首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the isolation and characterization of 11 polymorphic microsatellite loci from the recently discovered fruit fly pest, Bactrocera invadens. The polymorphism of these loci was tested in individual flies from two natural populations (Sri Lanka and Democratic Republic of Congo). Allele number per locus ranged from three to 15 and eight loci displayed a polymorphic information content greater than 0.5. These microsatellite loci provide useful markers for studies of population dynamics and invasion history of this pest species.  相似文献   

2.
Phytophagous insects of the genus Bactrocera are among the most economically important invasive fruit fly pests. In 2003, an unknown Bactrocera species was found in Kenya. First identified as an ‘aberrant form’ of the Asian B. dorsalis complex, it was later recognized as a new species, Bactrocera invadens. Within 2 years of its discovery, the species was recorded in several African countries, becoming an important quarantine pest. As this invasive fly was discovered only recently, no data are available on its invasion pattern in Africa. This pilot study attempts to infer from genetic data the dynamic aspects of the African invasion of this pest. Using microsatellite markers, we evaluated the level of genetic diversity and the extent of common ancestry among several African populations collected across the invaded areas. A sample from the Asian Sri Lankan population was analysed to confirm the Asian origin of this pest. Genetic data cast no doubt that Sri Lanka belongs to the native range, but only a small percentage of its genotypes can be found in Africa. African populations display relatively high levels of genetic diversity associated with limited geographical structure and no genetic footprints of bottlenecks. These features are indicative of processes of rapid population growth and expansion with possible multiple introductions. In the span of relatively few years, the African invasion registered the presence of at least two uncorrelated outbreaks, both starting from the East. The results of the analyses support that invasion started in East Africa, where B. invadens was initially isolated.  相似文献   

3.
The dorsalis complex contains some of the most economically important fruit fly pests of the Asia–Pacific regions, including Bactrocera dorsalis, Bactrocera papayae and Bactrocera carambolae. These species are morphologically indistinct and genetically very similar. We describe the development of 12 microsatellite markers isolated from a representative of the dorsalis complex, B. papayae. We show the potential utility of the B. papayae microsatellites and a set of microsatellites isolated from Bactrocera tryoni as population and species markers for the dorsalis complex.  相似文献   

4.
Field infestation rates of an invasive fruit fly species, Bactrocera invadens Drew Tsuruta & White on mango was determined at different localities in Kenya. At most of the locations and especially at low elevations, B. invadens frequently shared the same fruit with the indigenous fruit fly species Ceratitis cosyra (Walker) but often occurred at higher numbers than C. cosyra. The level of infestation varied with location ranging from 3.0 to 97.2 flies per kg of fruit. There was a significant inverse relationship between numbers of flies per kg of fruit and elevation at which fruit was collected, suggesting that B. invadens is a predominantly lowland pest. On an artificial diet, development of B. invadens immatures lasted 25 days; egg incubation required 1.2 days, larval development 11.1 days and puparia-adult development 12.4 days. About 55% of eggs developed to the adult stage. Life expectancy at pupal eclosion was 75.1 days in females and 86.4 days in males. Average net fecundity and net fertility were 794.6 and 608.1 eggs, respectively, while average daily oviposition was 18.2 eggs. Daily population increase was 11% and mean generation time was 31 days. Results are discussed in relation to the biology and ecology of the insect and in the development of mass rearing and control measures for B. invadens.  相似文献   

5.
Abstract:  The temporal occurrence of the invasive and economically important pest fruit fly, Bactrocera invadens was studied in three agro-ecological areas of Morogoro Region, central Tanzania, during 2004–2005. Weekly and monthly trappings were carried out with methyl eugenol, protein bait and synthetic food attractant. Bactrocera invadens was permanently present at low and mid-altitudes (380–520 m a.s.l.) with peak periods coinciding with the fruiting season of mango ( Mangifera indica ) and guava ( Psidium guajava ). At high altitude (1650 m a.s.l.) its incidence was only temporal and apparently the result of dispersal from lower altitudes after the mango fruiting season. Rearing results showed mango, loquat ( Eriobotrya japonica ), guava and grapefruit ( Citrus  ×  paradisi ) to be the favoured commercial host fruits. Other Citrus species, cucurbits, papaya ( Carica papaya ) and avocado ( Persea americana ) were less favoured.  相似文献   

