首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Codling moths, Cydia pomonella (L.), have long been suspected of emerging from stacks of harvest bins in the spring and causing damage to nearby apple and pear orchards. With increased use of mating disruption for codling moth control, outside sources of infestation have become more of a concern for growers using pheromone based mating disruption systems. Studies were designed to provide information on bins as a source of codling moth and the pattern of codling moth emergence from stacks of bins. In these studies, codling moth larvae colonized wood harvest bins at a much higher frequency than harvest bins made of injection molded plastic (189 moths emerged from wood compared with five from plastic). There was no statistical difference in the number of moths infesting bins that had been filled with infested fruit compared with bins left empty at harvest. This suggests that codling moth enter the bins during the time that the bins are in the orchard before harvest. Emergence of laboratory reared adult codling moth from wood bins placed in stacks was found to be prolonged compared with field populations. Temperature differences within the bin stacks accounted for this attenuated emergence pattern. Covering bin stacks with clear plastic accelerated codling moth development in the upper levels of the stack. Codling moth emergence patterns from plastic-covered stacks more closely coincided with male flight in field populations. This information could be important in developing a technique for neutralizing codling moth-infested bins, and in understanding how infested bins may influence pest management in fruit orchards that are located near bin piles. Implications for control of codling moth in conventional orchards and in those using mating disruption as the principal component of an integrated pest management system include increased numbers of treatments directed at areas affected by infested bins.  相似文献   

2.
Codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is the main pest of pome fruits worldwide. Despite its economic importance, little is known about the genetic structure and patterns of dispersal at the local and regional scale, which are important aspects for establishing a control strategy for this pest. An analysis of genetic variability using microsatellites was performed for 11 codling moth populations in the two major apple (Malus domestica Borkh) cropping regions in central Chile. Despite the geographical distances between some populations (approximately 185 km), there was low genetic differentiation among populations (F(ST) = 0.002176), with only slight isolation by distance. Only approximately 0.2% of the genetic variability was found among the populations. Geographically structured genetic variation was independent of apple orchard management (production or abandoned). These results suggest a high genetic exchange of codling moth between orchards, possibly mediated by human activities related to fruit production.  相似文献   

3.
Studies were conducted in 1997 and 1998 to evaluate the effects of three particle film formulations consisting of kaolin and adjuvants on neonate larvae, ovipositing adult females, and eggs of the codling moth, Cydia pomonella (L.). Neonate larval walking speed, fruit discovery rate, and fruit penetration rate on apple host plants coated with particle films were significantly lower than on host plants without particle films in laboratory assays. Females oviposited less on host plants covered with a particle film residue than on untreated plants in laboratory choice and no-choice tests. Hatch rate of codling moth neonate larvae was unaffected by particle films sprayed on host plants either before or after oviposition. Fruit infestation rates were significantly reduced on particle film-treated trees compared with untreated trees for both first- and second-generation codling moth in field trials in both apple and pear orchards. Particle films appear to be a promising supplemental control approach for codling moth in orchards where moth density is high, and may represent a stand-alone method where moth densities are lower.  相似文献   

4.
The effectiveness of tebufenozide applied against the adult, egg, and larvae of codling moth, Cydia pomonella (L.), was evaluated. Significant reductions in fecundity and egg hatch occurred after 1-h and 24-h exposures of females and 24-h exposures of males-only to residues in plastic plates. A significant reduction in egg hatch was also found after a 1-h exposure of males. The ovicidal effects of tebufenozide in field trials did not significantly differ for eggs laid on residues or treated topically. Corrected egg mortality exceeded 95% for cohorts laid <130 degree-days after sprays were applied. Fecundity and egg hatch were measured after either a 24-h exposure of moths or a 10-d exposure of moths and eggs on apple trees. Significant reductions in both fecundity and fertility occurred compared with an untreated control up to 7 d in the 24-h assays and accounted for 60-70% fewer larvae produced per mated female. The mean numbers of larvae produced per mated female after the 10-d exposure were reduced 100-75% in assays started on day 0-21 after the spray application compared with the untreated control. Fecundity was significantly reduced for 7 d and egg hatch was reduced for the entire 21-d test period in these trials. Residues had a 14-d half-life on apple foliage. Residues applied to foliage or to foliage and fruit did not significantly increase the proportion of uninjured fruit compared with the untreated control in bioassays where neonates were placed on foliage 10 cm from fruit. However, the proportion of injured fruits with shallow stings versus deep entries was higher on the treated versus the untreated plants. Field applications of tebufenozide reduced fruit injury >90% when applied early during emergence. Plots treated after the beginning of egg hatch had a larger proportion of injured fruits with shallow larval feeding.  相似文献   

