首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extraction of a relatively large molecular weight protein, bovine serum albumin (BSA), using nano-sized reverse micelles of nonionic surfactant polyoxyethylene p-t-octylphenol (Triton-X-100) is attempted for the first time. Suitability of reverse micelles of anionic surfactant sodium bis (2-ethyl hexyl) sulfosuccinate (AOT) and Triton-X-100/AOT mixture in organic solvent toluene for BSA extraction is also investigated. Although, the size of the Triton-X-100 reverse micelle in toluene is large enough to host BSA molecule in the hydraulic core, the overall extraction efficiency is found to be low, which may be due to lack of strong driving force. AOT/toluene system resulted in complete forward extraction at aqueous pH 5.5 and a surfactant concentration of 160 mM. The back extraction with aqueous phase (pH 5.5) resulted in 100% extraction of BSA from the organic phase. The addition of Triton-X-100 to AOT reduced the extraction efficiency of AOT reverse micelles, which may be attributed to reduced hydrophobic interaction. The circular dichroism (CD) spectrum of BSA extracted using AOT/toluene reverse micelles indicated the structural stability of the protein extracted.  相似文献   

2.
Solubilizing water involved in protein extraction using reversed micelles   总被引:4,自引:0,他引:4  
The extraction of protein using reversed micelles was investigated in relation to the amount of solubilizing water in the reversed micellar organic phase. The minimal concentration of amphiphilic molecule di-2-ethylhexyl sodium sulfosuccinate (C(20)H(37)O(7)Na) (AOT) required for 100% cytochrome c extraction was recognized. This critical AOT concentration increased with protein concentration in the aqueous phase. On this minimal AOT condition, the molar ratio of solubilizing water to extracted protein was found to be a constant of 3500 under C(KCI) = 1.0 x 10(2) mol . m(-3) in this system. This ratio means the hydrophillic surroundings required for extracting one protein molecule into the micellar organic phase under the suitable pH and salt concentration for the forward extraction. In this regard, AOT molecules seemed to take the part of water solubilizing agent in the reversed micellar extraction. This role of AOT is important to extract protein under the suitable pH and salt concentration. The amount of solubilizing water in the protein-containing system was larger than in the protein-free system. This difference shows that the water molecules accompany the extracted protein into the reversed micellar organic phase at constant ratio 2200 under C(KCI) = 1.0 x 10(2) mol . m(-3), i.e., accompanying water molecules per one extracted protein. The minimal AOT concentration increased with ionic strength. On this minimal AOT condition, the molar ratio of solubilizing water to extracted protein also increased with ionic strength, so that in higher ionic strength, more solubilizing water was required. Then more AOT was required to provide the hydrophillic surroundings for protein. The pH affected the minimal AOT concentration required for 100% protein extraction.  相似文献   

3.
In the system composed of the cationic surfactant TOMAC (10 mM), the nonionic (co)surfactant Rewopal HV5 (2 mM), and octanol (0.1% v/v) in isooctane, reversed micelles are formed upon contact with an aqueous phase containing 50 mM ethylene diamine. alpha-Amylase can be transferred from the aqueous phase into reversed micelles in the pH range 9.5 to 10.5 and re-extracted into a second aqueous phase of different composition. The size of the reversed micelles (as reflected in the water content of the organic phase) can be varied by changes in percentage of octanol, type of counterion in the aqueous phase, or in the number of ethoxylate head groups of the nonionic surfactant. An increase in size results in transfer at lower pH values. Experiments in which the charge density in the reversed micellar interface was changed by incorporation of charged derivatives of the nonionic surfactant, without influencing the water content, revealed that an increased charge density facilitated transfer, resulting in a broader transfer profile. Replacement of TOMAC by other quaternary ammonium surfactants differing in number and length of tails revealed that, of the 14 surfactants tested, only 2 gave appreciable amounts of transfer. The amount of transfer is related to the dynamics of phase separation of the surfactants: those giving a poor phase separation inactivate the enzyme. This inactivation is caused by electrostatic interactions between the charged surfactant head groups and charged groups on the enzyme. Electrostatic interactions are the first step of transfer, and can result in either incorporation in a reversed micelle, or, if reversed micelle formation is slow, in enzyme inactivation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