6.
The most common hosts for the West Indian fruit fly, Anastrepha obliqua (Macquart) (Diptera: Tephritidae) are fruit in the family Anacardiaceae (mango [Mangifera L.] and mombin [Spondias L.] species). However, similar to many of the tropical fruit flies of major economic importance, this species attacks several other families of crop fruit, including Annonaceae (cherimoya, Annona cherimola Mill.), Myrtaceae (guava, Psidium L.), Oxalidaceae (carambola, Averrhoa carambola L.), Passifloraceae (granadilla, Passiflora quadrangularis Mill.), and Sapotaceae [mamey sapote, Pouteria sapota (Jacq.) H. E. Moore & Steam]. In the family Rutaceae the economically important genus Citrus has been reported and until recently considered a host for this fruit fly. In this study, we reviewed the taxonomy of A. obliqua, tested specific chemicals that may inhibit oviposition, compared egg-to-adult survival of A. obliqua on preferred hosts and on grapefruit (Citrus X paradisi Macfad.), and measured fruit tissue-specific developmental rates of A. obliqua and the known citrus breeding Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), from egg to pupae. Our literature review shows much confusion concerning the taxonomy of this and related Anastrepha species, including synonymies and confusion with other species. The deterrent effect of the highest concentration of flavonoids for oviposition, although significant, was not absolute. Experiments carried out under laboratory conditions showed 15-40 times greater survival of A. ludens (whose preferred hosts include Rutaceae) on grapefruit compared with A. obliqua for both tree attached and harvested fruit. Experiments of survival of developing stages over time showed that the two species oviposit into different tissues in the fruit, and mortality is much higher for the West Indian fruit fly in the flavedo and albedo of the fruit compared with the Mexican fruit fly.  相似文献   

7.
Fopius arisanus (Sonan), a solitary koinobiont endoparasitoid of fruit flies, was introduced for testing and final release against the recently discovered species Bactrocera invadens Drew, Tsuruta and White in Africa. Laboratory experiments were conducted to assess host preference, host acceptability for oviposition, and physiological suitability of B. invadens and five other indigenous tephritid fruit fly species, namely, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), C. cosyra (Walker), C. rosa Karsch, C. fasciventris (Bezzi), and C. anonae Graham. Females of F. arisanus visited all host egg patches, but showed a stronger preference to eggs of B. invadens, which was also most accepted for oviposition. Successful development of parasitoid progenies varied greatly across hosts, with B. invadens yielding the highest parasitoid progeny and C. fasciventris yielding no F. arisanus progeny. Most of the parasitoid eggs laid in C. rosa and C. fasciventris were encapsulated. Sex ratio was not influenced by host species and it was female biased in all hosts that produced parasitoid progeny. Fopius arisanus was able to establish a new association with C. capitata, C. cosyra and to a lesser extent C. anonae. The results are discussed in the light of the potential use of F. arisanus as a biological control agent of B. invadens.  相似文献   

8.
Tephritid fruit flies, an important pest of horticulture worldwide, are increasingly targeted for control or eradication by large-scale releases of sterile flies of the same species. For each species treated, strains must be domesticated for mass rearing to provide sufficiently large numbers of individuals for releases. Increases in productivity of domesticated tephritid strains are well documented, but there have been few systematic studies of the genetic consequences of domestication in tephritids. Here, we used nine DNA microsatellite markers to monitor changes in genetic diversity during the early generations of domestication in replicated lines of the fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). The observed changes in heterozygosity and allelic richness were compared with the expected changes in heterozygosity generated by a stochastic simulation including genetic drift but not selection. The results showed that repeatable genetic bottlenecks occur in the early generations and that selection occurs in the later generations. Furthermore, using the same simulation, we show that there is inadvertent selection for increased productivity for the entire life on a mass-rearing colony, in addition to intentional selection for increased productivity. That additional selection results from the common practice of establishing the next generation of the breeding colony from a small proportion of one day's pupae collection (the pupal raffle). That selection occurs during all generations and acts only on fecundity variation. Practical methods to counter that unavoidable loss of genetic diversity during the domestication process in B. tryoni are discussed.  相似文献   

