首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract Identification of aphid species is always difficult due to the shortage of easily distinguishable morphological characters. Aphid genus Toxoptera consists of species with similar morphology and similar to Aphis in most morphological characters except the stridulatory apparatus. DNA barcodes with 1 145 bp sequences of partial mitochondrial cytochrome‐coxidase I (COI) genes were used for accurate identification of Toxoptera. Results indicated mean intraspecific sequence divergences were 1.33%, whereas mean interspecific divergences were greater at 8.29% (0.13% and 7.79% if T. aurantii 3 and T. aurantii 4 are cryptic species). Sixteen samples were distinguished to four species correctly by COI barcodes, which implied that DNA barcoding was successful in discrimination of aphid species with similar morphology. Phylogenetic relationships among species of this genus were tested based on this portion of COI sequences. Four species of Toxoptera assembled a clade with low support in maximum‐parsimony (MP) analysis, maximum‐likelihood (ML) analysis and Bayesian phylogenetic trees, the genus Toxoptera was not monophyletic, and there were two sister groups, such as T. citricidus and T. victoriae, and two clades of T. aurantii which probably presented cryptic species in the genus.  相似文献   

2.
3.
A cladistic analysis of the lower Hymenoptera, including all the ‘symphytan’ families and the apocritan families Stephanidae, Megalyridae, Trigonalyidae, Ibaliidae, Vespidae and Gasteruptiidae, has been undertaken. A total of 98 characters were scored for 21 taxa. Twenty equally parsimonious minimum-length trees were obtained. The phylogenetic status of the Xyelidae is uncertain: they might be monophyletic. or the Xyelinae might be the sistergroup of the rest of the Hymenoptera. The non-xyelid Hymenoptera are probably monophyletic; the phylogeny Tenthredinoidea + (Megalodontoidea + (Cephidae + (Anaxyelidea + (Siricidae + (Xiphydriidae + (Orussidae + Apocrita)))))) is proposed for this clade. The Blasticotomidae are probably the sistergroup of all othe Tenthredinoidea, but tenthredinoid phylogeny is otherwise uncertain. Substantial homoplasy occurs within the ‘siricoid’ families, making the relative positions of the Anaxyelidae and Siricidae uncertain. The Stephanidae might be the sistergroup of the rest of the Apocrita; the phylogeny of the remaining apocritan taxa included is insufficiently elucidated. The phylogeny proposed here supports the hypothesis that the appearance of parasitism in the Hymenoptera took place in the common ancestor of Orussidae + Apocrita, the host of which was probably wood boring insect larvae. The exact larval mode of feeding of the ancestral hymenopteran cannot be determined due ot the diversity of lifestyles in the basal lineages of the order.  相似文献   

4.
Climatic oscillation often have influenced the present distribution and intraspecific genetic diversity Oecophylla smaragdina through its wide range of geographical distribution. Previous phylogeographic study of Asian weaver ant population denotes the evidence of distribution of Indian types in Indian, Sri Lanka and SE Asian types in South Asian countries including Bangladesh. However, recent phylogenetic analysis reveals the overlapping distribution of the Indian and South East Asian clades of O. smaragdina in Bangladesh. The present study aims to identify the haplotypes and it’s networking in Bangladesh based on extensive materials. Sampling was executed according to zonation of 5 areas, demarcated by 3 main rivers during the years 2013 to 2018. Adult O. smaragadina workers were collected from 71 colonies of 67 localities belonging to 47 districts of Bangladesh. A total of 25 haplotypes were identified in Bangladesh comprises 13 and 12 of Indian and SE Asian types, respectively from 93 sequences of Cytochrome c oxidase subunit I (COI) gene of 639 bp. The geographical distribution of this haplotype reveals that the Indian haplotypes are mostly located at the western part of Bangladesh while SE Asian haplotypes were dominated in the Eastern part of the country. Central part of Bangladesh has overlapped with the mixture of both Indian and SE Asian haplotypes. The results of the haplotype network give the evidence of recent expansion of O. smaragdina population in Bangladesh and clarify the evidence of presence of many missing haplotypes in refugee.  相似文献   

