首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wolbachia are maternally inherited endosymbiotic bacteria that infect many arthropod species and may induce cytoplasmic incompatibility (CI) resulting in abortive embryonic development. Among all the described host species, mosquitoes of the Culex pipiens complex display the highest variability of CI crossing types. Paradoxically, searches for polymorphism in Wolbachia infecting strains and field populations hitherto failed or produced very few markers. Here, we show that an abundant source of the long-sought polymorphism lies in WO prophage sequences present in multiple copies dispersed in the genome of Wolbachia infecting C. pipiens (wPip). We identified up to 66 different Wolbachia variants in C. pipiens strains and field populations and no occurrence of superinfection was observed. At least 49 different Wolbachia occurred in Southern Europe C. pipiens populations, and up to 10 different Wolbachia were even detected in a single population. This is in sharp contrast with North African and Cretan samples, which exhibited only six variants. The WO polymorphism appeared stable over time, and was exclusively transferred maternally. Interestingly, we found that the CI pattern previously described correlates with the variability of Gp15, a prophage protein similar to a bacterial virulence protein. WO prophage sequences thus represent variable markers that now open routes for approaching the molecular basis of CI, the host effects, the structure and dynamics of Wolbachia populations.  相似文献   

2.
A type IV secretion system (T4SS) is used by many symbiotic and pathogenic intracellular bacteria for the successful infection of and survival, proliferation, and persistence within hosts. In this study, the presence and function of the T4SS in Wolbachia strains were investigated by a combination of genetic screening and immunofluorescence microscopy. Two operons of virB-virD4 loci were found in the genome of Wolbachia pipientis strain wAtab3, from the Hymenoptera Asobara tabida, and strain wRi, infecting Drosophila simulans. One operon consisted of five vir genes (virB8, virB9, virB10, virB11, and virD4) and the downstream wspB locus. The other operon was composed of three genes (virB3, virB4, and virB6) and included four additional open reading frames (orf1 to orf4) orientated in the same direction. In cell culture and insect hosts infected with different Wolbachia strains, the bona fide vir genes were polycistronically transcribed, together with the downstream adjacent loci, notably, as virB8 to virD4 and wspB and as virB3, virB4, virB6, and orf1 to orf4. Two peptides encompassing conserved C and N termini of the Wolbachia VirB6 protein were used for the production of polyclonal antibodies. Anti-VirB6 antibodies could detect the corresponding recombinant protein by chemifluorescence on Western blots of total proteins from Escherichia coli transformants and Wolbachia strains cultured in cell lines. Using immunofluorescence microscopy, we further demonstrated that the VirB6 protein was produced by Wolbachia strains in ovaries of insects harboring wAtab3 or wRi and cell lines infected with wAlbB or wMelPop. As VirB6 is known to associate with other VirB proteins to form a membrane-spanning structure, this finding suggests that a T4SS may function in Wolbachia.  相似文献   

3.
The pandemic distribution of Wolbachia (alpha-proteobacteria) across arthropods is largely due to the ability of these maternally inherited endosymbionts to successfully shift hosts across species boundaries. Yet it remains unclear whether Wolbachia has preferential routes of transfer among species. Here, we examined populations of eight species of the North American funnel-web spider genus Agelenopsis to evaluate whether Wolbachia show evidence for host specificity and the relative contribution of horizontal vs. vertical transmission of strains within and among related host species. Wolbachia strains were characterized by multilocus sequence typing (MLST) and Wolbachia surface protein (WSP) sequences, and analysed in relation to host phylogeny, mitochondrial diversity and geographical range. Results indicate that at least three sets of divergent Wolbachia strains invaded the genus Agelenopsis. After each invasion, the Wolbachia strains preferentially shuffled across species of this host genus by horizontal transfer rather than cospeciation. Decoupling of Wolbachia and host mitochondrial haplotype (mitotypes) evolutionary histories within single species reveals an extensive contribution of horizontal transfer also in the rapid dispersal of Wolbachia among conspecific host populations. These findings provide some of the strongest evidence to support the association of related Wolbachia strains with related hosts by means of both vertical and horizontal strain transmission. Similar analyses across a broader range of invertebrate taxa are needed, using sensitive methods for strain typing such as MLST, to determine if this pattern of Wolbachia dispersal is peculiar to Agelenopsis (or spiders), or is in fact a general pattern in arthropods.  相似文献   

