of cultured skin is known to be induced by excess retinol. Studies were made on whether retinol affects primarily the epidermis or the dermis during retinol-induced epidermal mucous metaplasia of 13-day-old chick embryonic skin in culture. When recombinants of 13-day-old normal epidermis and retinol-treated dermis were cultured for 7 days in chemically defined medium in the absence of retinol, hormones, and serum, they showed altered epidermal differentiation toward secretory epithelium (mucous metaplasia). Thus retinol acted primarily on dermal cells.  相似文献   

4.
Spermatogonia and sperm-like cells can be derived in vitro via the addition of RA (retinoic acid) to pluripotent ES and EG cells. At present, however, these cells have not been derived from unipotent cells. Here, we have generated premeiotic Stra8-positive cells from C2C12 myoblasts following treatment with 10 μM all-trans-RA for 8 days. The differentiated C2C12 cells exhibited spherical morphology similar to spermatogonia, and they expressed gene markers of premeiosis, meiosis and postmeiosis. In addition, some of the transdifferentiated Stra8-positive cells had a tail-like phenotype. Flow cytometry results indicated that up to 20% of RA-induced C2C12 cells were Stra8-positive. Mvh (mouse vasa homologue) protein, a germ cell-specific ATP-dependent RNA helicase and Prm1 (protamine 1) were detected in transdifferentiated cells. The DNA content in induced C2C12 cells showed that Stra8-positive cells were diploid, suggesting that the myoblast transdifferentiation was in the premeiotic stage of spermatogenesis. The derivation of Stra8-positive cells from C2C12 myoblasts has important implications for studying unipotent cell differentiation. Furthermore, C2C12 myoblasts may provide a useful in vitro cell model to study signal transduction and transdifferentiation during RA treatments.  相似文献   

5.
Epidermal mucous metaplasia of cultured 13-day-old chick embryonic tarsometatarsal skin can be induced by culture in medium containing excess retinol (20 μM) for only 8–24 h and then in a chemically defined medium with Bt2cAMP (0.2–2 mM) and without retinoids or serum for 2 days. In this work, stimulation of the adenylate cyclase-cAMP system in retinol-pretreated skin by forskolin, pertussis toxin, cholera toxin or AIF4 was found to accelerate the synthesis of epidermal sulfated glycoprotein (mucin). In skin induced toward mucous metaplasia by retinol, treatment with forskolin for 1 day increased the cAMP content 10-fold in the dermis but only 2-fold in the epidermis over the control levels. The cAMP level of Bt2cAMP (0.2 mM)-treated skin was 18 times higher in the dermis but rather lower in the epidermis than untreated skin. These results suggest the importance of an adenylate cyclase-cAMP system in the dermis of skin in stimulating mucous metaplasia induced by retinoids. In fact, cAMP-dependent protein phosphorylation was seen only in the dermis of retinol-pretreated skin after 2 h-treatment with cAMP. As no transfer of cAMP from the dermis to the epidermis of forskolin-treated skin was detected, there may be no gap junctional communication between the epidermis and the dermis, while the basement membrane becomes discontinuous during mucous metaplasia.  相似文献   

6.
In bird skin, nerve fibres develop in the dermis but do not enter the epidermis. In co-cultures of 7-day-old chick embryo dorsal root ganglia and epidermis, the neurites also avoid the epidermis. Previous studies have shown that chondroitin sulphate proteoglycans may be involved. Chondroitin sulphate has therefore been visualized by immunocytochemistry, using themonoclonal antibody CS-56, both in vivo and in vitro using light and electron microscopy. Its distribution was compared to those of 2 other chondroitin sulphate epitopes and to that of the growing nerve fibres. In cultures of epidermis from 7-day-old embryonic chicks, immunoreactivity is found uniformly around the epidermal cells while at 7.5 days the distribution in dermis is heterogeneous, and particularly marked in feather buds. In vivo, chondroitin sulphate immunoreactivity is detected in the epidermis, on the basal lamina, on the surfaces of fibroblasts and along collagen fibrils. This localization is complementary to the distribution of cutaneous nerves. Chondroitin sulphate in the basal lamina could prevent innervation of the epidermis and the dermal heterogeneities could partly explain the nerve fibres surrounding the base of the feathers. Chondroitin sulphate could therefore be important for neural guidance in developing chick skin.  相似文献   

