首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
P Gao  YK Peterson  RA Smith  CD Smith 《PloS one》2012,7(9):e44543
Sphingosine kinases (SKs) are promising new therapeutic targets for cancer because they regulate the balance between pro-apoptotic ceramides and mitogenic sphingosine-1-phosphate. The functions of the two SK isoenzymes, SK1 and SK2, are not redundant, with genetic ablation of SK2 having more pronounced anticancer effects than removal of SK1. Although several small molecule inhibitors of SKs have been described in the literature, detailed characterization of their molecular and cellular pharmacology, particularly their activities against human SK1 and SK2, have not been completed. Computational modeling of the putative active sites of SK1 and SK2 suggests structural differences that might allow isozyme-selective inhibitors. Therefore, we characterized several SK-inhibitory compounds which revealed differential inhibitory effects on SK1 and SK2 as follows: SKI-II and ABC294735 are SK1/2-dual inhibitors; CB5468139 is a SK1-selective inhibitor; and ABC294640 is a SK2-selective inhibitor. We examined the effects of the SK inhibitors on several biochemical and phenotypic processes in A498 kidney adenocarcinoma cells. The SK2-selective inhibitor ABC294640 demonstrated the most pronounced effects on SK1 and SK2 mRNA expression, decrease of S1P levels, elevation of ceramide levels, cell cycle arrest, and inhibition of proliferation, migration and invasion. ABC294640 also down-regulated the expression or activation of several signaling proteins, including STAT3, AKT, ERK, p21, p53 and FAK. These effects were equivalent or superior to responses to the SK1/2-dual inhibitors. Overall, these results suggest that inhibition of SK2 results in stronger anticancer effects than does inhibition of SK1 or both SK1 and SK2.  相似文献   

2.
3.
Sphingosine-1-phosphate (S1P) is a bioactive lipid that signals through a family of five G-protein-coupled receptors, termed S1P(1-5). S1P stimulates growth and invasiveness of glioma cells, and high expression levels of the enzyme that forms S1P, sphingosine kinase-1, correlate with short survival of glioma patients. In this study we examined the mechanism of S1P stimulation of glioma cell proliferation and invasion by either overexpressing or knocking down, by RNA interference, S1P receptor expression in glioma cell lines. S1P(1), S1P(2) and S1P(3) all contribute positively to S1P-stimulated glioma cell proliferation, with S1P(1) being the major contributor. Stimulation of glioma cell proliferation by these receptors correlated with activation of ERK MAP kinase. S1P(5) blocks glioma cell proliferation, and inhibits ERK activation. S1P(1) and S1P(3) enhance glioma cell migration and invasion. S1P(2) inhibits migration through Rho activation, Rho kinase signaling and stress fiber formation, but unexpectedly, enhances glioma cell invasiveness by stimulating cell adhesion. S1P(2) also potently enhances expression of the matricellular protein CCN1/Cyr61, which has been implicated in tumor cell adhesion, and invasion as well as tumor angiogenesis. A neutralizing antibody to CCN1 blocked S1P(2)-stimulated glioma invasion. Thus, while S1P(2) decreases glioma cell motility, it may enhance invasion through induction of proteins that modulate glioma cell interaction with the extracellular matrix.  相似文献   

