首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The behavior of biological systems is determined by the properties of their component molecules, but the interactions are usually too complex to understand fully how molecular behavior generates cellular behavior. Ca2+ signaling by inositol trisphosphate receptors (IP3R) offers an opportunity to understand this relationship because the cellular behavior is defined largely by Ca2+-mediated interactions between IP3R. Ca2+ released by a cluster of IP3R (giving a local Ca2+ puff) diffuses and ignites the behavior of neighboring clusters (to give repetitive global Ca2+ spikes). We use total internal reflection fluorescence microscopy of two mammalian cell lines to define the temporal relationships between Ca2+ puffs (interpuff intervals, IPI) and Ca2+ spikes (interspike intervals) evoked by flash photolysis of caged IP3. We find that IPI are much shorter than interspike intervals, that puff activity is stochastic with a recovery time that is much shorter than the refractory period of the cell, and that IPI are not periodic. We conclude that Ca2+ spikes do not arise from oscillatory dynamics of IP3R clusters, but that repetitive Ca2+ spiking with its longer timescales is an emergent property of the dynamics of the whole cluster array.  相似文献   

2.
Inositol (1,4,5)-trisphosphate (IP(3)) liberates intracellular Ca(2+) both as localized 'puffs' and as repetitive waves that encode information in a frequency-dependent manner. Using video-rate confocal imaging, together with photorelease of IP(3) in Xenopus oocytes, we investigated the roles of puffs in determining the periodicity of global Ca(2+) waves. Wave frequency is not delimited solely by cyclical recovery of the cell's ability to support wave propagation, but further involves sensitization of Ca(2+)-induced Ca(2+) release by progressive increases in puff frequency and amplitude at numerous sites during the interwave period, and accumulation of pacemaker Ca(2+), allowing a puff at a 'focal' site to trigger a subsequent wave. These specific 'focal' sites, distinguished by their higher sensitivity to IP(3) and close apposition to neighboring puff sites, preferentially entrain both the temporal frequency and spatial directionality of Ca(2+) waves. Although summation of activity from many stochastic puff sites promotes the generation of regularly periodic global Ca(2+) signals, the properties of individual Ca(2+) puffs control the kinetics of Ca(2+) spiking and the (higher) frequency of subcellular spikes in their local microdomain.  相似文献   

3.
Inositol (1,4,5)-trisphosphate receptors (IP(3)Rs) release intracellular Ca(2+) as localized Ca(2+) signals (Ca(2+) puffs) that represent the activity of small numbers of clustered IP(3)Rs spaced throughout the endoplasmic reticulum. Although much emphasis has been placed on estimating the number of active Ca(2+) release channels supporting Ca(2+) puffs, less attention has been placed on understanding the role of cluster microarchitecture. This is important as recent data underscores the dynamic nature of IP(3)R transitions between heterogeneous cellular architectures and the differential behavior of IP(3)Rs socialized into clusters. Here, we applied a high-resolution model incorporating stochastically gating IP(3)Rs within a three-dimensional cytoplasmic space to demonstrate: 1), Ca(2+) puffs are supported by a broad range of clustered IP(3)R microarchitectures; 2), cluster ultrastructure shapes Ca(2+) puff characteristics; and 3), loosely corralled IP(3)R clusters (>200 nm interchannel separation) fail to coordinate Ca(2+) puffs, owing to inefficient triggering and impaired coupling due to reduced Ca(2+)-induced Ca(2+) release microwave velocity (<10 nm/s) throughout the channel array. Dynamic microarchitectural considerations may therefore influence Ca(2+) puff occurrence/properties in intact cells, contrasting with a more minimal role for channel number over the same simulated conditions in shaping local Ca(2+) dynamics.  相似文献   