4.
Wolbachia are intracellular maternally inherited alpha-Proteobacteria infecting a wide range of arthropods. In the common pill bug Armadillidium vulgare, the known Wolbachia strain is responsible for feminization of genetic males. We have investigated Wolbachia diversity in 20 populations of A. vulgare from west and east Europe, north Africa and north America. A new Wolbachia strain (wVulM) was identified through the variability of the wsp gene, distantly related to that previously known (wVulC) in this host species. No individual with multiple infections was detected. Inoculation experiments indicated that the new wVulM bacterial strain also induces feminization in A. vulgare. However, the wVulC strain showed a higher transmission rate than the wVulM strain and was the most geographically widespread Wolbachia in A. vulgare populations. Mitochondrial 16SrDNA gene sequencing was conducted in Wolbachia-infected individuals, revealing the occurrence of four host lineages. The comparison of bacterial strains and their respective host mitochondrial phylogenies failed to show concordance, indicating horizontal transmission of the Wolbachia strains within populations of A. vulgare.  相似文献   

5.
The cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham), is an alien invasive pest of canola, Brassica napus L., in North America. Field populations of both adults and larvae are known to be aggregated in their distributions, but the causal mechanism for this clustering is not understood. We investigated the hypothesis that spatial distributions of C. obstrictus adults, larvae, and their parasitoids were directly or indirectly related to host plant quality as indicated by leaf tissue nutrient contents. During the years of 2005 and 2007, these insect populations were sampled in a grid pattern in three commercial fields of B. napus located near Lethbridge, Alberta, Canada. Leaf samples were collected from plants in each grid plot and analyzed for nutrient contents. Spatial patterns and associations among the collected variables were analyzed using Spatial Analysis by Distance IndicEs software. We observed significant spatial associations among C. obstrictus adults, larvae, and parasitoids. The distributions of C. obstrictus adults and larvae were correlated with several plant nutrients, most notably nitrogen and sulfur. Evidence was found for a possible nitrogen-sulfur interaction in which ovipositioning C. obstrictus females appeared to prefer plants with high levels of sulfur and low levels of nitrogen. Spatial tracking of C. obstrictus larvae by its parasitoids was evident in only one field, and this appeared related to comparatively low parasitoid populations in two of the three fields. The associations between C. obstrictus and plant nutrients may have possible applications in fertility management, trap cropping, and precision insecticide application technology.  相似文献   

6.
Effects of Wolbachia on mtDNA variation in two fire ant species   总被引:1,自引:0,他引:1  
Wolbachia are endosymbiotic bacteria that infect arthropods. As they are maternally transmitted, the spread of Wolbachia variants within host populations may affect host mtDNA evolution. We sequenced a portion of the mitochondrial cytochrome oxidase I gene from numerous individuals of two Wolbachia-infected fire ant species, Solenopsis invicta and S. richteri, to determine how these bacteria influence patterns of mtDNA variation. As predicted, there was a strong association between Wolbachia strain and host mtDNA lineage within and between these fire ant species. However, there was no consistent association between the presence of Wolbachia and a reduction in mtDNA diversity. Moreover, patterns of mtDNA variation within Wolbachia-infected populations did not differ consistently from neutral expectations, despite our prediction that strong positive selection acting on Wolbachia influences the evolutionary dynamics of other cytoplasmic genomes. Specifically, while values of Tajima's D consistently were less than zero for all six samples of fire ants harbouring Wolbachia, MacDonald-Kreitman tests suggested that the patterns of variation were different from those expected under neutrality in only two of the samples. We conclude that these neutrality tests do not unambiguously reveal a clear effect of Wolbachia infection on patterns of mtDNA variation and substitution in fire ants. Finally, consistent with an earlier study, our data revealed the presence of two divergent mtDNA haplotype lineages and Wolbachia strains within S. invicta. Recognition of these two lineages has important consequences for interpreting patterns of mtDNA evolution and genetic differentiation between conspecific social forms of this species.  相似文献   