5.
Male and female codling moth, Cydia pomonella (L.), were monitored with passive interception traps (PI-traps) in apple orchards treated with sex pheromone dispensers. The proportion of mated females recaptured by PI-traps was significantly higher than the proportion released after the release of both sexes into a codling moth-infested orchard. However, no significant difference occurred between the proportion of mated females recaptured and released when only females were released into uninfested orchards. Replicated nine-tree apple plots situated either on the edge or in the center ofpheromone-treated apple orchards were monitored with PI-traps during first moth flight in 1995 and during both flights in 1996. Moths caught on PI-traps were predominately males. The first male moths were captured 7-10 d before females during the first flight in both years. Initial capture of virgin and mated females on PI-traps coincided in 1995. Mated females were captured 14 d after the first virgin females in 1996. The mean proportion of females that were mated ranged from 32 to 55% during the first flight and 85 to 92% during the second flight. Moth catch and fruit injury were significantly higher in the edge versus the center plots. The numbers of total and female moths caught with PI-traps were significantly correlated with fruit injury for each generation. The percentage of female moths caught on PI-traps that were mated was 32% lower and the mean oocyte load of all females was 42% higher in a pheromone-treated apple orchard than in the untreated crabapple grove monitored during May and June 1997.  相似文献   

6.
A series of studies were conducted to examine the residual activity and toxicity of the ecdysone agonists tebufenozide and methoxyfenozide to codling moth, Cydia pomonella (L.), and oriental fruit moth, Grapholita molesta (Busck), in North Carolina apple systems. Methoxyfenozide exhibited greater activity than tebufenozide against codling moth eggs in dose-response bioassays, with a 4.5- and 5.3-fold lower LC50 value to eggs laid on fruit treated before or after oviposition, respectively. Oriental fruit moth eggs were 57- and 12-fold less sensitive to methoxyfenozide than were codling moth eggs on fruit treated before and after oviposition, respectively. Methoxyfenozide was effective in reducing larval entries of both codling moth and oriental fruit moth in field residual activity bioassays, exhibiting activity for at least 28 d after application. Residue breakdown on fruit was approximately 80% at 28 d after treatment for both methoxyfenozide and tebufenozide, with the most rapid residue decline (60%) occurring during the first 14 d after application. Two applications of methoxyfenozide applied at 14-d intervals provided better canopy coverage and higher residue levels than one application. Spray volume (683 versus 2,057 liters/ha) did not affect the efficacy of methoxyfenozide. Leaf and fruit expansion during the season was measured to determine potential plant-growth dilution effects on residual activity. There was very little increase in leaf area after mid May, but increase in fruit surface area over the season was described by a second order polynomial regression. Implications for codling moth and oriental fruit moth management programs are discussed.  相似文献   

7.
Resistance to several classes of insecticides was correlated with azinphosmethyl resistance in codling moth, Cydia pomonella (L.), in California. In tests of laboratory and field populations, cross-resistance was positively correlated with azinphosmethyl and two organophosphates (diazinon, phosmet), a carbamate (carbaryl), a chlorinated hydrocarbon (DDT), and two pyrethroids (esfenvalerate and fenpropathrin). Additionally, negatively correlated cross-resistance was identified between azinphosmethyl and two other organophosphates, chlorpyrifos and methyl parathion. Patterns of resistance observed in laboratory colonies were confirmed with field bioassays. In bioassays of field populations, azinphosmethyl resistance was observed to increase from 1991 to 1993, although levels of resistance remained < 13-fold. Because orchards with azinphosmethyl resistance have had difficulties with suppression of codling moth, and cross-resistance was found for all tested classes of insecticides, strategies for managing resistance will need to be developed so as to protect current and future control tactics. The two insecticides with negatively correlated cross-resistance are discussed as potential tools for resistance management.  相似文献   