7.
Epidermal mucous metaplasia of 13-day-old chick embryonic tarsometatarsal skin can be induced by culture in medium containing 20 μM retinol for only 8 hr and then in a chemically defined medium without retinol for 2 days. Retinol primarily affects the dermal cells, which then transform the epithelial cells into mucus-secreting cells. In this study, we developed a system using a combination of retinol-pretreated chick or quail dermal fibroblasts and chick skin, and showed that retinol-pretreated quail embryonic dermal fibroblasts invaded the dermis of chick embryonic skin to beneath the epidermal basal cells within 1 day of culture and induced metaplasia, suggesting that epidermal mucous metaplasia of the skin was induced by the direct interaction of retinol-pretreated dermal fibroblasts with the epidermal cells or by low diffusible paracrine factor produced by the fibroblasts.
Increase in retinoic acid receptor β (RARβ) mRNA in dermal fibroblasts was observed after 8 hr-treatment with retinol which preceded morphological changes induced by retinol and this increase was correlated with the competence of the dermal fibroblasts to induce epidermal mucous metaplasia. Thus some gene product(s) controlled by RARβ in dermal fibroblasts may be an essential signal for induction of epidermal mucous metaplasia.  相似文献   

8.
Hepatic stellate cells are the primary cell type responsible for matrix deposition in liver fibrosis, undergoing a process of transdifferentiation into fibrogenic myofibroblasts. These cells, which undergo a similar transdifferentiation process when cultured in vitro, are a major target of the profibrogenic agent transforming growth factor-beta (TGF-beta). We have studied activation of the TGF-beta downstream signaling molecules Smads 2, 3, and 4 in hepatic stellate cells (HSC) cultured in vitro for 1, 4, and 7 days, with quiescent, intermediate, and fully transdifferentiated phenotypes, respectively. Total levels of Smad4, common to multiple TGF-beta superfamily signaling pathways, do not change as HSC transdifferentiate, and the protein is found in both nucleus and cytoplasm, independent of treatment with TGF-beta or the nuclear export inhibitor leptomycin B. TGF-beta mediates activation of Smad2 primarily in early cultured cells and that of Smad3 primarily in transdifferentiated cells. The linker protein SARA, which is required for Smad2 signaling, disappears with transdifferentiation. Additionally, day 7 cells demonstrate constitutive phosphorylation and nuclear localization of Smad 2, which is not affected by pretreatment with TGF-beta-neutralizing antibodies, a type I TGF-beta receptor kinase inhibitor, or activin-neutralizing antibodies. These results demonstrate essential differences between TGF-beta-mediated signaling pathways in quiescent and in vitro transdifferentiated hepatic stellate cells.  相似文献   

9.
We have previously described bi-directional cross-talk between the retinoic acid (RA) and transforming growth factor beta (TGF-beta) signal transduction pathways in primary cultures of murine embryonic palate mesenchymal (MEPM) cells. In this paper we identify interactions between the TGF-beta1, cyclic adenosine 3', 5'-monophosphate (cAMP) and RA signaling systems. TGF-beta1 and forskolin, an activator of the cAMP pathway, inhibited RA-induced expression of RAR-beta mRNA in MEPM cells, though only TGF-beta1 inhibited RA-induced RAR-beta protein expression. Forskolin, but not TGF-beta1, abrogated RA-induced expression of a reporter construct containing 900 base pair (bp) of the RAR-beta gene promoter, transfected into MEPM cells, suggesting that this portion of the promoter contains the forskolin-responsive, but not the TGF-beta-responsive, element. Thus, a putative TGF-beta Inhibitory Element (TIE) adjacent to the retinoic acid response element (RARE) in the RAR-beta promoter is either non-functional, or requires promoter/enhancer elements not present in the promoter construct used in these experiments. These studies further clarify the complex interactions among signal transduction pathways in the regulation of retinoic acid receptor gene expression.  相似文献   