7.
Genetic diversity of the human gastric pathogen Helicobacter pylori in an individual host has been observed; whether this diversity represents diversification of a founding strain or a mixed infection with distinct strain populations is not clear. To examine this issue, we analyzed multiple single-colony isolates from two to four separate stomach biopsies of eight adult and four pediatric patients from a high-incidence Mexican population. Eleven of the 12 patients contained isolates with identical random amplified polymorphic DNA, amplified fragment length polymorphism, and vacA allele molecular footprints, whereas a single adult patient had two distinct profiles. Comparative genomic hybridization using whole-genome microarrays (array CGH) revealed variation in 24 to 67 genes in isolates from patients with similar molecular footprints. The one patient with distinct profiles contained two strain populations differing at 113 gene loci, including the cag pathogenicity island virulence genes. The two strain populations in this single host had different spatial distributions in the stomach and exhibited very limited genetic exchange. The total genetic divergence and pairwise genetic divergence between isolates from adults and isolates from children were not statistically different. We also analyzed isolates obtained 15 and 90 days after experimental infection of humans and found no evidence of genetic divergence, indicating that transmission to a new host does not induce rapid genetic changes in the bacterial population in the human stomach. Our data suggest that humans are infected with a population of closely related strains that vary at a small number of gene loci, that this population of strains may already be present when an infection is acquired, and that even during superinfection genetic exchange among distinct strains is rare.  相似文献   

8.
Wolbachia are bacteria that live intracellularly in a wide variety of arthropods. They are maternally inherited and can affect both reproduction and fitness of its host. When infected males mate with uninfected females or females infected by a different Wolbachia strain, there is often a failure of karyogamy, which is usually attributed to cytoplasmic incompatibility (CI). We measured the strength of CI induced by Wolbachia and the fitness effects in three Chinese populations of the brown planthopper Nilaparvata lugens from Hainan, Yunnan, and Guangxi provinces, respectively. No evidence for CI was found in any of the populations, whereas an enhanced fecundity and shortened longevity were observed only in the Hainan population. The infection density was significantly higher in the Hainan population than in the Guangxi population. The Wolbachia strain infecting the three populations appeared to be the same based on the nucleotide sequence of the wsp gene. Therefore, the variable effects of Wolbachia on host fitness seem to be the result of differences in the host genetic background and Wolbachia infection density. The ability of the non-CI-inducing Wolbachia to maintain themselves in their hosts may be attributed to their positive effects on host fecundity and efficient maternal transmission.  相似文献   

9.
It was recently recognized that in Japan, the common yellow butterfly, Eurema hecabe, consists of two sibling species, which have been unnamed yet and tentatively called yellow (Y) type and brown (B) type. We investigated the diversity of nuclear and mitochondrial genes in Japanese populations of Y type and B type of E. hecabe. The phylogeny based on nuclear genes agreed with the distinction between Y type and B type, which had been also supported by a wide array of biological data. However, the phylogeny based on mitochondrial genes did not reflect the distinction. PCR survey of Wolbachia revealed that B-type populations were all infected while Y-type populations contained both infected and uninfected individuals. A single genotype of Wolbachia, which was inferred to be a CI-inducing strain from their wsp gene sequence, was prevalent in these populations. Notably, the mitochondrial phylogeny was in perfect agreement with the pattern of Wolbachia infection, suggesting that the Wolbachia infection had affected the mitochondrial genetic structure of the host insects. Probably, the Wolbachia strain and the associated mitochondrial genomes have been occasionally introduced from B-type populations to Y-type populations through migration and subsequent interspecific hybridization, and CI-driven population sweep has been spreading the Wolbachia strain and the particular mitochondrial haplotypes, which originated from B-type populations, into Y-type populations. On the basis of these results together with the geological and biogeographical knowledge of the Japanese Archipelago, we proposed an evolutionary hypothesis on the invasion and spread of Wolbachia infection in B-type and Y-type of E. hecabe.  相似文献   