8.
False codling moth, Cryptophlebia leucotreta (Meyrick), male and female mature pupae and newly emerged adults were treated with increasing doses of gamma radiation and either inbred or out-crossed with fertile counterparts. For newly emerged adults, there was no significant relationship between dose of radiation and insect fecundity when untreated females were mated to treated males (N female by T male). However, fecundity of treated females mated to either untreated (T female by N male) or treated males (T female by T male) declined as the dose of radiation increased. A similar trend was observed when mature pupae were treated. The dose at which 100% sterility was achieved in treated females mated to untreated males (T female by N male) for both adults and pupae was 200 Gy. In contrast, newly emerged adult males treated with 350 Gy still had a residual fertility of 5.2% when mated to untreated females, and newly emerged adult males that were treated as pupae had a residual fertility of 3.3%. Inherited effects resulting from irradiation of parental (P1) males with selected doses of radiation were recorded for the F1 generation. Decreased F1 fecundity and fertility, increased F1 mortality during development, and a significant shift in the F1 sex ratio in favor of males was observed when increasing doses of radiation were applied to the P1 males.  相似文献   

9.
Studies were conducted with codling moth, Cydia pomonella L., to evaluate the mating status of male and female moths in apple, Malus domestica (Borkhausen), orchards treated with and without sex pheromone dispensers. Laboratory studies first examined the effect of multiple mating of male and female moths on female fecundity and egg fertility. Females that had mated three times had a significantly higher fecundity than singly mated moths. Sequential mating by male moths had no effect on the fecundity of female moths or egg fertility. However, male moth age did impact female fecundity, with significantly fewer eggs laid after mating with virgin 1- versus 3-d-old males. The mean size of the first spermatophore transferred by males was significantly larger than all subsequent spermatophores. Classifying spermatophores based on size was used in field sampling to categorize the mating status of the female's partner. The proportion of mated females with small spermatophores (partner had previously mated) was significantly higher in treated versus untreated orchards. The proportion of female moths caught in traps baited with pear ester that were virgin was low (相似文献   

10.
The efficacy of two insecticide control programs for managing the codling moth, Cydia pomonella (L.), and the apple maggot, Rhagoletis pomonella (Walsh), were compared in the Georgian Bay, London, Niagara, and Quinte apple production areas of Ontario during 1995, 1996, and 1997. In the border spray program, an initial cover spray of organophosphorus insecticide was applied to eradicate codling moths that may have colonized a test plot during the previous growing season. Subsequent sprays were applied only to a four-tree-wide zone (approximately 20 wide) around the perimeter of the plot to control immigrating codling moths or apple maggots. In the cover spray program, all sprays of organophosphorus insecticide were applied to the entire plot. Apple maggot injury was significantly greater in border spray program plots than in cover spray program plots only during 1995 in the London production area. There was no significant difference in codling moth injury between border spray and cover spray plots in the four production areas during the three-year study. The elimination of cover sprays from border spray plots during July and August may have left the apple crop more susceptible to damage by second generation larvae of the obliquebanded leafroller, Choristoneura rosaceana (Harris), in the London production area during 1995. There was a trend of increasing codling moth injury from 1995 to 1997 in two border spray plots, and apple maggot injury was detected in these plots during the third year of the study.  相似文献   

11.
The rainfastness of a microencapsulated sex pheromone formulation for codling moth, Cydia pomonella (L.), was evaluated in a series of laboratory experiments with detached apple, pear, and walnut leaves. Increasing the intensity and duration of simulated rainfall significantly increased the removal of microcapsules from both the top and bottom of apple leaves. The removal of microcapsules was significantly higher from the top versus the bottom of leaves at all rates tested. Leaf angle was a significant factor affecting the removal of microcapsules from the top surface of apple leaves with fewer microcapsules removed, because leaves were oriented with a steeper downward angle. Both leaf surfaces of apple and pear retained a higher proportion of microcapsules than walnut leaves, and the bottom surface of apple leaves retained significantly more than pear leaves. Three spray adjuvants were evaluated as stickers for microcapsules. No difference was found in the number of microcapsules deposited on apple leaves among three stickers tested at rates from 0.06 to 0.25%. However, in a second test a latex sticker significantly increased the deposition of microcapsules on apple leaves compared with a polyvinyl polymer and a pine resin sticker at a rate of 0.06%. Significantly more microcapsules were retained on the bottom versus the top of apple leaves with all stickers. The latex and polyvinyl stickers significantly increased the retention of microcapsules versus the pine resin sticker and the control on apple leaves. In another test, the addition of 0.06% latex sticker did not increase the deposition of microcapsules on any of the three leaf types. However, the addition of the latex sticker significantly increased the retention of microcapsules on the top of apple and pear leaves and the bottom of apple leaves. The addition of a latex sticker did not affect the retention of microcapsules on walnut leaves.  相似文献   