9.
Bactrocera zonata (Saunders) is one of the most harmful species of Tephritidae. It causes extensive damage in Asia and threatens many countries located along or near the Mediterranean Sea. The climate mapping program, CLIMEX 3.0, and the GIS software, ArcGIS 9.3, were used to model the current and future potential geographical distribution of B. zonata. The model predicts that, under current climatic conditions, B. zonata will be able to establish itself throughout much of the tropics and subtropics, including some parts of the USA, southern China, southeastern Australia and northern New Zealand. Climate change scenarios for the 2070s indicate that the potential distribution of B. zonata will expand poleward into areas which are currently too cold. The main factors limiting the pest's range expansion are cold, hot and dry stress. The model's predictions of the numbers of generations produced annually by B. zonata were consistent with values previously recorded for the pest's occurrence in Egypt. The ROC curve and the AUC (an AUC of 0.912) were obtained to evaluate the performance of the CLIMEX model in this study. The analysis of this information indicated a high degree of accuracy for the CLIMEX model. The significant increases in the potential distribution of B. zonata projected under the climate change scenarios considered in this study suggest that biosecurity authorities should consider the effects of climate change when undertaking pest risk assessments. To prevent the introduction and spread of B. zonata, enhanced quarantine and monitoring measures should be implemented in areas that are projected to be suitable for the establishment of the pest under current and future climatic conditions.  相似文献   

10.
The invasive fruit fly Bactrocera invadens Drew, Tsuruta & White, and the Oriental fruit fly Bactrocera dorsalis (Hendel) are highly destructive horticultural pests of global significance. Bactrocera invadens originates from the Indian subcontinent and has recently invaded all of sub‐Saharan Africa, while B. dorsalis principally occurs from the Indian subcontinent towards southern China and South‐east Asia. High morphological and genetic similarity has cast doubt over whether B. invadens is a distinct species from B. dorsalis. Addressing this issue within an integrative taxonomic framework, we sampled from across the geographic distribution of both taxa and: (i) analysed morphological variation, including those characters considered diagnostic (scutum colour, length of aedeagus, width of postsutural lateral vittae, wing size, and wing shape); (ii) sequenced four loci (ITS1, ITS2, cox1 and nad4) for phylogenetic inference; and (iii) generated a cox1 haplotype network to examine population structure. Molecular analyses included the closely related species, Bactrocera kandiensis Drew & Hancock. Scutum colour varies from red‐brown to fully black for individuals from Africa and the Indian subcontinent. All individuals east of the Indian subcontinent are black except for a few red‐brown individuals from China. The postsutural lateral vittae width of B. invadens is narrower than B. dorsalis from eastern Asia, but the variation is clinal, with subcontinent B. dorsalis populations intermediate in size. Aedeagus length, wing shape and wing size cannot discriminate between the two taxa. Phylogenetic analyses failed to resolve B. invadens from B. dorsalis, but did resolve B. kandiensis. Bactrocera dorsalis and B. invadens shared cox1 haplotypes, yet the haplotype network pattern does not reflect current taxonomy or patterns in thoracic colour. Some individuals of B. dorsalis/B. invadens possessed haplotypes more closely related to B. kandiensis than to conspecifics, suggestive of mitochondrial introgression between these species. The combined evidence fails to support the delimitation of B. dorsalis and B. invadens as separate biological species. Consequently, existing biological data for B. dorsalis may be applied to the invasive population in Africa. Our recommendation, in line with other recent publications, is that B. invadens be synonymized with B. dorsalis.  相似文献   

11.
Since the start of the 20th century, many invasive alien species (IAS) have spread rapidly around the world, causing serious threats to economies, societies and the environment. Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is an important quarantine insect species in many countries that spread around the world over the last century. This review collected information on the distribution of B. dorsalis to explore the patterns of its invasion expansion. We found B. dorsalis to be distributed in 75 countries (comprised of 124 geographical distribution regions: provinces or states) in Asia, Africa, North America, South America and Oceania up to 2017. Asia and Africa were the most represented regions, accounting for 86.3% of the total number of countries. From 1910 to 1990, B. dorsalis was only found in five countries, but in the last three decades, it has experienced a sharp increase in its rate of spread, invading 70 more countries. Global temperature anomaly has significantly positive correlation with the spread of B. dorsalis. The results of this review provide a theoretical basis for understanding and predicting the continued spread of B. dorsalis under global changes.  相似文献   