4.
Although several studies have shown that a subset of insulin-like growth factor (IGF) signals require the activation of heterotrimeric G proteins, the molecular mechanisms underlying IGF-stimulated G protein signaling remain poorly understood. Here, we have studied the mechanism by which endogenous IGF receptors activate the ERK1/2 mitogen-activated protein kinase cascade in HEK293 cells. In these cells, treatment with pertussis toxin and expression of a Galpha(q/11)-(305-359) peptide that inhibits G(q/11) signaling additively inhibited IGF-stimulated ERK1/2 activation, indicating that the signal was almost completely G protein-dependent. Treatment with IGF-1 or IGF-2 promoted translocation of green fluorescent protein (GFP)-tagged sphingosine kinase (SK) 1 from the cytosol to the plasma membrane, increased endogenous SK activity within 30 s of stimulation, and caused a statistically significant increase in intracellular and extracellular sphingosine 1-phosphate (S1P) concentration. Using a GFP-tagged S1P1 receptor as a biological sensor for the generation of physiologically relevant S1P levels, we found that IGF-1 and IGF-2 induced GFP-S1P receptor internalization and that the effect was blocked by pretreatment with the SK inhibitor, dimethylsphingosine. Treating cells with dimethylsphingosine, silencing SK1 expression by RNA interference, and blocking endogenous S1P receptors with the competitive antagonist VPC23019 all significantly inhibited IGF-stimulated ERK1/2 activation, suggesting that IGFs elicit G protein-dependent ERK1/2 activation by stimulating SK1-dependent transactivation of S1P receptors. Given the ubiquity of SK and S1P receptor expression, S1P receptor transactivation may represent a general mechanism for G protein-dependent signaling by non-G protein-coupled receptors.  相似文献   

5.
Two isoforms of sphingosine kinase, SK1 and SK2, catalyze the formation of the bioactive lipid sphingosine 1-phosphate (S1P) in mammalian cells. We have previously shown that treatment of androgen-sensitive LNCaP prostate cancer cells with a non-selective SK isoform inhibitor, 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole (SKi), induces the proteasomal degradation of SK1. This is concomitant with a significant increase in C22:0-ceramide and sphingosine levels and a reduction in S1P levels, resulting in the apoptosis of LNCaP cells. In contrast, we show here that a SK2-selective inhibitor, (R)-FTY720 methyl ether (ROME), increases sphingosine and decreases S1P levels but has no effect on ceramide levels and does not induce apoptosis in LNCaP cells. We also show that several glycolytic metabolites and (R)-S-lactoylglutathione are increased upon treatment of LNCaP cells with SKi, which induces the proteasomal degradation of c-Myc. These changes reflect an indirect antagonism of the Warburg effect. LNCaP cells also respond to SKi by diverting glucose 6-phosphate into the pentose phosphate pathway to provide NADPH, which serves as an antioxidant to counter an oxidative stress response. SKi also promotes the formation of a novel pro-apoptotic molecule called diadenosine 5′,5′′′-P1,P3-triphosphate (Ap3A), which binds to the tumor suppressor fragile histidine triad protein (FHIT). In contrast, the SK2-selective inhibitor, ROME, induces a reduction in some glycolytic metabolites and does not affect oxidative stress. We conclude that SK1 functions to increase the stability of c-Myc and suppresses Ap3A formation, which might maintain the Warburg effect and cell survival, while SK2 exhibits a non-overlapping function.  相似文献   

6.
The pro-fibrotic connective tissue growth factor (CTGF) has been linked to the development and progression of diabetic vascular and renal disease. We recently reported that low-density lipoproteins (LDL) induced expression of CTGF in aortic endothelial cells. However, the molecular mechanisms are not fully defined. Here, we have studied the mechanism by which LDL regulates CTGF expression in renal mesangial cells. In these cells, treatment with pertussis toxin abolished LDL-stimulated activation of ERK1/2 and c-Jun N-terminal kinase (JNK), indicating the involvement of heterotrimeric G proteins in LDL signaling. Treatment with LDL promoted activation and translocation of endogenous sphingosine kinase 1 (SK1) from the cytosol to the plasma membrane concomitant with production of sphingosine-1-phosphate (S1P). Pretreating cells with SK inhibitor, dimethylsphinogsine or down-regulation of SK1 and SK2 revealed that LDL-dependent activation of ERK1/2 and JNK is mediated by SK1. Using a green fluorescent protein-tagged S1P? receptor as a biological sensor for the generation of physiologically relevant S1P levels, we found that LDL induced S1P receptor activation. Pretreating cells with S1P?/S1P? receptor antagonist VPC23019 significantly inhibited activation of ERK1/2 and JNK by LDL, suggesting that LDL elicits G protein-dependent activation of ERK1/2 and JNK by stimulating SK1-dependent transactivation of S1P receptors. Furthermore, S1P stimulation induced expression of CTGF in a dose-dependent manner that was markedly inhibited by blocking the ERK1/2 and JNK signaling pathways. LDL-induced CTGF expression was pertussis toxin sensitive and inhibited by dimethylsphinogsine down-regulation of SK1 and VPC23019 treatment. Our data suggest that SK1-dependent S1P receptor transactivation is upstream of ERK1/2 and JNK and that all three steps are required for LDL-regulated expression of CTGF in mesangial cells.  相似文献   