4.
It remains unclear how different intracellular stores could interact and be recruited by Ca(2+)-releasing messengers to generate agonist-specific Ca(2+) signatures. In addition, refilling of acidic stores such as lysosomes and secretory granules occurs through endocytosis, but this has never been investigated with regard to specific Ca(2+) signatures. In pancreatic acinar cells, acetylcholine (ACh), cholecystokinin (CCK), and the messengers cyclic ADP-ribose (cADPR), nicotinic acid adenine dinucleotide phosphate (NAADP), and inositol 1,4,5-trisphosphate (IP(3)) evoke repetitive local Ca(2+) spikes in the apical pole. Our work reveals that local Ca(2+) spikes evoked by different agonists all require interaction of acid Ca(2+) stores and the endoplasmic reticulum (ER), but in different proportions. CCK and ACh recruit Ca(2+) from lysosomes and from zymogen granules through different mechanisms; CCK uses NAADP and cADPR, respectively, and ACh uses Ca(2+) and IP(3), respectively. Here, we provide pharmacological evidence demonstrating that endocytosis is crucial for the generation of repetitive local Ca(2+) spikes evoked by the agonists and by NAADP and IP(3). We find that cADPR-evoked repetitive local Ca(2+) spikes are particularly dependent on the ER. We propose that multiple Ca(2+)-releasing messengers determine specific agonist-elicited Ca(2+) signatures by controlling the balance among different acidic Ca(2+) stores, endocytosis, and the ER.  相似文献   

5.
Puffs are local Ca(2+) signals that arise by Ca(2+) liberation from the endoplasmic reticulum through concerted opening of tightly clustered inositol trisphosphate receptor/channels (IP(3)R). They serve both local signaling functions and trigger global Ca(2+) waves. The numbers of functional IP(3)R within clusters differ appreciably between different puff sites, and we investigated how the probability of puff occurrence varies with cluster size. We imaged puffs in SH-SY5Y cells using total internal fluorescence microscopy, and estimated cluster sizes from the magnitude of the largest puff observed at each site relative to the signal from a single channel. We find that the initial triggering rate of puffs following photorelease of IP(3), and the average frequency of subsequent repetitive puffs, vary about linearly with cluster size. These data accord well with stochastic simulations in which opening of any individual IP(3)R channel within a cluster triggers a puff via Ca(2+)-induced Ca(2+) release. An important consequence is that the signaling power of a puff site (average amount of Ca(2+) released per puff × puff frequency) varies about the square of cluster size, implying that large clusters contribute disproportionately to cellular signaling and, because of their higher puff frequency, preferentially act as pacemakers to initiate Ca(2+) waves.  相似文献   

6.
Intracellular Ca(2+) release is controlled by inositol 1,4,5-trisphosphate (IP(3)) receptors or ryanodine receptors. These receptors are typically distributed in clusters with several or tens of channels. The random opening and closing of these channels introduces stochasticity into the elementary calcium release mechanism. Stochastic release events have been experimentally observed in a variety of cell types and have been termed sparks and puffs. We put forward a stochastic version of the Li-Rinzel model (the deactivation binding process is described by a Markovian scheme) and a computationally more efficient Langevin approach to model the stochastic Ca(2+) oscillation of single clusters. Statistical properties such as Ca(2+) puff amplitudes, lifetimes, and interpuff intervals are studied with both models and compared with experimental observations. For clusters with tens of channels, a simply decaying amplitude distribution is typically observed at low IP(3) concentration, while a single peak distribution appears at high IP(3) concentration.  相似文献   