12.
Two species of leafrollers, Argyrotaenia citrana (Fernald) and Pandemis pyrusana Kearfott, represent serious obstacles to the implementation of mating disruption for control of codling moth in coastal California apple orchards. Larval and adult densities of A. citrana and P. pyrusana and subsequent fruit damage were compared under different codling moth control treatments. Leafroller larval counts and levels of fruit damage were significantly higher in most plots that were untreated or treated only with codling moth pheromone. Leafroller fruit damage levels in these plots were commonly between 10 and 15% at harvest. As summer larval counts were good predictors of fruit damage levels, larval sampling could be a useful tool for predicting leafroller outbreaks. Use of pheromone trapping for A. citrana to detect localized outbreaks within an orchard was not useful and failed to correlate with larval numbers, whereas adult monitoring for P. pyrusana appears more promising. Efforts to implement a codling moth mating-disruption program in California must include changes in strategies for monitoring and controlling leafroller species.  相似文献   

13.
A diet-incorporation larval bioassay was developed to measure the response of codling moth, Cydia pomonella (L.), to the benzoylhydrazine insecticides tebufenozide and methoxyfenozide. The bioassay tested neonates and third, fourth, and fifth instars from a laboratory colony and neonates and fourth instars from a pooled population collected from five certified-organic apple orchards. Bioassays were scored after 6 and 14 d. No differences between the laboratory and field population were found for either insecticide. Significant differences were found in the response of third and fifth instars between the 6 and 14 d bioassays, primarily due to a high proportion of moribund larvae in the shorter assay. Larval age had a significant effect in bioassays and was more pronounced in 6- versus 14-d tests. Fifth instars were significantly less susceptible to both insecticides than other stages, while responses of third and fourth instars were similar. The response of neonates was significantly different from third and fourth instars to tebufenozide but not with methoxyfenozide in the 14-d test. Field bioassays excluded the use of fifth instars and were scored after 14 d. LC50s estimated for 18 field-collected populations varied five- and ninefold for tebufenozide and methoxyfenozide, respectively. The responses of all but six field-collected populations were significantly different from the laboratory strain. Five of these six populations were collected from orchards with no history of organophosphate insecticide use. The LC50 for methoxyfenozide of one field-collected population reared in the laboratory for three generations declined fourfold, but was still significantly different from the laboratory population. These data suggest that transforming current codling moth management programs in Washington from a reliance on organophosphate insecticides to benzoylhydrazines may be difficult.  相似文献   

14.
Fruit bins infested with diapausing larvae of codling moth larvae, Cydia pomonella (L.), are a source of reinfestation of orchards and may jeopardize the success of mating disruption programs and other control strategies. Bins are not routinely treated for control of overwintering codling moth before placing them in orchards. Entomopathogenic nematodes provide a noninsecticidal alternative to methyl bromide that could be applied at the time bins are submerged in dump tanks at the packing house for flotation of fruit. Diapausing codling moth larvae in miniature fruit bins were highly susceptible to infective juveniles of Steinernema carpocapsae (Weiser). Immersion of bins in suspensions of S. carpocapsae ranging from 5 to 100 infective juveniles per milliliter of water resulted in 68-100% mortality. Immersion times of 1 or 5 min in suspensions with 5 infective juveniles of S. carpocapsae per milliliter of water, with and without Tween 80 (0.01%), yielded essentially the same mortality of codling moth larvae. Highest mortalities in codling moth larvae (88%) after treatment of bins in suspensions of 5 infective juveniles of S. carpocapsae per milliliter of water were observed after incubation for 24 h at 25 degrees C and 70% RH. Lowest mortalities (37%) were observed after incubation at 15 degrees C and 35% RH. Comparative tests conducted with Heterorhabditis marelatus Liu & Berry, Steinernema kraussei (Steiner), and S. carpocapsae with 5 infective juveniles per milliliter of water resulted in 21.7, 53.9, and 68.7% mortality, respectively. The use of miniature fruit bins as described in this article provides an effective means of assessing nematode efficacy without the cumbersome size of commercial bins.  相似文献   