10.
The mode and tempo of host-parasite evolution depend on population structure and history and the strength of selection that the species exert on each other. Here we genetically and epidemiologically characterize populations of the mycophagous fly Drosophila innubila and its male-killing Wolbachia endosymbiont, with the aim of integrating the local through global nature of this association. Drosophila innubila inhabit the forested "sky island" regions of the of the southwestern United States and northern Mexico, where its distribution is highly fragmented. We examine geographically isolated sky island populations of D. innubila, surveying the frequency and expression of Wolbachia infection as well as the distribution of genetic variation within and among populations of the host and parasite. In all populations, Wolbachia infection is associated with virtually complete male-killing, thus providing no evidence for the evolution of population-specific interaction phenotypes or local resistance. Although Wolbachia infection occurs in each of the main populations, there is variation among populations in the prevalence of infection and the resulting population-level sex ratio of D. innubila. Among these populations, the nuclear genes of D. innubila show moderate, though significant, differentiation. In contrast, the host mitochondrial DNA (mtDNA), which shares transmission with Wolbachia, exhibits substantially greater geographic differentiation, even after accounting for differences in transmission between nuclear and mitochondrial genes. We suggest that this pattern is caused by local Wolbachia--but not D. innubila--fluctuations in prevalence that increase the severity of drift experienced only by the mtDNA. Overall, our data suggest that the association between D. innubila and male-killing Wolbachia is ecologically dynamic within local populations, but evolutionarily coherent across the species as a whole.  相似文献   

11.
Wolbachia are widespread cytoplasmically inherited bacteria that induce various reproductive alterations in host arthropods, including cytoplasmic incompatibility (CI), an incompatibility between sperm and egg that typically results in embryonic death. CI has been invoked as a possible mechanism for reproductive isolation and speciation in arthropods, by restricting gene flow and promoting maintenance (and evolution) of genetic divergence between populations. Here we investigate patterns of Wolbachia infection and nuclear and mitochondrial differentiation in geographical populations of the birdnest blowfly Protocalliphora sialia. Blowflies in western North America are infected with two A-group Wolbachia, with some individuals singly and others doubly infected. Individuals in eastern North America mostly show single infections with a B-group Wolbachia. Populations in the Midwest are polymorphic for infections and show A- or B-group infection. There is a low level of mitochondrial divergence and perfect concordance of mitochondrial haplotype with infection type, suggesting that two Wolbachia-associated selective sweeps of the mitochondrion have occurred in this species. Amplified fragment length polymorphism analysis of nuclear genetic variation shows genetic differentiation between the eastern-Midwestern and western populations. Both Midwestern and eastern flies infected with A-Wolbachia show eastern nuclear genetic profiles. Current results therefore suggest that Wolbachia has not acted as a major barrier to gene flow between western and eastern-Midwestern populations, although some genetic differentiation between A-Wolbachia infected and B-Wolbachia infected individuals in eastern-Midwestern populations cannot be ruled out.  相似文献   

12.
Each individual of all populations of the thelytokous species Trichogramma cordubensis is infected by Wolbachia . Populations are composed of females, a few rare males and some intersexual or gynandromorphic individuals often capable of normal reproduction as females. Antibiotic (minocycline) and high temperature (30°C) treatments inactivate Wolbachia and induce male production. After these treatments, the sex ratio depending on the remaining frequency of thelytoky shows a genetic variability. Effect of cycles with and without treatments (minocycline or 30°C) on the thelytokous reproduction of 'individuals' (one 'individual' being one Trichogramma + n Wolbachia ) was studied. The resistance of thelytokous reproduction to 30°C but not to minocycline, probably due to Wolbachia genes, increased. It is concluded that potentialities of adaptation to high temperature exist in Wolbachia and can explain a part of the spreading of these symbionts among host populations.  相似文献   

13.
Fry AJ  Palmer MR  Rand DM 《Heredity》2004,93(4):379-389
Maternally inherited Wolbachia bacteria are extremely widespread among insects and their presence is usually associated with parasitic modifications of host fitness. Wolbachia pipientis infects Drosophila melanogaster populations from all continents, but their persistence in this species occurs despite any strong parasitic effects. Here, we have investigated the symbiosis between Wolbachia and D. melanogaster and found that Wolbachia infection can have significant survival and fecundity effects. Relative to uninfected flies, infected females from three fly strains showed enhanced survival or fecundity associated with Wolbachia infection, one strain showed both and one strain responded positively to Wolbachia removal. We found no difference in egg hatch rates (cytoplasmic incompatibility) for crosses between infected males and uninfected females, although there were fecundity differences. Females from this cross consistently produced fewer eggs than infected females and these fecundity differences could promote the spread of infection just like cytoplasmic incompatibility. More surprising, we found that infected females often had the greatest fecundity when mated to uninfected males. This could also promote the spread of Wolbachia infection, though here the fitness benefits would also help to spread infection when Wolbachia are rare. We suggest that variable fitness effects, in both sexes, and which interact strongly with the genetic background of the host, could increase cytoplasmic drive rates in some genotypes and help explain the widespread persistence of Wolbachia bacteria in D. melanogaster populations. These interactions may further explain why many D. melanogaster populations are polymorphic for Wolbachia infection. We discuss our results in the context of host-symbiont co-evolution.  相似文献   