12.
We examined the responses of oriental fruit flies, Bactrocera dorsalis Hendel, to the odors of different stages and types of fruit presented on potted trees in a field cage. Females were most attracted to odors of soft, ripe fruit. Odors of common guava were more attractive to females than papaya and starfruit, and equally as attractive as strawberry guava, orange, and mango. In field tests, McPhail traps baited with mango, common guava, and orange captured equal numbers of females. Traps baited with mango were compared with 2 commercially available fruit fly traps. McPhail traps baited with mango captured more females than visual fruit-mimicking sticky traps (Ladd traps) and equal numbers of females as McPhail traps baited with protein odors. Results from this study indicate that host fruit volatiles could be used as lures for capturing oriental fruit flies in orchards.  相似文献   

13.
Queensland fruit fly, Bactrocera tryoni (Froggatt), is the economically most significant Australian tephritid pest species with a large invasion potential, yet relatively little work on its biological control has been undertaken. Entomopathogenic nematodes (EPNs) are of potential interest for control of this fruit fly species as it pupates in the soil. Specifically, the pre-pupal stage of B. tryoni may present a unique window for EPN application, as fully developed larvae drop from infested fruit to the soil for pupation. For the first time, we tested the capacity of three EPN species with different foraging strategies, Steinernema feltiae, Steinernema carpocapsae and Heterorhabditis bacteriophora, to cause larval and pupal mortality in B. tryoni across a range of EPN concentrations (50, 100, 200, 500 and 1000 infective juveniles IJs cm-2), substrate moisture (10, 15, 20 and 25% w/v) and temperatures (15, 20, 25 and 30 °C). We found that all EPN species tested caused environment and density dependent mortality in the third larval instar while pupae were not affected. Steinernema feltiae caused high mortality across different IJ concentrations and over a wider moisture and temperature range than the other two EPN species. High mortality caused by S. carpocapsae and H. bacteriophora was more limited to high IJ concentrations and a narrower moisture and temperature range. Our findings highlight the potential of EPNs for the control of B. tryoni and warrant further laboratory and field experiments to evaluate their efficacy under the wide environmental conditions that B. tryoni can occur in.  相似文献   

14.
云南主要有害实蝇种类及区划   总被引:1,自引:0,他引:1  
陈旭  刘晓飞  叶辉 《生态学报》2010,30(3):717-725
采用诱剂诱捕辅以受害瓜果调查的方法,系统梳理了云南有害实蝇类群,确定主要有害种类25种。基于云南自然地理特征,采用聚类分析法深入探讨了云南实蝇区系,提出云南实蝇地理区划可分为德宏、版纳盆谷区,南部边缘中低山宽谷区,滇西南山原峡谷区,中东部高原、岩溶山原区以及北部高原山地区等5大区域。研究发现,受热量条件制约,云南主要有害实蝇类群呈南北向梯度递减;受纵向岭谷区"通道-阻隔"综合作用影响,云南西南部河谷地区是实蝇危害较为严重的区域。首次系统揭示了云南主要有害实蝇的地理分布规律。  相似文献   

15.
The genetic and cytogenetic characteristics of one of the major agricultural pests, the olive fruit fly Bactrocera oleae, are presented here. The mitotic metaphase complement of this insect consists of six pairs of chromosomes including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the polytene complements of three larval tissues, the fat body, the salivary glands and the Malpighian tubules of this pest has shown (a) a total number of five long chromosomes (10 polytene arms) that correspond to the five autosomes of the mitotic nuclei and a heterochromatic mass corresponding to the sex chromosomes, (b) the constancy of the banding pattern of the three somatic tissues, (c) the absence of a typical chromocenter as an accumulation of heterochromatin, (d) the existence of reverse tandem duplications, and (e) the presence of toroid tips of the chromosome arms. The in situhybridization of genes or DNA sequences to the salivary gland polytene chromosomes of B. oleaeprovided molecular markers for all five autosomes and permitted the establishment of chromosomal homologies among B. olea, B. tryoniand Ceratitis capitata. The heat shock response of B. oleae, as revealed by heat-inducible puffing and protein pattern, shows a higher thermotolerance than Drosophila melanogaster.  相似文献   