7.
Many important cell functions are controlled by Ca(2+) release from intracellular stores via the inositol 1,4,5-trisphosphate receptor (IP(3)R), which requires both IP(3) and Ca(2+) for its activity. Due to the Ca(2+) requirement, the IP(3)R and the cytoplasmic Ca(2+) concentration form a positive feedback loop, which has been assumed to confer regenerativity on the IP(3)-induced Ca(2+) release and to play an important role in the generation of spatiotemporal patterns of Ca(2+) signals such as Ca(2+) waves and oscillations. Here we show that glutamate 2100 of rat type 1 IP(3)R (IP(3)R1) is a key residue for the Ca(2+) requirement. Substitution of this residue by aspartate (E2100D) results in a 10-fold decrease in the Ca(2+) sensitivity without other effects on the properties of the IP(3)R1. Agonist-induced Ca(2+) responses are greatly diminished in cells expressing the E2100D mutant IP(3)R1, particularly the rate of rise of initial Ca(2+) spike is markedly reduced and the subsequent Ca(2+) oscillations are abolished. These results demonstrate that the Ca(2+) sensitivity of the IP(3)R is functionally indispensable for the determination of Ca(2+) signaling patterns.  相似文献   

8.
J Marchant  N Callamaras    I Parker 《The EMBO journal》1999,18(19):5285-5299
Inositol (1,4,5)-trisphosphate (IP(3)) evokes Ca(2+) liberation in Xenopus oocytes as elementary events (Ca(2+) puffs) that become coupled to propagate Ca(2+) waves with increasing [IP(3)]. To investigate this transition between local and global Ca(2+) signaling, we developed an optical method for evoking rapid subcellular Ca(2+) elevations, while independently photoreleasing IP(3) and simultaneously recording confocal Ca(2+) images. Focal Ca(2+) elevations triggered waves within 100 ms of photoreleasing IP(3), compared with latencies of seconds following photorelease of IP(3) alone. Wave velocity varied with [IP(3)] but was independent of time after photorelease of IP(3), indicating that delayed wave initiation did not involve slow binding of IP(3) to its receptors. The amount of Ca(2+) required to trigger a wave was approximately 10-fold greater than the average size of puffs, and puffs showed no progressive increase in magnitude before waves initiated. Instead, Ca(2+) puffs contributed to a slow rise in basal free [Ca(2+)], which further increased puff frequency and sensitized IP(3) receptors so that individual events then triggered waves. Because the wave threshold is much greater than the size of the elementary puff, cells can employ both local and global signaling mechanisms, and the summation of stochastic behavior of elementary events allows generation of reproducible periodic waves.  相似文献   

9.
The mechanisms of agonist-induced Ca(2+) spikes have been investigated using a caged inositol 1,4,5-trisphosphate (IP(3)) and a low-affinity Ca(2+) indicator, BTC, in pancreatic acinar cells. Rapid photolysis of caged IP(3) was able to reproduce acetylcholine (ACh)-induced three forms of Ca(2+) spikes: local Ca(2+) spikes and submicromolar (<1 microM) and micromolar (1-15 microM) global Ca(2+) spikes (Ca(2+) waves). These observations indicate that subcellular gradients of IP(3) sensitivity underlie all forms of ACh-induced Ca(2+) spikes, and that the amplitude and extent of Ca(2+) spikes are determined by the concentration of IP(3). IP(3)-induced local Ca(2+) spikes exhibited similar time courses to those generated by ACh, supporting a role for Ca(2+)-induced Ca(2+) release in local Ca(2+) spikes. In contrast, IP(3)- induced global Ca(2+) spikes were consistently faster than those evoked with ACh at all concentrations of IP(3) and ACh, suggesting that production of IP(3) via phospholipase C was slow and limited the spread of the Ca(2+) spikes. Indeed, gradual photolysis of caged IP(3) reproduced ACh-induced slow Ca(2+) spikes. Thus, local and global Ca(2+) spikes involve distinct mechanisms, and the kinetics of global Ca(2+) spikes depends on that of IP(3) production particularly in those cells such as acinar cells where heterogeneity in IP(3) sensitivity plays critical role.  相似文献   