10.
Retinoic acid (RA) signalling is essential for epidermal differentiation; however, the mechanisms by which it acts are largely unexplored. Partitioning of RA between different nuclear receptors is regulated by RA-binding proteins. We show that cellular RA-binding proteins CRABP1 and CRABP2 and the fatty acid-binding protein FABP5 are dynamically expressed during skin development and in adult tissue. CRABP1 is expressed in embryonic dermis and in the stroma of skin tumours, but confined to the hair follicle dermal papilla in normal postnatal skin. CRABP2 and FABP5 are expressed in the differentiating cells of sebaceous gland, interfollicular epidermis and hair follicles, with FABP5 being a prominent marker of sebaceous glands and anagen follicle bulbs. All three proteins are upregulated in response to RA treatment or Notch activation and are negatively regulated by Wnt/β-catenin signalling. Ectopic follicles induced by β-catenin arise from areas of the sebaceous gland that have lost CRABP2 and FABP5; conversely, inhibition of hair follicle formation by N-terminally truncated Lef1 results in upregulation of CRABP2 and FABP5. Our findings demonstrate that there is dynamic regulation of RA signalling in different regions of the skin and provide evidence for interactions between the RA, β-catenin and Notch pathways.  相似文献   

11.
The microenvironment is thought to play a key role in the control of neural crest cell diversification. To investigate its role in melanocyte differentiation we mapped the temporal and spatial distribution of pigmented melanocytes in embryonic chick skin and determined, by experimental means, the route taken by migrating melanocytes in the skin. We show that the New Hampshire Red/Black Australorp crossbreed exhibits melanization from 5 days of incubation (2 1/2 days earlier than is reported in other breeds). Contrary to previous reports our findings show that melanization is at first predominantly dermal. Both dermal and epidermal melanocyte numbers increase until Day 8, whereafter there is a dramatic decline in dermal melanocytes and by Day 10, melanocytes are almost exclusively located in the epidermis. Using homeotypic and heterotypic combinations of white and red/black dermis and epidermis we have demonstrated that premelanocytes arrive in the dermis of the trunk by Day 3 and begin to move into the epidermis from Day 4 onward. Results from these grafts and from tritium labeling studies strongly suggest that there is little or no reverse migration of premelanocytes from epidermis to dermis. Our findings indicate that overt melanocyte differentiation is not dependent on location in an epidermal environment, and that melanogenesis does not signify the end-stage in the migration process. Further, they suggest that the early dermal mesenchyme plays a key role in controlling melanogenesis.  相似文献   

12.
In the epidermis of skin, a fine balance exists between proliferating progenitor cells and terminally differentiating cells. We examined the effects of TGF-beta s and retinoic acid (RA) on controlling this balance in normal and malignant human epidermal keratinocytes cultured under conditions where most morphological and biochemical features of epidermis in vivo are retained. Our results revealed marked and pleiotropic effects of both TGF-beta and RA on keratinocytes. In contrast to retinoids, TGF-beta s acted on mitotically active basal cells to retard cell proliferation. Although withdrawal from the cell cycle is a necessary prerequisite for commitment to terminal differentiation, TGF-beta s inhibited normal keratinization in suprabasal cells and promoted the type of differentiation commonly associated with wound-healing and epidermal hyperproliferation. The actions of TGF-beta s and RA on normal keratinization were synergistic, whereas those on abnormal differentiation associated with hyperproliferation were antagonistic. These observations underscore the notion that environmental changes can act separately on proliferating and differentiating cells within the population. Under the conditions used here, the action of TGF-beta s on human keratinocytes was dominant over RA, and TGF-beta s did not seem to be induced as a consequence of RA treatment. This finding is consistent with the fact that RA accelerated, rather than inhibited, proliferation in raft cultures. Collectively, our data suggest that the effects of both factors on epidermal growth and differentiation are multifaceted and the extent to which their action is coupled in keratinocytes may vary under different conditions and/or in different species.  相似文献   