14.
The chinook salmon (Oncorhynchus tschawytscha) is a behaviorally, morphologically, and ecologically variable species distributed over a large geographic range. Although previous genetic surveys have revealed considerable genetic differences among populations with different life history types and from different major river drainages, it is not clear to what degree these genetically distinct populations are connected by low levels of gene flow. The work described in this paper addresses this question by surveying DNA restriction site variation at six nuclear genes from nine populations encompassing most of the species's North American range, and then attempting to fit the patterns of variation observed at these genes to five different evolutionary models using computer simulations of the coalescent process. Two commonly used constant population size models, one hypothesizing no migration among populations and one hypothesizing equal rates of migration among populations, were found to be statistically inconsistent with the observed patterns of variation. The other three models, which involved either recent divergence among populations coupled with large changes in populations size, unequal migration rates among populations, or selection, were all found to be consistent with the observed patterns of variation. Assuming selective neutrality, these results suggest that either the populations have all descended from a common ancestral population within the last ~50,000 years and have all suffered large declines in effective population size since that time, or that they have a more ancient divergence time but are connected by low levels of gene flow. These conclusions rest on the assumption of selective neutrality. With the methods employed, it was not possible to simultaneously test hypotheses of both selective neutrality and population structure.  相似文献   

15.
[目的]双斑长跗萤叶甲Monolepta hieroglyphica为多食性害虫,可取食为害多种农作物.本研究旨在探究中国南方地区分布的双斑长跗萤叶甲地理种群的遗传多样性、遗传结构及种群间的遗传分化程度与基因流水平,探究共生菌Wolbachia 在中国南方双斑长跗萤叶甲地理种群中的多样性和感染情况.[方法]以线粒体CO...  相似文献   

16.
Intraspecific genetic variation of Echinococcus multilocularis, the etiologic agent of human alveolar echinococcosis, has been evaluated among 76 geographic isolates from Europe, Asia and North America by using sequence data of mitochondrial and nuclear DNA. Relatively low genetic variation was found only in the mitochondrial DNA sequence consisting of 3 protein-coding genes. Pairwise divergence among the resultant 18 haplotypes ranged from 0.03 to 1.91%. Phylogenetic trees and parsimony network of these haplotypes depicted a geographic division into European, Asian and North American clades, but 1 haplotype from Inner Mongolia was unrelated to other haplotypes. The coexistence of the Asian and North American haplotypes could be seen, particularly on the St. Lawrence Island in the Bering Sea. These data suggest an evolutionary scenario in which distinct parasite populations derived from glacial refugia have been maintained by indigenous host mammals. The nuclear DNA sequence for the immunodominant B cell epitope region of ezrin/radixin/moesin-like protein (elp) was extremely conservative, indicating that the elp antigen is available for immunodiagnosis in any endemic areas.  相似文献   

17.
BACKGROUND: Wolbachia and Cardinium are endosymbiotic bacteria infecting many arthropods and manipulating host reproduction. Although these bacteria are maternally transmitted, incongruencies between phylogenies of host and parasite suggest an additional role for occasional horizontal transmission. Consistent with this view is the strong evidence for recombination in Wolbachia, although it is less clear to what extent recombination drives diversification within single host species and genera. Furthermore, little is known concerning the population structures of other insect endosymbionts which co-infect with Wolbachia, such as Cardinium. Here, we explore Wolbachia and Cardinium strain diversity within nine spider mite species (Tetranychidae) from 38 populations, and quantify the contribution of recombination compared to point mutation in generating Wolbachia diversity. RESULTS: We found a high level of genetic diversity for Wolbachia, with 36 unique strains detected (64 investigated mite individuals). Sequence data from four Wolbachia genes suggest that new alleles are 7.5 to 11 times more likely to be generated by recombination than point mutation. Consistent with previous reports on more diverse host samples, our data did not reveal evidence for co-evolution of Wolbachia with its host. Cardinium was less frequently found in the mites, but also showed a high level of diversity, with eight unique strains detected in 15 individuals on the basis of only two genes. A lack of congruence among host and Cardinium phylogenies was observed. CONCLUSIONS: We found a high rate of recombination for Wolbachia strains obtained from host species of the spider mite family Tetranychidae, comparable to rates found for horizontally transmitted bacteria. This suggests frequent horizontal transmission of Wolbachia and/or frequent horizontal transfer of single genes. Our findings strengthens earlier reports of recombination for Wolbachia, and shows that high recombination rates are also present on strains from a restrictive host range. Cardinium was found co-infecting several spider mite species, and phylogenetic comparisons suggest also horizontal transmission of Cardinium among hosts.  相似文献   