15.
Codling moth, Cydia pomonella L., is a cosmopolitan pest of pome and stone fruits. It has been identified as a quarantine pest of concern in a number of countries where it is not known to occur, most of them tropical or subtropical countries. Although considerable work has been done on the basic biology and physiology of this temperate pest, little is known on its potential to develop and establish in tropical environments with short photoperiods and few to no days below 10 degrees C. Apples were harvested over three field seasons (2007-2009) from unmanaged orchards in central Washington State and subjected to simulated commercial cold storage at 1.1 +/- 2 degrees C for up to 119 d. After cold storage, infested fruits were held at 20 degrees C under a 12:12 L:D photoperiod for up to 6 mo. Over the entire experiment only 27% of the larvae collected exited the fruit and cocooned. Of those 27%, only 1.06% of larvae held under a 12:12 L:D photoperiod successfully emerged as moths. No moths emerged when host fruit would be available in a representative importing country in the tropics over the 3 yr of testing. These results indicate that codling moth in apples from the Pacific Northwest pose little threat of surviving and establishing in tropical regions where daylength is insufficient to break diapause and the chilling requirement is not met.  相似文献   

16.
The codling moth, Cydia pomonella (L.), and oriental fruit moth, Grapholita molesta (Busck), are two key pests of apple (Malus domestica Borkh.) in North Carolina. Growers extensively relied on organophosphate insecticides, primarily azinphosmethyl, for > 40 yr to manage these pests. Because of organophosphate resistance development and regulatory actions, growers are transitioning to management programs that use new, reduced-risk, and OP-replacement insecticides. This study evaluated the toxicity of a diversity of replacement insecticides to eggs, larvae, and adults, as well as an assessment of their residual activity, to codling moth and oriental fruit moth. Laboratory-susceptible strains of both species were used for all bioassays. Fresh field-harvested apples were used as a media for assessing the ovicidal activity of insecticides. For larval studies, insecticides were topically applied to the surface of lima bean-based diet, onto which neonates were placed. Toxicity was based on two measures of mortality; 5-d mortality and development to adult stage. Ovicidal bioassays showed that oriental fruit moth eggs were generally more tolerant than codling moth eggs to insecticides, with novaluron, acetamiprid, and azinphoshmethyl having the highest levels of toxicity to eggs of both species. In contrast, codling moth larvae generally were more tolerant than oriental fruit moth to most insecticides. Methoxyfenozide and pyriproxyfen were the only insecticides with lower LC50 values against codling moth than oriental fruit moth neonates. Moreover, a number of insecticides, particularly the IGRs methoxyfenozide and novaluron, the anthranilic diamide chlorantriliprole, and the spinosyn spinetoram, provided equal or longer residual activity against codling moth compared with azinphosmethyl in field studies. Results are discussed in relation to their use in devising field use patterns of insecticides and for insecticide resistance monitoring programs.  相似文献   

17.
The antennal responses of codling moth females, Cydia pomonella, to volatiles from apple branches with green fruits were recorded by electroantennography coupled to gas chromatography. The antennae strongly responded to 4,8-dimethyl-1,3(E),7-nonatriene, linalool, beta-caryophyllene, (E)-beta-farnesene, germacrene D, (Z,E)-alpha-farnesene, (E,E)-alpha-farnesene and methyl salicylate. These compounds were all present in volatile collections on Porapak Q from both living and cut branches. Analysis by the solid phase microextraction technique (SPME) showed that the emission of some electrophysiologically active compounds increased after branches had been cut, especially 4,8-dimethyl-1,3(E),7-nonatriene, linalool and (E,E)-alpha-farnesene. The identification of apple volatiles eliciting antennal responses is the first step towards the identification of compounds mediating host-finding and oviposition in codling moth females.  相似文献   