4.
This work deals with the extraction and back-extraction of a recombinant cutinase using AOT reversed micelles in isooctane. The effect of pH, ionic strength, AOT concentration and temperature on the extraction and back-extraction of the cutinase was investigated. High extraction (97%) of the cutinase was achieved at pH 7.0 with a 50 mM Tris-HCl buffer solution containing 100 mM KCl, but a low activity was detected in the reversed micellar phase. At pH 9.0, cutinase was extracted (75%) to the reversed micelles with higher activity. Cutinase was recovered (50%) from a reversed micellar phase (100 mM AOT/isooctane) into a 50 mM Tris-HCl buffered solution at pH 9.0 with 100 mM KCl, and 20°C. Protein and cutinase activity global yields of 38 and 45%, respectively, were obtained for the global process, extraction and back-extraction steps, using low ionic strength, pH 9.0, 100 mM AOT and 20°C.Maria das Graças Carneiro da Cunha acknowledges a Ph.D. fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Centro de Pesquisas Aggeu Magalhães, Brasil. This work was partly financed by the BRIDGE Programme (Contract BIOT-CT91-0274(DTEE)).  相似文献   

5.
In this work, the forward and back extraction of soybean protein by reverse micelles was studied. The reverse micellar systems were formed by anionic surfactant sodium bis(2-ethyl hexyl) sulfosuccinate (AOT), isooctane and KCl solution. The effects of AOT concentration, aqueous pH, KCl concentration and phase volume ratio on the extraction efficiency of soybean protein were tested. Suitability of reverse micelles of AOT and Triton-X-100/AOT mixture in organic solvent toluene for soybean protein extraction was also investigated. The experimental results lead to complete forward extraction at the AOT concentration 120 mmol l−1, aqueous pH 5.5 and KCl concentration 0.8 mol l−1. The backward extraction with aqueous phase (pH 5.5) resulted in 100% extraction of soybean protein from the organic phase.  相似文献   

6.
TRPO-AOT 反胶团体系萃取牛血红蛋白的研究   总被引:3,自引:0,他引:3  
  相似文献   

7.
Summary A continuous perforated rotating disc contactor was used for the extraction of a recombinant cutinase from an aqueous solution to a reversed micellar phase of AOT in isooctane. Cutinase was extracted to the organic phase with protein yield of 78% after 70 minutes of operation.  相似文献   

8.
By using trypsin as the model protein and AOT as the model surfactant, the effect of a variety of solvents on protein transfer and activity recovery during the liquid-liquid reversed micellar extraction was investigated. It was found that several solvents, including isooctane, octane, heptane, and kerosene, had a similar effect on the recovery of trypsin activity after a full cycle of forward and backward extraction, and could all be used as the solvents for AOT-reversed micelles in trypsin extraction. Two other solvents (hexane and cyclohexane), however, were not so efficient. (c) 1995 John Wiley & Sons, Inc.  相似文献   