5.
Chalcidoidea (Hymenoptera) are extremely diverse with more than 23,000 species described and over 500,000 species estimated to exist. This is the first comprehensive phylogenetic analysis of the superfamily based on a molecular analysis of 18S and 28S ribosomal gene regions for 19 families, 72 subfamilies, 343 genera and 649 species. The 56 outgroups are comprised of Ceraphronoidea and most proctotrupomorph families, including Mymarommatidae. Data alignment and the impact of ambiguous regions are explored using a secondary structure analysis and automated (MAFFT) alignments of the core and pairing regions and regions of ambiguous alignment. Both likelihood and parsimony approaches are used to analyze the data. Overall there is no impact of alignment method, and few but substantial differences between likelihood and parsimony approaches. Monophyly of Chalcidoidea and a sister group relationship between Mymaridae and the remaining Chalcidoidea is strongly supported in all analyses. Either Mymarommatoidea or Diaprioidea are the sister group of Chalcidoidea depending on the analysis. Likelihood analyses place Rotoitidae as the sister group of the remaining Chalcidoidea after Mymaridae, whereas parsimony nests them within Chalcidoidea. Some traditional family groups are supported as monophyletic (Agaonidae, Eucharitidae, Encyrtidae, Eulophidae, Leucospidae, Mymaridae, Ormyridae, Signiphoridae, Tanaostigmatidae and Trichogrammatidae). Several other families are paraphyletic (Perilampidae) or polyphyletic (Aphelinidae, Chalcididae, Eupelmidae, Eurytomidae, Pteromalidae, Tetracampidae and Torymidae). Evolutionary scenarios discussed for Chalcidoidea include the evolution of phytophagy, egg parasitism, sternorrhynchan parasitism, hypermetamorphic development and heteronomy.  相似文献   

6.
Theory suggests that sympatric speciation is possible; however, its prevalence in nature remains unknown. Because Neodiprion sawflies are host specialists and mate on their hosts, sympatric speciation via host shifts may be common in this genus. Here, we test this hypothesis using near-complete taxonomic sampling of a species group, comprehensive geographical and ecological data, and multiple comparative methods. Host-use data suggest that host shifts contributed to the evolution of reproductive isolation in Neodiprion and previous work has shown that gene flow accompanied divergence. However, geographical data provide surprisingly little support for the hypothesis that host shifts occurred in sympatry. While these data do not rule out sympatric host race formation in Neodiprion, they suggest that this speciation mode is uncommon in the genus and possibly in nature.  相似文献   

7.
In the seminal vesicle of the 'symphyta'Arge pagana the spermatozoa are stored in motile spermatodesm bundles, maintained by an anterior cap of extracellular material. This cap consists of a denser cortex and of an internal matrix, where part of the sperm heads are embedded. The number of spermatozoa per bundle is variable. The spermatozoa are short, only 30microm long, with a head region of about 23microm, and a very short flagellum of about 7microm. The head includes the acrosome, with a perforatorium, and the nucleus. The flagellum consists of an axoneme, with a 9+9+2 microtubule pattern, a centriolar adjunct, two mitochondrial derivatives and two accessory bodies. The mitochondrial derivatives are very slender and of different lengths. The longer begins at the base of the nucleus, while the shorter one starts just below the base of the centriolar adjunct. This latter is asymmetric and appears at the nuclear base, extending parallel to the axoneme up to the anterior end of the smaller mitochondrial derivative. The short spermatodesmata and the small mitochondrial derivatives characterize the A. pagana sperm. In addition, the centriolar adjunct asymmetry and the occurrence of spermatodesm bundles might be considered plesiomorphic states present in the basal Tenthredinoidea.  相似文献   

8.
The identification of members of the Onchidiidae is based on morphological characters; this is often time-consuming and can be inconclusive. In order to explore the species diversity of onchidiids in China, we provide a phylogeny constructed using partial sequences of two mitochondrial genes (16S rRNA and COI) and one nuclear ribosomal RNA gene (28S rRNA) from 32 samples comprising five genera. The topology, using both Bayesian and Maximum Likelihood inference methods, showed that the taxa clustered in two main groups of six species, one of which included Platevindex mortoni, Platevindex sp. and Onchidium ‘struma’; the other included Paraoncidium reevesii, Onchidella sp. and Peronia verruculata. It is clear that COI will be useful in discriminating onchidiid species-group taxa.  相似文献   