16.
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a major pest throughout South East Asia and in a number of Pacific Islands. As a result of their widespread distribution, pest status, invasive ability and potential impact on market access, B. dorsalis and many other fruit fly species are considered major threats to many countries. CLIMEX was used to model the potential global distribution of B. dorsalis under current and future climate scenarios. Under current climatic conditions, its projected potential distribution includes much of the tropics and subtropics and extends into warm temperate areas such as southern Mediterranean Europe. The model projects optimal climatic conditions for B. dorsalis in the south-eastern USA, where the principle range-limiting factor is likely to be cold stress. As a result of climate change, the potential global range for B. dorsalis is projected to extend further polewards as cold stress boundaries recede. However, the potential range contracts in areas where precipitation is projected to decrease substantially. The significant increases in the potential distribution of B. dorsalis projected under the climate change scenarios suggest that the World Trade Organization should allow biosecurity authorities to consider the effects of climate change when undertaking pest risk assessments. One of the most significant areas of uncertainty in climate change concerns the greenhouse gas emissions scenarios. Results are provided that span the range of standard Intergovernmental Panel on Climate Change scenarios. The impact on the projected distribution of B. dorsalis is striking, but affects the relative abundance of the fly within the total suitable range more than the total area of climatically suitable habitat.  相似文献   

17.
Bactrocera correcta (Bezzi) is one of the most destructive insect pests of fruits and vegetables in tropical and subtropical regions. At present, this fly is primarily distributed in Southeast Asia. Twelve microsatellite loci were isolated from an enriched genomic library based on a biotin/streptavidin capture protocol. The polymorphism of these loci was tested on 74 individual flies from two natural populations. Allele number ranged from 6 to 14 and 10 loci demonstrated a polymorphic information content (PIC) greater than 0.5. The pairwise F ST value between the two populations was 0.0048 (P > 0.05). These microsatellite loci have potential utility for studies of population genetic structure in this species.  相似文献   

18.
To develop a cold disinfestation treatment for the fruit fly Bactrocera invadens Drew, Tsuruta & White (Diptera: Tephritidae) that is rapidly spreading across Africa, research was conducted in Nairobi, Kenya, using flies from a laboratory culture and 'Valencia' orange (Citrus sinensis L. Osbeck) as the host. The developmental rate of B. invadens in Valencia oranges was determined at 28 degrees C, and the third instar was found to be the least susceptible of the egg and larval life stages to cold treatment at 1.1 degrees C in oranges. When 22,449 B. invadens third instars were exposed in oranges to a cold treatment with an approximate midpoint of 1.1 +/- 0.5 degrees C, the results suggested that a period of 16 d would be worthwhile verifying on a larger scale in oranges. Results from the first replicate of 16,617 larvae showed no survivors, but the second replicate of 23,536 larvae had three survivors. Because a longer cold treatment based on a mean temperature of 1.1 degrees C would create logistical difficulties for some export markets, further replicates were conducted at an approximate midpoint of 0.5 degrees C and at mean hourly maximum of 0.9 +/- 0.5 degrees C, for 16 d. After three replicates, in which 65,752 B. invadens third instars in total were treated with no survivors, the Japanese requirement of 99.99% mortality at the 95% confidence level was surpassed. The following treatment protocol for B. invadens larvae in oranges can therefore be recommended: fruit pulp to be maintained at temperatures of 0.9 degrees C or lower for 16 consecutive days.  相似文献   

19.
Five new autosomal recessive genes are described in the oriental fruit fly, Bactrocera dorsalis (Hendel). These genetic markers are associated into three linkage groups. The matte (mt) gene is linked to the previously described mandarin red (ma) gene, and the white puparium (wp) gene is linked to the white eye (we) and amethyst (am) loci. The third designated linkage group has the yellow eye (ye) marker. The we/we homozygote is epistatic to ye/ye, and each is epistatic to am/am and ma/ma.  相似文献   

20.
在实验室内对橘小实蝇Bactrocera dorsalis(Hendel)的交配行为进行了观察。描述了橘小实蝇交配中雄虫的“求偶场”,雄雄相遇、雌雌相遇、雌雄相遇时的相互反应,雌雄虫的交配行为与交配后行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号