7.
Epidermal growth factor (EGF) is a well-known growth factor that induces cancer cell migration and invasion. Previous studies have shown that SMAD ubiquitination regulatory factor 1 (SMURF1), an E3 ubiquitin ligase, regulates cell motility by inducing RhoA degradation. Therefore, we examined the role of SMURF1 in EGF-induced cell migration and invasion using MDA-MB-231 cells, a human breast cancer cell line. EGF increased SMURF1 expression at both the mRNA and protein levels. All ErbB family members were expressed in MDA-MB-231 cells and receptor tyrosine kinase inhibitors specific for the EGF receptor (EGFR) or ErbB2 blocked the EGF-mediated induction of SMURF1 expression. Within the signaling pathways examined, ERK1/2 and protein kinase C activity were required for EGF-induced SMURF1 expression. The overexpression of constitutively active MEK1 increased the SMURF1 to levels similar to those induced by EGF. SMURF1 induction by EGF treatment or by the overexpression of MEK1 or SMURF1 resulted in enhanced cell migration and invasion, whereas SMURF1 knockdown suppressed EGF- or MEK1-induced cell migration and invasion. EGF treatment or SMURF1 overexpression decreased the endogenous RhoA protein levels. The overexpression of constitutively active RhoA prevented EGF- or SMURF1-induced cell migration and invasion. These results suggest that EGFinduced SMURF1 plays a role in breast cancer cell migration and invasion through the downregulation of RhoA.  相似文献   

8.
Although sphingosine 1-phosphate (S1P) has been reported to play an important role in cancer pathophysiology, little is known about S1P and hepatocellular carcinoma (HCC). To clarify the relationship between S1P and HCC, 77 patients with HCC who underwent surgical treatment were consecutively enrolled in this study. In addition, S1P and its metabolites were quantitated by LC-MS/MS. The mRNA levels of sphingosine kinases (SKs), which phosphorylate sphingosine to generate S1P, were increased in HCC tissues compared with adjacent non-HCC tissues. Higher mRNA levels of SKs in HCC were associated with poorer differentiation and microvascular invasion, whereas a higher level of SK2 mRNA was a risk factor for intra- and extra-hepatic recurrence. S1P levels, however, were unexpectedly reduced in HCC compared with non-HCC tissues, and increased mRNA levels of S1P lyase (SPL), which degrades S1P, were observed in HCC compared with non-HCC tissues. Higher SPL mRNA levels in HCC were associated with poorer differentiation. Finally, in HCC cell lines, inhibition of the expression of SKs or SPL by siRNA led to reduced proliferation, invasion and migration, whereas overexpression of SKs or SPL enhanced proliferation. In conclusion, increased SK and SPL mRNA expression along with reduced S1P levels were more commonly observed in HCC tissues compared with adjacent non-HCC tissues and were associated with poor differentiation and early recurrence. SPL as well as SKs may be therapeutic targets for HCC treatment.  相似文献   