9.
10.
This study represents the first phylogenetic analysis of the molluscan class Polyplacophora using DNA sequence data. We employed DNA from a nuclear protein-coding gene (histone H3), two nuclear ribosomal genes (18S rRNA and the D3 expansion fragment of 28S rRNA), one mitochondrial protein-coding gene (cytochrome c oxidase subunit I), and one mitochondrial ribosomal gene (16S rRNA). A series of analyses were performed on independent and combined data sets. All these analyses were executed using direct optimization with parsimony as the optimality criterion, and analyses were repeated for nine combinations of parameters affecting indel and transversion/transition cost ratios. Maximum likelihood was also explored for the combined molecular data set, also using the direct optimization method, with a model equivalent to GTR + I + Γ that accommodates gaps. The results of all nine parameter sets for the combined parsimony analysis of all molecular data (as well as ribosomal data) and the maximum-likelihood analysis of all molecular data support monophyly of Polyplacophora. The resulting topologies mostly agree with a division of Polyplacophora into two major lineages: Lepidopleuridae and Chitonida (sensu Sirenko 1993). In our analyses the genus Callochiton is positioned as the sister group to Lepidopleuridae, and not as sister group to the remaining Chitonida (sensu Buckland-Nicks & Hodgson 2000), nor as the sister group to the remaining Chitonina (sensu Buckland-Nicks 1995). Chitonida (excluding Callochiton) is monophyletic, but conventional subgroupings of Chitonida are not supported. Acanthochitonina (sensu Sirenko 1993) is paraphyletic, or alternatively monophyletic, and is split into two clades, both with abanal gills only and cupules in the egg hull, but one has simple cupules whereas the other has more strongly hexagonal cupules. Sister to the Acanthochitonina clades is Chitonina, including taxa with adanal gills and a spiny egg hull. Schizochiton, the only genus with adanal gills that has an egg hull with cupules, is the sister-taxon to one of the Acanthochitonina clades plus Chitonina, or alternatively basal to Chitonina. Support values for either position are low, leaving this relationship unsettled. Our results refute several aspects of conventional classifications of chitons that are based primarily on shell characters, reinforcing the idea that chiton classification should be revised using additional characters.  相似文献   

11.
Litvaitis  M. K.  Newman  L. J. 《Hydrobiologia》2001,444(1-3):177-182
Systematic relationships within the cotylean family Pseudocerotidae were examined using nucleotide sequences of the D3 expansion segment of the 28S rDNA gene. A previously suggested separation of Pseudoceros and Pseudobiceros based on the number of male reproductive systems was confirmed. Regardless of the algorithm employed, Pseudoceros always formed a monophyletic clade. Pseudobiceros appeared to be paraphyletic; however, a constrained maximum parsimony tree was not significantly longer (2 steps, = 0.05). Additionally, the genera Maiazoon, Phrikoceros and Tytthosoceros were validated as taxonomic entities, and their relationships to other genera within the family were determined. Molecular data also supported species separations based on colour patterns. An intraspecific genetic distance of 1.14% was found for Pseudoceros bifurcus, whereas the intrageneric distance was 3.58%. Genetic distances among genera varied, with the closest distance being 2.048% between Pseudobiceros and Maiazoon, and the largest distance (8.345%) between Pseudoceros and Tytthosoceros.  相似文献   

12.
This article integrates studies on the genetic variation of T. urticae populations and the interspecific variation of several tetranychid species. It aims at obtaining insights into the roles of the historical, geographical and ecological factors in the partitioning of variation of species. Two types of molecular markers were used to determine whether the patterns of genetic variation in mites inhabiting different host plants can shed light on the existence of host plant associations. The ribosomal sequences of the second internal transcribed spacer (ITS2), which evolves through concerted evolution, are good indicators of long-term isolation between populations and reveal exceptional homogeneity in a worldwide sampling of T. urticae. The mitochondrial cytochrome oxidase I (COI) sequences do not disclose old divergences related to host plant in this mite but rather suggest recent geographic colonization patterns of the species. Allozyme variation on a fine scale gives some evidence of host associations in the case of citrus trees. However, if any divergence of mites related to this host plant exists, it probably prevails in local populations only and it should not be old enough to be revealed by a phylogenetic analysis of mitochondrial COI sequences. The phyletic constraint in the evolution of feeding specificity in the family Tetra-nychidae is investigated based on a phylogenetic analysis of mitochondrial sequences. The results provide some support for the hypothesis that an evolutionary trend towards polyphagy has occurred in the family. Overall, it seems that the major characteristic of T. urticae is its high colonization potential. Polyphagy has enhanced its successful spread and may have led to connectivity between populations worldwide. © Rapid Science Ltd. 1998  相似文献   