10.
IP3-mediated Ca(2+) release plays a fundamental role in many cell signaling processes and has been the subject of numerous modeling studies. Only recently has the important role that mitochondria play in the dynamics of intracellular Ca(2+) signaling begun to be considered in experimental work and in computational models. Mitochondria sequester large amounts of Ca(2+) and thus have a modulatory effect on intracellular Ca(2+) signaling, and mitochondrial uptake of Ca(2+), in turn, has a regulatory effect on mitochondrial function. Here we integrate a well-established model of IP3-mediated Ca(2+) signaling with a detailed model of mitochondrial Ca(2+) handling and metabolic function. The incorporation of mitochondria results in oscillations in a bistable formulation of the IP3 model, and increasing metabolic substrate decreases the frequency of these oscillations consistent with the literature. Ca(2+) spikes from the cytosol are communicated into mitochondria and are shown to induce realistic metabolic changes. The model has been formulated using a modular approach that is easy to modify and should serve as a useful basis for the investigation of questions regarding the interaction of these two systems.  相似文献   

11.
Hormones, such as glucagon and glucagon-like peptide-1, potently amplify nutrient stimulated insulin secretion by raising cAMP. We have studied how cAMP affects Ca(2+)-induced Ca(2+) release (CICR) in pancreatic beta-cells from mice and rats and the role of CICR in secretion. CICR was observed as pronounced Ca(2+) spikes on top of glucose- or depolarization-dependent rise of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)). cAMP-elevating agents strongly promoted CICR. This effect involved sensitization of the receptors underlying CICR, because many cells exhibited the characteristic Ca(2+) spiking at low or even in the absence of depolarization-dependent elevation of [Ca(2+)](i). The cAMP effect was mimicked by a specific activator of protein kinase A in cells unresponsive to activators of cAMP-regulated guanine nucleotide exchange factor. Ryanodine pretreatment, which abolishes CICR mediated by ryanodine receptors, did not prevent CICR. Moreover, a high concentration of caffeine, known to activate ryanodine receptors independently of Ca(2+), failed to mobilize intracellular Ca(2+). On the contrary, a high caffeine concentration abolished CICR by interfering with inositol 1,4,5-trisphosphate receptors (IP(3)Rs). Therefore, the cell-permeable IP(3)R antagonist 2-aminoethoxydiphenyl borate blocked the cAMP-promoted CICR. Individual CICR events in pancreatic beta-cells were followed by [Ca(2+)](i) spikes in neighboring human erythroleukemia cells, used to report secretory events in the beta-cells. The results indicate that protein kinase A-mediated promotion of CICR via IP(3)Rs is part of the mechanism by which cAMP amplifies insulin release.  相似文献   

12.
Calcium spikes established by IP(3) receptor-mediated Ca(2+) release from the endoplasmic reticulum (ER) are transmitted effectively to the mitochondria, utilizing local Ca(2+) interactions between closely associated subdomains of the ER and mitochondria. Since the outer mitochondrial membrane (OMM) has been thought to be freely permeable to Ca(2+), investigations have focused on IP(3)-driven Ca(2+) transport through the inner mitochondrial membrane (IMM). Here we demonstrate that selective permeabilization of the OMM by tcBid, a proapoptotic protein, results in an increase in the magnitude of the IP(3)-induced mitochondrial [Ca(2+)] signal. This effect of tcBid was due to promotion of activation of Ca(2+) uptake sites in the IMM and, in turn, to facilitation of mitochondrial Ca(2+) uptake. In contrast, tcBid failed to control the delivery of sustained and global Ca(2+) signals to the mitochondria. Thus, our data support a novel model that Ca(2+) permeability of the OMM at the ER- mitochondrial interface is an important determinant of local Ca(2+) signalling. Facilitation of Ca(2+) delivery to the mitochondria by tcBid may also support recruitment of mitochondria to the cell death machinery.  相似文献   