18.
铃木氏果蝇不同地理种群中Wolbachia的检测和系统发育分析   总被引:1,自引:0,他引:1  
于毅  王静  陶云荔  国栋  褚栋 《昆虫学报》2013,56(3):323-328
铃木氏果蝇Drosophila suzukii是原产于东南亚地区的重要果树害虫, 近年来传入北美和欧洲等地区造成严重的危害。本研究利用Wolbachia的16S rDNA和wsp基因特异引物(分别为16S-F/16S-R和81F/691R)对铃木氏果蝇7个地理种群(中国的5个种群、 韩国的1个种群和美国的1个种群)的Wolbachia进行了PCR检测并对检测结果进行了比较; 对感染个体体内Wolbachia的16S rDNA基因片段进行测序, 确定了我国铃木氏果蝇体内Wolbachia的分类地位。基于Wolbachia的16S rDNA基因特异引物检测结果发现, 我国5个铃木氏果蝇种群广泛感染Wolbachia(感染率36.7%~80.0%), 而韩国和美国2个种群均未检测到该菌的感染。而利用wsp基因特异引物无法检测到该菌。基于Wolbachia的16S rDNA基因构建系统发育树表明, 我国铃木氏果蝇种群感染的Wolbachia全部属于A组。这些结果为研究Wolbachia感染对铃木氏果蝇生物学及生态学的影响奠定了基础。  相似文献   

19.
Host–parasite coevolution is considered to be an important factor in maintaining genetic variation in resistance to pathogens. Drosophila melanogaster is naturally infected by the sigma virus, a vertically transmitted and host‐specific pathogen. In fly populations, there is a large amount of genetic variation in the transmission rate from parent to offspring, much of which is caused by major‐effect resistance polymorphisms. We have found that there are similarly high levels of genetic variation in the rate of paternal transmission among 95 different isolates of the virus as in the host. However, when we examined a transmission‐blocking gene in the host, we found that it was effective across virus isolates. Therefore, the high levels of genetic variation observed in this system do not appear to be maintained because of coevolution resulting from interactions between this host gene and parasite genes.  相似文献   

20.
沃尔巴克氏体Wolbachia为母系传播的胞内共生菌,可通过对宿主产生多种调控方式扩大其自身在宿主种群的传播。据推测,有40%~60%的节肢动物都感染有Wolbachia,并可根据不同株系间的系统发育关系将其分为多个超群。为了有助于深入研究Wolbachia对其宿主的调控方式及其调控机制及提出更为有效的害虫生物防治策略,本文综述了节肢动物内共生菌Wolbachia的研究现状。1924年Wolbachia被报道首次发现于尖音库蚊Culex pipiens的生殖组织中,1971年确认其与宿主的胞质不亲和现象有关。Wolbachia可以通过胞质不亲和、杀雄、雌性化、孤雌生殖等作用方式调控宿主的生殖。除生殖调控之外,Wolbachia对宿主的调控方式还包括调控宿主新陈代谢、抵制病原菌、影响宿主生殖力等。Wolbachia调控的胞质不亲和现象可用“修饰-营救”(modification-rescue)模型解释,且已有与Wolbachia诱导宿主胞质不亲和相关的功能基因被报道。wMel株系是首个公布全基因组序列的Wolbachia株系,随后又有数十种不同株系的Wolbachia基因组陆续被破译。wMel株系Wolbachia可起到抑制登革热病毒传播的作用;同时,Wolbachia和昆虫不育技术的结合对白纹伊蚊Aedes albopictus野外种群起到良好的控制效果。鉴于目前节肢动物内共生菌Wolbachia的研究现状,我们认为未来应开展以下研究:(1)Wolbachia基因组及生殖调控作用关键功能基因的研究;(2)Wolbachia与宿主间互作机制的研究;(3)Wolbachia在生物防治方面的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号