9.
Transforming growth factor beta (TGFbeta) plays a dual role in oncogenesis, acting as both a tumor suppressor and a tumor promoter. These disparate processes of suppression and promotion are mediated primarily by Smad and non-Smad signaling, respectively. A central issue in understanding the role of TGFbeta in the progression of epithelial cancers is the elucidation of the mechanisms underlying activation of non-Smad signaling cascades. Because the potent lipid mediator sphingosine-1-phosphate (S1P) has been shown to transactivate the TGFbeta receptor and activate Smad3, we examined its role in TGFbeta activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and promotion of migration and invasion of esophageal cancer cells. Both S1P and TGFbeta activate ERK1/2, but only TGFbeta activates Smad3. Both ligands promoted ERK1/2-dependent migration and invasion. Furthermore, TGFbeta rapidly increased S1P, which was required for TGFbeta-induced ERK1/2 activation, as well as migration and invasion, since downregulation of sphingosine kinases, the enzymes that produce S1P, inhibited these responses. Finally, our data demonstrate that TGFbeta activation of ERK1/2, as well as induction of migration and invasion, is mediated at least in part by ligation of the S1P receptor, S1PR2. Thus, these studies provide the first evidence that TGFbeta activation of sphingosine kinases and formation of S1P contribute to non-Smad signaling and could be important for progression of esophageal cancer.  相似文献   

10.
11.
In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities of matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKCα and PKCδ phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis.  相似文献   

12.
We investigated mechanisms for inhibition of B16 melanoma cell migration and invasion by sphingosine-1-phosphate (S1P), which is the ligand for the Edg family G protein-coupled receptors and also implicated as an intracellular second messenger. S1P, dihydro-S1P, and sphingosylphosphorylcholine inhibited B16 cell migration and invasion with the relative potencies expected as S1P2 receptor agonists. The S1P2-selective antagonist JTE013 completely abolished the responses to these agonists. In addition, JTE013 abrogated the inhibition by sphingosine, which is the S1P precursor but not an agonist for S1P receptors, indicating that the sphingosine effects were mediated via S1P2 stimulation, most likely by S1P that was converted from sphingosine. S1P induced inhibition and activation, respectively, of Rac and RhoA in B16 cells, which were abrogated by JTE013. Adenovirus-mediated expression of N17Rac mimicked S1P inhibition of migration, whereas C3 toxin pretreatment, but not Rho kinase inhibitors, reversed the S1P inhibition. Overexpression of S1P2 sensitized, and that of either S1P1 or S1P3 desensitized, B16 cells to S1P inhibition of Rac and migration. In JTE013-pretreated, S1P3-overexpressing B16 cells, S1P stimulated cellular RhoA but failed to inhibit either Rac or migration, indicating that RhoA stimulation itself is not sufficient for inhibition of migration. These results provide compelling evidence that endogenously expressed S1P2 negatively regulates cell motility and invasion through ligand-dependent reciprocal regulation of cellular Rac and RhoA activities. In the presence of JTE013, S1P instead stimulated Rac and migration in B16 cells that overexpress either S1P1 or S1P3, unveiling counteractions between S1P2 and S1P1 or S1P3 chemotactic receptor.  相似文献   

13.
Exosomes are cell-derived extracellular vesicles thought to promote intercellular communication by delivering specific content to target cells. The aim of this study was to determine whether endothelial cell (EC)-derived exosomes could regulate the phenotype of hepatic stellate cells (HSCs). Initial microarray studies showed that fibroblast growth factor 2 induced a 2.4-fold increase in mRNA levels of sphingosine kinase 1 (SK1). Exosomes derived from an SK1-overexpressing EC line increased HSC migration 3.2-fold. Migration was not conferred by the dominant negative SK1 exosome. Incubation of HSCs with exosomes was also associated with an 8.3-fold increase in phosphorylation of AKT and 2.5-fold increase in migration. Exosomes were found to express the matrix protein and integrin ligand fibronectin (FN) by Western blot analysis and transmission electron microscopy. Blockade of the FN-integrin interaction with a CD29 neutralizing antibody or the RGD peptide attenuated exosome-induced HSC AKT phosphorylation and migration. Inhibition of endocytosis with transfection of dynamin siRNA, the dominant negative dynamin GTPase construct Dyn2K44A, or the pharmacological inhibitor Dynasore significantly attenuated exosome-induced AKT phosphorylation. SK1 levels were increased in serum exosomes derived from mice with experimental liver fibrosis, and SK1 mRNA levels were up-regulated 2.5-fold in human liver cirrhosis patient samples. Finally, S1PR2 inhibition protected mice from CCl4-induced liver fibrosis. Therefore, EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-dependent exosome adherence and dynamin-dependent exosome internalization. These findings advance our understanding of EC/HSC cross-talk and identify exosomes as a potential target to attenuate pathobiology signals.  相似文献   