13.
Human neuroblastoma SH-SY5Y cells, predominantly expressing type 1 inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), were stably transfected with IP(3)R type 3 (IP(3)R3) cDNA. Immunocytochemistry experiments showed a homogeneous cytoplasmic distribution of type 3 IP(3)Rs in transfected and selected high expression cloned cells. Using confocal Ca(2+) imaging, carbachol (CCh)-induced Ca(2+) release signals were studied. Low CCh concentrations (< or = 750 nM) evoked baseline Ca(2+) oscillations. Transfected cells displayed a higher CCh responsiveness than control or cloned cells. Ca(2+) responses varied between fast, large Ca(2+) spikes and slow, small Ca(2+) humps, while in the clone only Ca(2+) humps were observed. Ca(2+) humps in the transfected cells were associated with a high expression level of IP(3)R3. At high CCh concentrations (10 microM) Ca(2+) transients in transfected and cloned cells were similar to those in control cells. In the clone exogenous IP(3)R3 lacked the C-terminal channel domain but IP(3)-binding capacity was preserved. Transfected cells mainly expressed intact type 3 IP(3)Rs but some protein degradation was also observed.We conclude that in transfected cells expression of functional type 3 IP(3)Rs causes an apparent higher affinity for IP(3). In the clone, the presence of degraded receptors leads to an efficient cellular IP(3) buffer and attenuated IP(3)-evoked Ca(2+) release.  相似文献   

14.
Xestospongin C (XeC) is known to bind to the inositol 1,4, 5-trisphosphate (IP(3))-sensitive store in mammalian cells and to inhibit IP(3)- and thapsigargin-induced Ca(2+) release. In this study we show that this is also true for Dictyostelium. In addition, XeC inhibited Ca(2+) uptake into purified vesicle fractions and induced Ca(2+) release. This suggests that, in the case of Dictyostelium, XeC opens rather than plugs the IP(3) receptor channel as was proposed for mammalian cells (Gafni, J., Munsch, J. A. , Lam, T. H., Catlin, M. C., Costa, L. G., Molinski, T. F., and Pessah, I. N. (1997) Neuron 19, 723-733). In order to elucidate the function of the XeC-sensitive Ca(2+) store in Dictyostelium during differentiation, we applied XeC to the cells and found that it caused a time-dependent increase of basal [Ca(2+)](i) and inhibited cAMP-induced Ca(2+) influx in single cells as well as in cell suspensions. Moreover, XeC blocked light scattering spikes and pulsatile cAMP signaling.  相似文献   

15.
Ca2+ liberation through inositol 1,4,5-trisphosphate receptor (IP3R) channels generates complex patterns of spatiotemporal cellular Ca2+ signals owing to the biphasic modulation of channel gating by Ca2+ itself. These processes have been extensively studied in Xenopus oocytes, where imaging studies have revealed local Ca2+ signals ("puffs") arising from clusters of IP3R, and patch-clamp studies on isolated oocyte nuclei have yielded extensive data on IP3R gating kinetics. To bridge these two levels of experimental data, we developed an IP3R model and applied stochastic simulation and transition matrix theory to predict the behavior of individual and clustered IP3R channels. The channel model consists of four identical, independent subunits, each of which has an IP3-binding site together with one activating and one inactivating Ca2+-binding site. The channel opens when at least three subunits undergo a conformational change to an "active" state after binding IP3 and Ca2+. The model successfully reproduces patch-clamp data; including the dependence of open probability, mean open duration, and mean closed duration on [IP3] and [Ca2+]. Notably, the biexponential distribution of open-time duration and the dependence of mean open time on [Ca2+] are explained by populations of openings involving either three or four active subunits. As a first step toward applying the single IP3R model to describe cellular responses, we then simulated measurements of puff latency after step increases of [IP3]. Assuming that stochastic opening of a single IP3R at basal cytosolic [Ca2+] and any given [IP3] has a high probability of rapidly triggering neighboring channels by calcium-induced calcium release to evoke a puff, optimal correspondence with experimental data of puff latencies after photorelease of IP3 was obtained when the cluster contained a total of 40-70 IP3Rs.  相似文献   