13.
Hydrocortisone, at a physiological concentration of 10?8 M, induces keratinization of chick embryonic tarsometatarsal skin in a chemically defined medium in 4 days [1]. The presence of 1–4% DMSO with hydrocortisone reversibly prevented this keratinization. DMSO suppressed the appearance of epidermal structural protein, which was preferentially induced by hydrocortisone. It also suppressed hydrocortisone-induced epidermal transglutaminase activity; which was presumably responsible for polymerization and decrease in solubility of epidermal protein in keratinization, and it suppressed increase of epidermal protein. When DMSO was added to differentiated skin or added concomitantly with a higher concentration of hydrocortisone, epidermal transglutaminase activity was suppressed. Electron microscopic studies showed that hydrocortisone induced tonofilament bundles and keratinized cells with cellular envelopes, which are all characterestic of α-type keratinization of chick embryonic skin [2], and that DMSO inhibited hydrocortisone induced keratinization and kept the epidermis in an undifferentiated state. Moreover, DMSO inhibited epidermal DNA synthesis and increase in thickness of the epidermis during culture of hydrocortisone-treated skin, indicating that it suppressed cell proliferation as well as cell differentiation. DMSO by itself at 1 or 2 % did not affect epidermal cell differentiation, but suppressed cell proliferation when compared with untreated control.  相似文献   

14.
Hair induction in the adult glabrous epidermis by the embryonic dermis was compared with that by the adult dermis. Recombinant skin, composed of the adult sole epidermis and the embryonic dermis containing dermal condensations (DC), was transplanted onto the back of nude mice. The epidermis of transplants formed hairs. Histology on the induction process demonstrated the formation of placode-like tissues, indicating that the transplant produces hair follicles through a mechanism similar to that underlying hair follicle development in the embryonic skin. An isolated adult rat sole skin piece, inserted with either an aggregate of cultured dermal papilla (DP) cells or an intact DP between its epidermis and dermis, was similarly transplanted. The transplant produced hair follicles. Histology showed that the epidermis in both cases surrounded the aggregates of DP cells. The epidermis never formed placode-like tissues. Thus, it was concluded that the adult epidermal cells recapitulate the embryonic process of hair follicle development when exposed to DC, whereas they get directly into the anagen of the hair cycle when exposed to DP. The expression pattern of Edar and Shh genes, and P-cadherin protein during the hair follicle development in the two types of transplants supported the above conclusion.  相似文献   

15.
A number of homeobox genes have been found to be expressed in skin and its appendages, such as scale and feather, and appear to be candidates for the regulation of the development of these tissues. We report that the proline-rich divergent homeobox gene Hex is expressed during development of chick embryonic skin and its appendages (scale and feather). In situ hybridization analysis revealed that, during development of the skin, a transient expression of the Hex gene was observed. While the expression of Hex in the dermis was closely correlated with proliferation activity of epidermal basal cells, that in the epidermis was related to a suppression of epidermal differentiation. When dermal fibroblasts were transfected with Hex, stimulation of both DNA synthesis and proliferation of the epidermal cells followed by two-fold scale ridge elongation and increase in epidermal area was observed during culture of the skin, whereas epidemal keratinization was not affected. This is the first study to demonstrate that Hex is expressed during development of the skin and its appendages and that its expression in the dermal cells regulates epidermal cell proliferation through epithelial mesenchymal interaction.  相似文献   

16.
Keratinocytes have the ability to adhere to extracellular matrix rapidly. With this in mind, in this study we isolated keratinocytes known as rapidly adhering (RA) cells. To compare epidermal regenerative abilities, skin substitutes were reconstructed by adding keratinocytes or RA cells to two groups of bioengineered dermis made by fibroblasts and hair follicle dermal cells respectively. After transplantation, the results illustrated that the skin substitutes including RA cells were integrated into the host tissue. Furthermore, with hair follicle dermal cells' influences, the RA cells could form structures very similar to normal hair follicles. These results indicate that RA cells are predominately comprised of epidermal stem cells. The results also demonstrated that besides the reciprocal interaction of epidermal stem cells with dermal cells, the interaction of epidermal stem cells with keratinocytes were critical in epidermis morphogenesis and self-renewal, and application of RA cells could optimize engineering of skin substitutes.  相似文献   