13.
In contrast to animals, the slowly evolving mitochondrial nucleotide sequences of plants appear well suited to investigate phylogenetic relations between old taxonomic groups. Analysis ofnad5 gene sequences in 47 bryophytes, the living representatives of very early land plants, confirm this assessment. Statistically reliable phylogenetic trees are obtained with different mathematical approaches. A group I intron sequence conserved in thenad5 gene of all 30 mosses and 15 liverworts investigated supports a sister group relationship of the two classes. The intron sequence adds phylogenetic information for fine resolution on top of the conserved exon sequences down to the level of classically defined orders or families, respectively. This intron is not present in the hornwortsAnthoceros husnotii andA. punctatus. The results allow statements on diverging taxonomic interpretations and support the monophyly of the liverworts, mosses, Jungermanniidae, Marchantiidae and Bryidae, and allow recognition of subclasses like Hypnanae and Dicrananae. Among the mosses, the derived orders (subclass Bryidae) are confidently set apart from the Sphagnales, Andreaeales, Polytrichales and Tetraphidales with Buxbaumiales occupying a mediating position. Among the liverworts, full support is found for the classic separation of simple (jungermanniid) and complex thalloid (marchantiid) species with a strikingly low mitochondrial sequence divergence among the latter.  相似文献   

14.
Cuckoo wasps are a morphologically diverse group of Hymenoptera with parasitoid or cleptoparasitic life histories. In the present paper, we explore the phylogenetic signal in fragments of the mitochondrial genes LSU rRNA and COI to resolve the group's phylogeny. We analyzed sequence data of 33 species representing the taxa Cleptinae, Elampini, Parnopini, and Chrysidini. Most of the currently recognized relationships of major cuckoo wasp lineages are supported by the molecular data. A key difference concerns the phylogenetic position of the Euchroeus (=Brugmoia) group within the tribe Chrysidini. It seems likely that an erroneous interpretation of morphological characters has led to inappropriate rooting of that tribe. We suggest that species of the Euchroeus group be interpreted as forming the stem group of the Chrysidini and that the remaining genera of that tribe be united in a subordinated taxon. Our results imply that the evolution of anal dentition, of significance for breaking into sealed host nests otherwise not accessible to cuckoo wasps, already happened at the base of the Chrysidini and that an even number of anal teeth arose prior to an odd number.  相似文献   

15.
A comprehensive molecular analysis of the phylogenetic relationships within the Heterotrichea including all described families is still lacking. For this reason, the complete nuclear small subunit (SSU) rDNA was sequenced from further representatives of the Blepharismidae and the Stentoridae. In addition, the SSU rDNA of a new, undescribed species of the genus Condylostomides (Condylostomatidae) was sequenced. The detailed phylogenetic analyses revealed a consistent branching pattern: while the terminal branches are generally well resolved, the basal relationships remain unsolved. Moreover, the data allow some conclusions about the macronuclear evolution within the genera Blepharisma, Stentor, and Spirostomum suggesting that a single, compact macronucleus represents the ancestral state.  相似文献   

16.
The mitochondrial cytochrome b gene of seven species of sea eagles H. albicilla, H. leucocephalus, H. leucoryphus, H. leucogaster, H. sanfordi, H. pelagicus and H. vocifer was amplified by PCR and sequenced (1026 bp). Phylogeny reconstructions by the Maximum Parsimony and Neighbour-Joining methods produced similar trees in which sea eagles represent a monophyletic group. In addition, the clade H. albicilla/H. leucocephalus groups with the clade H. pelagicus/H. leucoryphus in a monophyletic boreal group while H. vocifer clusters with the H. leucogaster/H. sanfordi clade in a monophyletic tropical clade. The nearest relatives of sea eagles are the kites (genus Milvus) and buzzards (genus Buteo), whereas ‘booted’ eagles (genus Aquila) and vultures (genera Gyps and Aegypius) have diverged earlier from the accipitrid branch. Honey bussards (genus Pernis) and vultures of the genera Gypaetus and Neophron represent basal taxa of the accipitrid lineage. Falcons, New World vultures and the secretary bird (Sagittarius) appear in separate clades outside the Accipitridae.  相似文献   