16.
We have studied the histamine-induced potentiation of inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release in HeLa cells. Intracellular IP(3) levels were increased by IP(3) dialysis with the whole-cell configuration of the patch-clamp technique (cell dialysis of IP(3)). Low concentrations of extracellular histamine (1 microM) accelerated the rate of IP(3)-mediated Ca(2+) release, an effect that required the coincidence of both histamine signalling and the increase in IP(3) levels. Our data suggest that the potentiation effect of histamine cannot be explained simply by agonist-induced increase in IP(3) levels. Disordering microfilaments with cytochalasin D and microtubules with colchicine caused a decrease in the histamine-induced Ca(2+) response. Furthermore, both cytochalasin D and colchicine diminished the rate of IP(3)-mediated Ca(2+) release, while only the former reduced slightly the histamine-induced potentiation effect. Remarkably, rapid inhibition of SERCA pumps with thapsigargin to avoid the depletion of internal Ca(2+) stores diminished the histamine-induced potentiation of IP(3)-mediated Ca(2+) release, without affecting the rate of IP(3)-mediated Ca(2+) release. These data indicate that histamine-induced potentiation of Ca(2+) release in HeLa cells requires active SERCA pumps and suggest that SERCA pumps are an important factor in determining the efficiency of agonist-induced Ca(2+) release.  相似文献   

17.
Shuai J  Rose HJ  Parker I 《Biophysical journal》2006,91(11):4033-4044
Calcium puffs are local Ca(2+) release events that arise from a cluster of inositol 1,4,5-trisphosphate receptor channels (IP(3)Rs) and serve as a basic "building block" from which global Ca(2+) waves are generated. Important questions remain as to the number of IP(3)Rs that open during a puff, their spatial distribution within a cluster, and how much Ca(2+) current flows through each channel. The recent discovery of "trigger" events-small Ca(2+) signals that immediately precede puffs and are interpreted to arise through opening of single IP(3)R channels-now provides a useful yardstick by which to calibrate the Ca(2+) flux underlying puffs. Here, we describe a deterministic numerical model to simulate puffs and trigger events. Based on confocal linescan imaging in Xenopus oocytes, we simulated Ca(2+) release in two sequential stages; representing the trigger by the opening of a single IP(3)R in the center of a cluster for 12 ms, followed by the concerted opening of some number of IP(3)Rs for 19 ms, representing the rising phase of the puff. The diffusion of Ca(2+) and Ca(2+)-bound indicator dye were modeled in a three-dimensional cytosolic volume in the presence of immobile and mobile Ca(2+) buffers, and were used to predict the observed fluorescence signal after blurring by the microscope point-spread function. Optimal correspondence with experimental measurements of puff spatial width and puff/trigger amplitude ratio was obtained assuming that puffs arise from the synchronous opening of 25-35 IP(3)Rs, each carrying a Ca(2+) current of approximately 0.4 pA, with the channels distributed through a cluster 300-800 nm in diameter.  相似文献   

18.
We isolated cDNAs encoding type 2 and type 3 inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)R2 and IP(3)R3, respectively) from mouse lung and found a novel alternative splicing segment, SI(m2), at 176-208 of IP(3)R2. The long form (IP(3)R2 SI(m2)(+)) was dominant, but the short form (IP(3)R2 SI(m2)(-)) was detected in all tissues examined. IP(3)R2 SI(m2)(-) has neither IP(3) binding activity nor Ca(2+) releasing activity. In addition to its reticular distribution, IP(3)R2 SI(m2)(+) is present in the form of clusters in the endoplasmic reticulum of resting COS-7 cells, and after ATP or Ca(2+) ionophore stimulation, most of the IP(3)R2 SI(m2)(+) is in clusters. IP(3)R3 is localized uniformly on the endoplasmic reticulum of resting cells and forms clusters after ATP or Ca(2+) ionophore stimulation. IP(3)R2 SI(m2)(-) does not form clusters in either resting or stimulated cells. IP(3) binding-deficient site-directed mutants of IP(3)R2 SI(m2)(+) and IP(3)R3 fail to form clusters, indicating that IP(3) binding is involved in the cluster formation by these isoforms. Coexpression of IP(3)R2 SI(m2)(-) prevents stimulus-induced IP(3)R clustering, suggesting that IP(3)R2 SI(m2)(-) functions as a negative coordinator of stimulus-induced IP(3)R clustering. Expression of IP(3)R2 SI(m2)(-) in CHO-K1 cells significantly reduced ATP-induced Ca(2+) entry, but not Ca(2+) release, suggesting that the novel splice variant of IP(3)R2 specifically influences the dynamics of the sustained phase of Ca(2+) signals.  相似文献   