14.
Sphingosine kinase (SK) catalyzes the formation of sphingosine 1-phosphate (S1P), a lipid messenger that plays an important role in a variety of mammalian cell processes, including inhibition of apoptosis and stimulation of cell proliferation. Basal levels of S1P in cells are generally low but can increase rapidly when cells are exposed to various agonists through rapid and transient activation of SK activity. To date, elucidation of the exact signaling pathways affected by these elevated S1P levels has relied on the use of SK inhibitors that are known to have direct effects on other enzymes in the cell. Furthermore, these inhibitors block basal SK activity, which is thought to have a housekeeping function in the cell. To produce a specific inhibitor of SK activation we sought to generate a catalytically inactive, dominant-negative SK. This was accomplished by site-directed mutagenesis of Gly(82) to Asp of the human SK, a residue identified through sequence similarity to the putative catalytic domain of diacylglycerol kinase. This mutant had no detectable SK activity when expressed at high levels in HEK293T cells. Activation of endogenous SK activity by tumor necrosis factor-alpha (TNFalpha), interleukin-1beta, and phorbol esters in HEK293T cells was blocked by expression of this inactive sphingosine kinase (hSK(G82D)). Basal SK activity was unaffected by expression of hSK(G82D). Expression of hSK(G82D) had no effect on TNFalpha-induced activation of protein kinase C and sphingomyelinase activities. Thus, hSK(G82D) acts as a specific dominant-negative SK to block SK activation. This discovery provides a powerful tool for the elucidation of the exact signaling pathways affected by elevated S1P levels following SK activation. To this end we have employed the dominant-negative SK to demonstrate that TNFalpha activation of extracellular signal-regulated kinases 1 and 2 (ERK1,2) is dependent on SK activation.  相似文献   

15.
16.
Mitogen-activated protein kinases/Extracellular signal-regulated kinase (MAPK/ERK) pathway is essential for migration and invasion of malignant glioma. It is efficient to inhibit migration and invasion of glioma cells by targeting this pathway. Oleanolic acid (OA) has been well demonstrated to suppress survival, growth and angiogenesis of glioma cells. However, it is still unknown if OA affects the migration and invasion of glioma cells. We utilized U-87 MG glioma cell lines and primary glioma cells from patients to study the effect of OA on migration and invasion of glioma cells with multidisciplinary approaches. In this study, we found that OA significantly decreased the ability of glioma cells to migrate and invade. Epithelial-mesenchymal transition (EMT) of glioma cells was also suppressed by OA treatment. Furthermore, MAPK/ERK pathway was greatly inhibited in glioma cells under OA treatment. MAPK/ERK reactivation induced by a recombinant lentiviral vector, Lv-MEK, was able to rescue the inhibitory effect of OA on migration and invasion of glioma cells. Taken together, we provided evidences that OA was a MAPK/ERK pathway-targeting anti-tumor agent. Although the concentrations we used exceeded its physiological level, OA may be used to prevent migration and invasion of glioma cells by developing its derivatives with enhanced bioactivity.  相似文献   