9.
Protein refolding in reversed micelles   总被引:8,自引:0,他引:8  
A novel process has been developed which uses reversed micelles to isolate denatured protein molecules from each other and allows them to refold individually. These reversed micelles are aqueous phase droplets stabilized by the surfactant AOT and suspended in isooctane. By adjusting conditions such that only one protein molecule is present per reversed micelle, it was possible to achieve independent folding without encountering the problem of aggregation due to interactions with neighboring molecules. The feasibility of this process was demonstrated using bovine pancreatic ribonuclease A as a model system. It was shown that denatured and reduced ribonuclease can be transferred from a buffered solution containing guanidine hydrochloride into reversed micelles to a greater extent than native enzyme under the same conditions. The denaturant concentration can then be significantly reduced in the reversed micellar phase, while retaining most of the protein, by means of extractive contacting stages with a denaturant-free aqueous solution. Denatured and reduced ribonuclease will subsequently recover full activity inside reversed micelles within 24 h upon addition of a mixture of reduced and oxidized glutathione to reoxidize disulfide bonds. Extraction of this refolded enzyme from reversed micelles back into aqueous solution can be accomplished by contacting the reversed micelle phase with a high ionic strength (1.0M KCl) aqueous solution containing ethyl acetate.  相似文献   

10.
The back-extraction of proteins encapsulated in AOT reverse micelles was performed by adding a counterionic surfactant, either TOMAC or DTAB. This novel backward transfer method gave higher backward extraction yields compared to the conventional method with high salt and high pH of the aqueous stripping solution. The protein activity was maintained in the resulting aqueous phase, which in this case had a near neutral pH and low salt concentration. A sharp decrease of the water content was observed in the organic phase corresponding to protein back-extraction using TOMAC. The backward transfer mechanism was postulated to be caused by electrostatic interaction between oppositely charged surfactant molecules, which lead to the collapse of the reverse micelles. The back-extraction process with TOMAC was found to be very fast; more than 100 times faster than back-extraction with the conventional method, and as much as 3 times faster than forward extraction. The formation of 1:1 complexes of AOT and TOMAC in the solvent phase was observed, and these hydrophobic complexes could be efficiently removed from the solvent using adsorption onto Montmorillonite in order for the organic solvent to be reused. A second cationic surfactant, DTAB, confirmed the general applicability of counterionic surfactants for the backward transfer of proteins.  相似文献   

11.
Phase transfer studies were conducted to evaluate the solubilization of soy hull peroxidase (SHP) in reverse micelles formed in isooctane/butanol/hexanol using the cationic surfactant cetyltrimethylammonium bromide (CTAB). The effect of various parameters such as pH, ionic strength, surfactant concentration of the initial aqueous phase for forward extraction and buffer pH, type and concentration of salt, concentration of isopropyl alcohol and volume ratio for back extraction was studied to improve the efficiency of reverse micellar extraction. The active SHP was recovered after a complete cycle of forward and back extraction. A forward extraction efficiency of 100%, back extraction efficiency of 36%, overall activity recovery of 90% and purification fold of 4.72 were obtained under optimised conditions. Anionic surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) did not yield good results under the conditions studied. The phase transfer of soy hull peroxidase was found to be controlled by electrostatic and hydrophobic interactions during forward and back extraction respectively.  相似文献   

12.
Lectin from crude extract of small black kidney bean (Phaseolus vulgaris) was successfully extracted using the reversed micellar extraction (RME). The effects of water content of organic phase (Wo), ionic strength, pH, Aerosol-OT (AOT) concentration and extraction time on the forward extraction and the pH and ionic strength in the backward extraction were studied to optimize the extraction efficiency and purification factor. Forward extraction of lectin was found to be maximum after 15 min of contact using 50 mM AOT in organic phase with Wo 27 and 10 mM citrate-phosphate buffer at pH 5.5 containing 100 mM NaCl in the aqueous phase. Lectin was backward extracted into a fresh aqueous phase using sodium-phosphate buffer (10 mM, pH 7.0) containing 500 mM KCl. The overall yield of the process was 53.28% for protein recovery and 8.2-fold for purification factor. The efficiency of the process was confirmed by gel electrophoresis analysis.  相似文献   