18.
In order to preserve key activities or improve survival, insects facing variable and unfavourable thermal environments may employ physiological adjustments on a daily basis. Here, we investigate the survival of laboratory-reared adult Cydia pomonella at high or low temperatures and their responses to pre-treatments at sub-lethal temperatures over short time-scales. We also determined critical thermal limits (CTLs) of activity of C. pomonella and the effect of different rates of cooling or heating on CTLs to complement the survival assays. Temperature and duration of exposure significantly affected adult C. pomonella survival with more extreme temperatures and/or longer durations proving to be more lethal. Lethal temperatures, explored between −20 °C to −5 °C and 32 °C to 47 °C over 0.5, 1, 2, 3 and 4 h exposures, for 50% of the population of adult C. pomonella were −12 °C for 2 h and 44 °C for 2 h. Investigation of rapid thermal responses (i.e. hardening) found limited low temperature responses but more pronounced high temperature responses. For example, C. pomonella pre-treated for 2 h at 5 °C improved survival at −9 °C for 2 h from 50% to 90% (p < 0.001). At high temperatures, pre-treatment at 37 °C for 1 h markedly improved survival at 43 °C for 2 h from 20% to 90% (p < 0.0001). We also examined cross-tolerance of thermal stressors. Here, low temperature pre-treatments did not improve high temperature survival, while high temperature pre-treatment (37 °C for 1 h) significantly improved low temperature survival (−9 °C for 2 h). Inducible cross-tolerance implicates a heat shock protein response. Critical thermal minima (CTmin) were not significantly affected by cooling at rates of 0.06, 0.12 and 0.25 °C min−1 (CTmin range: 0.3-1.3 °C). By contrast, critical thermal maxima (CTmax) were significantly affected by heating at these rates and ranged from 42.5 to 44.9 °C. In sum, these results suggest pronounced plasticity of acute high temperature tolerance in adult C. pomonella, but limited acute low temperature responses. We discuss these results in the context of local agroecosystem microclimate recordings. These responses are significant to pest control programmes presently underway and have implications for understanding the evolution of thermal tolerance in these and other insects.  相似文献   

19.
In response to the confirmed detection of the light brown apple moth, Epiphyas postvittana, in California, approximately 53,000 pheromone-baited Jackson traps were deployed and more than 246,000 males were caught (February 2007–February 2010). Approximately 46,000 manually entered catch records were corrected for errors and converted into catch per trap per day. As empty trap data (zeros) were not recorded, we added zeros between first and last catch for each trap based on the stated servicing period (~30,000), before analyzing for trends. Residual data error rate was estimated as 1.5 %. San Francisco and Santa Cruz counties had relatively high trap catches immediately upon trap set, and remained the leading population centers, while most other counties showed a more general trend of a slow build-up in catch over time (12 counties). An exponential increase in trap catch was observed in four counties with sufficient data. The pattern of spread indicated natural, as well as anthropogenic-assisted spread rates, with populations appearing well ahead of the invasion front. This jump dispersal is probably due to movement of host plants, unsurprising since eggs of this polyphagous moth are readily laid on foliage. There was evidence of seasonality in spread, probably linked to the phenology of the insect. There was a positive relationship between catch and known host tree preference, suggesting that trap placement in preferred hosts could add sensitivity to future surveys. Recommendations include the improved provision of data acquisition by telecommunications, standardization of data input, more archiving, and frequent analysis of trap catches. The rapid rate of population growth demonstrated in two counties and spread across many others supports the hypothesis of the recent arrival of E. postvittana in California.  相似文献   

20.
Postharvest chamber fumigation with 48 mgL?1 (3.0 lbs./1000 ft3) methyl bromide (MB) for 2 h at pulp temperature (T) ≥ 21 °C and chamber load ≤50% is used to control codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), in fresh nectarine, Prunus persica (L.) var. nucipersica, and French plum, P. domestica (L.), exports from California USA to Japan. Fumigations were conducted to verify that control of C. pomonella is expected following an analogous fumigation of fresh Japanese plums, P. salicina (Lindl.). A kinetic model, based on temporal measurement of MB levels in chamber headspace and how calculated exposures varied across the fumigation trials, showed that fresh Japanese plums and French plums sorb MB at a statistically equivalent rate, which resulted in an MB exposure ca. 20% higher than that observed for fresh nectarines. Importantly, results from commercial-scale fumigations indicate that pallet shrouds do not influence the efficacy of MB toward C. pomonella eggs, as their presence did not affect the rate of MB sorption, evidence that supports the use of pallet shrouds to safeguard against the potential for post-fumigation infestation in this export scenario, and beyond. Results are discussed in the context of graduation toward optimized quarantine fumigation schedules, which will promote more strategic technical and economic Quarantine Pre-shipment (QPS) uses of MB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号