17.
Actin cytoskeletal reorganization is essential for tumor cell migration, adhesion, and invasion. Cofilin and actin-depolymerizing factor (ADF) act as key regulators of actin cytoskeletal dynamics by stimulating depolymerization and severing of actin filaments. Cofilin/ADF are inactivated by phosphorylation of Ser-3 by LIM kinase-1 (LIMK1) and reactivated by dephosphorylation by Slingshot-1 (SSH1) and -2 (SSH2) protein phosphatases. In this study, we examined the roles of cofilin/ADF, LIMK1, and SSH1/SSH2 in tumor cell invasion, using an in vitro transcellular migration assay. In this assay, rat ascites hepatoma (MM1) cells were overlaid on a primary-cultured rat mesothelial cell monolayer and the number of cell foci that transmigrated underneath the monolayer in the presence of lysophosphatidic acid (LPA) was counted. The knockdown of cofilin/ADF, LIMK1, or SSH1/SSH2 expression by small interfering RNAs (siRNAs) significantly decreased the LPA-induced transcellular migration of MM1 cells and their motility in two-dimensional culture. Knockdown of LIMK1 also suppressed fibronectin-mediated cell attachment and focal adhesion formation. Our results suggest that both LIMK1-mediated phosphorylation and SSH1/SSH2-mediated dephosphorylation of cofilin/ADF are critical for the migration and invasion of tumor cells and that LIMK1 is involved in the transcellular migration of tumor cells by enhancing both adhesion and motility of the cells.  相似文献   

18.
Sphingosine-1-phosphate (S1P) is a bioactive lipid known to play a role in tumorigenesis and cancer progression. However, the molecular mechanisms of S1P regulated migration of papillary thyroid cancer cells are still unknown. In this study, we showed that S1P induced PTK6 mRNA and protein expression in two thyroid follicular cancer cell lines (ML-1 and FTC-133). Further studies demonstrated that induced PTK6 and its downstream signal component (ERK1/2) are involved in S1P-induced migration. Upon investigating the mechanisms behind this event, we found that miR-17 inhibited the expression of PTK6 through direct binding to its 3’-UTR. Through overexpression and knockdown studies, we found that miR-17 can significantly inhibit S1P-induced migration in thyroid follicular cancer cells. Interestingly, overexpression or knockdown of PTK6 or ERK1/2 effectively removed the inhibition of S1P-induced migration by miR-17. Furthermore, we showed that S1P decreased miR-17 expression levels. Meanwhile, in papillary thyroid cancers, miR-17 is downregulated and negatively associated with clinical staging, whereas PTK6 is upregulated and positively associated with clinical stages. Collectively, our work defines a novel signaling pathway implicated in the control of thyroid cancer migration.  相似文献   

19.
The aim of the present study was to specifically silence the rat ATP-binding cassette transporter G2 (rABCG2) gene in brain capillary endothelial cells by transfection of short interfering RNA (siRNA). Four different siRNAs designed to target rABCG2 were each transfected into HEK293 cells with myc-tagged rABCG2 cDNA. Quantitative real-time PCR and western blot analyses revealed that three of the siRNAs were able to reduce exogenous rABCG2 mRNA and protein levels in HEK293 cells. Moreover, rABCG2-mediated mitoxantrone efflux transport was suppressed by the introduction of these three siRNAs into HEK293 cells. In contrast, the other siRNA and non-specific control siRNA did not significantly affect the mRNA expression, the protein level or the transport activity. Endogenous rABCG2 mRNA and protein expression in a conditionally immortalized rat brain capillary endothelial cell line (TR-BBB13) was suppressed by the most potent siRNA among the four siRNAs tested. Furthermore, this siRNA did not affect the mRNA levels of other ABC transporters, such as ABCB1, ABCC1 and ABCG1, and the protein level of ABCB1 in TR-BBB13 cells, suggesting that it can selectively silence rABCG2 at the blood-brain barrier. This should be a useful and novel strategy for clarifying the contribution of rABCG2 to brain-to-blood transport of substrate drugs and endogenous compounds across the blood-brain barrier.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号