19.
Although the role of secretory granules as the inositol 1,4,5-trisphosphate (IP(3))-sensitive intracellular Ca(2+) store and the presence of the IP(3) receptor (IP(3)R)/Ca(2+) channel on the secretory granule membrane have been established, the identity of the IP(3)R types present in the secretory granules is not known. We have therefore investigated the presence of different types of IP(3)R in the secretory granules of bovine adrenal medullary chromaffin cells using immunogold electron microscopy and found the existence of all three types of IP(3)R in the secretory granules. To determine whether these IP(3)Rs interact with CGA and CGB, each IP(3)R isoform was co-transfected with CGA or CGB into NIH3T3 or COS-7 cells, and the expressed IP(3)R isoform and CGA or CGB were co-immunoprecipitated. From these studies it was shown that all three types of IP(3)R form complexes with CGA and CGB in the cells. To further confirm whether the IP(3)R isoforms and CGA and CGB form a complex in the secretory granules the potential interaction between all three isoforms of IP(3)R and CGA and CGB was tested by co-immunoprecipitation experiments of the mixture of secretory granule lysates and the granule membrane proteins. The three isoforms of IP(3)R were shown to form complexes with CGA and CGB, indicating the complex formation between the three isoforms of IP(3)R and CGA and CGB in the secretory granules. Moreover, the pH-dependent Ca(2+) binding property of CGB was also studied using purified recombinant CGB, and it was shown that CGB bound 93 mol of Ca(2+)/mol with a dissociation constant (K(d)) of 1.5 mm at pH 5.5 but virtually no Ca(2+) at pH 7.5. The high capacity, low affinity Ca(2+)-binding property of CGB at pH 5.5 is comparable with that of CGA and is in line with its role as a Ca(2+) storage protein in the secretory granules.  相似文献   

20.
A robust mathematical model developed from single cell calcium (Ca(2+)) dynamics has enabled us to predict the consequences of over-expression of endoplasmic reticulum-located chaperones. Model predictions concluded that calreticulin interacts with the lumenal domain of the sarcoplasmic and endoplasmic reticulum Ca(2+)-activated ATPase (SERCA) pump, altering pump affinity for Ca(2+) (K(1/2) switches from 247 to 431 nM) and hence generating Ca(2+) oscillations. Expression of calreticulin in the ER generated an average of six transient-decline oscillations during the Ca(2+) recovery phase, upon exposure to maximal levels of the agonist ATP. In contrast, normal cells produced a single Ca(2+) transient with few or no oscillations. By conditioning the model to experimental data, parameters for generation and decay of IP(3) and SERCA pump kinetics were determined. To elucidate the possible source of the oscillatory behavior three possible oscillators, 1) IP(3), 2) IP(3)R, and 3) SERCA pump, were investigated and parameters constrained by experimental data to produce the best candidate. Each of the three oscillators generated very good fits with experimental data. However, converting a normal exponential recovery to a transient-decline oscillator predicted that the SERCA pump is the most likely candidate for calreticulin-mediated Ca(2+) release, highlighting the role of this chaperone as a signal protein within the endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号