17.
The corneal anterior epithelium of younger chick embryos can be changed into a keratinized epidermis, when it is cultured in vitro combined with 6 1/2-day dorsal dermis. Even if a Millipore filter is inserted between the corneal anterior epithelium and underlying dorsal dermis, the epithelium undergoes similar metaplastic changes. In older embryos, however, the epithelium gradually loses the competence for the keratinization. Cultivation of cornea (anterior epithelium, stroma and endothelium) of 6 1/2- or 10-day embryos results in maintenance of its original pattern, and the epithelium fails to differentiate into a keratinized epidermis. The dermis isolated from 8 1/2-day dorsal or 12 1/2-day tarsometatarsal skin is not so effective in inducing the epidermal metaplasia. The mesenchyme of 5 1/2-day proventriculus or 5 1/2-day gizzard fails to bring about any endodermal metaplasia of the corneal epithelium. The corneal stroma, on the other hand, has no inhibitory action on the keratinization of the epidermis obtained from 6 1/2-day dorsal skin.  相似文献   

18.
Feet of chicks are normally covered with scales. Injection of retinoic acid into the amniotic cavity of 10-day chick embryos causes the formation of feathers on the foot scales. To elucidate whether retinoic acid affects primarily the epidermis or the dermis, heterotypic dermal-epidermal recombinants of tarsometatarsal skin were tested as to their morphogenetic capacity, when grafted to the chick chorioallantoic membrane. Recombinants involving treated epidermis and untreated dermis formed feathered scales, while the reverse recombinants of untreated epidermis and treated dermis led to the formation of scales only. Likewise the association of treated tarsometatarsal dermis with untreated epidermis from a non-appendage-forming region (the midventral apterium) resulted in the formation of scales only. These results show that retinoic acid affects primarily the epidermis. Further insight into the mechanism of dermal-epidermal interaction was gained by heterotopic recombinations of early (8.5- and 10-day) untreated tarsometatarsal dermis with epidermis from the midventral apterium. These recombinants formed scales, proving that tarsometatarsal dermis is endowed with scale-forming properties as early as 8.5 days of incubation. Finally, it is concluded that retinoic acid acts on the chick foot epidermal cells by temporarily inhibiting their scale placode-forming properties, allowing their latent feather placode-forming properties to be expressed.  相似文献   

19.
Summary The effect of epidermal growth factor (EGF) on the basement membrane structure of chick embryonic skin cultured in a chemically defined medium (BGJb) containing 20 mM hydrocortisone, and EGF at 10, 50, or 100 ng/ml supplemented with 5% delipidized fetal calf serum, was examined by electron microscopy. During development of the epidermis in vitro, EGF (100 ng/ml) caused striking changes to occur in the basement membrane structure and in the keratinization process. The basement membrane frequently became discontinuous with many gaps apparent in section, and occasionally became folded following detachment from the basal surface of the epidermis and protruded into the underlying dermis. In the basal and intermediate cells of EGF-treated epidermis, tonofilament bundles were decreased in number, while desmosomes and hemidesmosomes revealed no significant changes in morphology.  相似文献   

20.
A morphological study of in vitro wound healing has been performed by light, transmission and scanning electron microscopy in dorsal thoraco-lumbar skin of 7-day chick embryos. A circular wound, 750 microns in diameter, was punched out of dorsal skin, removing epidermis and the underlying dense dermis. Wound closure was completed within 96 to 120 hours. Feather bud development was not observed at the wound site. The epidermis began to migrate some 24 h after the wounding; the migration of peridermal cells preceded that of basal epidermal cells by some 12 hours. Mechanisms of the epidermal migration were similar to those observed in situ during wound healing of the integument in 5-day chick embryos (THEVENET, 1981), Superficial epithelization of bare dermis occurred as soon as 12 h after the injury. Cytoplasm of dermal cells exhibited many microtubules and a dilated rough endoplasmic reticulum. During the first 48 h, the epidermal cells established direct contacts and zones of close parallel apposition with epithelized dermal cell processes. The basement membrane lamina densa was maintained at the edges of the wound without retraction or ruffling. It was reconstituted concomitantly with the epidermal migration within 72 h. Cytoplasm of migratory epidermal and epithelized dermal cells exhibited many cytoskeleton structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号