17.
The phylogenetic relationships among the fishes in the perciform tribe Epinephelini (Serranidae) have long been poorly understood, in large part because of the numerous taxa that must be considered and the large, circumtropical distribution of the group. In this study, genetic data from two nuclear (Tmo-4C4 and histone H3) and two mitochondrial (16S and 12S) genes were gathered from 155 serranid and acanthomorph species as a means of developing a phylogenetic hypothesis using both maximum-likelihood and -parsimony criteria. The maximum-parsimony analysis recovered 675 most parsimonious trees of length 5703 steps (CI = 0.2523, HI = 0.7477, RI = 0.6582), and the maximum-likelihood analysis recovered 1 tree at −lnLikelihood = 28279.58341. These phylogenetic hypotheses are discussed in light of previous morphological evidence to evaluate the evolutionary history of the group and their implications for the currently recognized taxonomy. Our results question the monophyly of the Serranidae, as well as the genera Cephalopholis, Epinephelus, and Mycteroperca as currently defined. The Serranidae is monophyletic only with the exclusion of the genera Acanthistius and Niphon. We propose a revised classification of the tribe Epinephelini that reflects the hypothesized shared ancestry of the group and recognizes 11 genera: Alphestes, Cephalopholis, Dermatolepis, Epinephelus, Gonioplectrus, Hyporthodus (which is resurrected for 11 species of deep-bodied groupers), Mycteroperca (including 7 species heretofore allocated to Epinephelus), Plectropomus, Saloptia, Triso, and Variola.  相似文献   

18.
Partial DNA sequences of two mitochondrial genes [cytochrome oxidase subunit I (COI) and 16S rRNA] from 59 specimens of Iberus were used to test the validity of the described morphospecies of this genus, and examine genetic divergences within and between main phylogenetic groups. Both gene fragments showed phylogenetic concordance. The COI gene was found to be faster evolving than the 16S gene and was fully protein-coding with no insertions or deletions. 16S rRNA was more informative than COI for resolving basal nodes. Both individual and combined analyses of the two gene fragments revealed five main phylogroups. These five groups are genetically unique lineages that are allopatrically distributed and considered to have full species status. Further subdivisions were also considered. Shell morphology was suitable for delimiting species boundaries, but several incongruences between morphology and mtDNA phylogeny were observed. These incongruences were considered consequence of hybridization between Iberus cobosi and Iberus marmoratus , and the result of shell shape polymorphism in Iberus rositai . According to spatial patterns of sequence divergence, life habits and shell morphology may be concluded that the keeled-flat shelled snails independently originated several times within Iberus and they could represent cases of similar shell adaptation to a karstic arid environment.  相似文献   

19.
The past 15 years have witnessed a number of molecular studies that aimed to resolve issues of species delineation and phylogeny of mites in the family Tetranychidae. The central part of the mitochondrial COI region has frequently been used for investigating intra- and interspecific variation. All these studies combined yield an extensive database of sequence information of the family Tetranychidae. We assembled this information in a single alignment and performed an overall phylogenetic analysis. The resulting phylogeny shows that important patterns have been overlooked in previous studies, whereas others disappear. It also reveals that mistakes were made in submitting the data to GenBank, which further disturbed interpretation of the data. Our total analysis clearly shows three clades that most likely correspond to the species T. urticae, T. kanzawai and T. truncatus. Intraspecific variation is very high, possibly due to selective sweeps caused by reproductive parasites. We found no evidence for host plant associations and phylogeographic patterns in T. urticae are absent. Finally we evaluate the application of DNA barcoding.  相似文献   

20.
The superfamily Conoidea is one of the most speciose groups of marine mollusks, with estimates of about 340 recent valid genera and subgenera, and 4000 named living species. Previous classifications were based on shell and anatomical characters, and clades and phylogenetic relationships are far from well assessed. Based on a dataset of ca. 100 terminal taxa belonging to 57 genera, information provided by fragments of one mitochondrial (COI) and three nuclear (28S, 18S and H3) genes is used to infer the first molecular phylogeny of this group. Analyses are performed on each gene independently as well as for a data matrix where all genes are concatenated, using Maximum Likelihood, Maximum Parsimony and Bayesian approaches. Several well-supported clades are defined and are only partly identifiable to currently recognized families and subfamilies. The nested sampling used in our study allows a discussion of the classification at various taxonomical levels, and several genera, subfamilies and families are found polyphyletic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号