13.
Proteins (bovine serum albumin (BSA), α‐chymotrypsin, cytochrome c, and lysozyme) were extracted from 0.5 to 2.0 g L?1 aqueous solution by adding an equal volume of isooctane solution that contained a surfactant mixture (Aerosol‐OT, or AOT, and a 1,3‐dioxolane (or cyclic ketal) alkyl ethoxylate, CK‐2,13‐E5.6), producing a three‐phase (Winsor‐III) microemulsion with a middle, bicontinuous microemulsion, phase highly concentrated in protein (5–13 g L?1) and small in volume (12–20% of entire volume). Greater than 90% forward extraction was achieved within a few minutes. Robust W‐III microemulsion systems were formulated at 40°C, or at 25°C by including a surfactant with shorter ethoxylate length, CK‐2,13‐E3, or 1.5% NaCl (aq). Successful forward extraction correlated with high partitioning of AOT in the middle phase (>95%). The driving force for forward extraction was mainly electrostatic attractions imposed by the anionic surfactant AOT, with the exception of BSA at high ionic strength, which interacted via hydrophobic interactions. Through use of aqueous stripping solutions of high ionic strength (5.0 wt %) and/or pH 12.0 (to negate the electrostatic attractive driving force), cytochrome c and α‐chymotrypsin were back extracted from the middle phase at >75% by mass, with the specific activity of recovered α‐chymotrypsin being >90% of its original value. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

14.
Experiments are reported here on the equilibrium partitioning of lysozyme and ribonuclease-a between aqueous and reversed micellar phases comprised of an anionic surfactant, sodium di-2-ethylhexyl sulfosuccinate (AOT), in isooctane. A distinct maximum, [P](rm,max) was found for the quantity of a given protein that can be solubilized in the reverse micelle phase by the phase-transfer method. This upper limit depended upon the size of the protein, the surfactant concentration, and the aqueous phase ionic strength, and was determined by complex formation between protein and surfactant molecules to form an insoluble interfacial precipitate at high values of [P](rm). In this work, it was found to be possible to dissociate the protein-surfactant complex and recover the precipitated protein. The kinetics of protein-surfactant complex formation depended upon the nature and concentration of the solubilized protein and on the surfactant concentration. Calculations of micellar occupancy and the relative surface areas of protein molecules and surfactant head-groups suggested that it was the exposure of the solubilized protein to the bulk organic solvent which promoted protein-surfactant complex formation as [P](rm) --> [P](rm,max). In the light of the experimental results and calculations described above, a mechanistic model is proposed to account for the observed phenomena. This is based upon the competing effects of increasing the solubilized protein concentration and the corresponding increase in the rate of protein-surfactant complex formation. The dynamic nature of the reverse micelles is inherent in the model, explaining the formation of the interfacial precipitate with time and its dependence on the internal phase volume of the micellar phase. Experiments on the co-partitioning of water and measurement ofthe AOT concentration in both phases verified the loss of protein, water, and surfactant from the organic phase at high values of [P](rm). (c) 1995 John Wiley & Sons Inc.  相似文献   

15.
A method for the simultaneous extraction of oil and proteins from vegetable meals is presented. The method uses hydrocarbon reverse micelles, so that the oil is extracted directly into the hydrocarbon phase and the proteins are solubilized in the water pools of the reverse micelles. The surfactant used is bis (2-ethylhexyl) sodium sulfosuccinate (AOT) in isooctane at variable w(0) values (w(0) measures the amount of water in the system, where w(0) = [H(2)O]/[AOT]). A comparison with the usual extraction methods is offered. It is shown that with the micelle system the extraction of oil is as large as with the usual methods, and it is independent of w(0). However the amount and type of proteins extracted depends strongly on w(0). At w(0) values below 6, no protein and only low molecular weight compounds (i.e. chlorogenic acid) are extracted, at larger water content (i.e. by increasing the dimension of the micelle water pool), also proteins are solubilized in a significant amount and with a molecular weight which increases by increasing W(0). The protein solubilized in the microemulsion system can be recovered into an aqueous phase with a back-transfer step.  相似文献   

16.
A new type of liquid emulsion membrane containing reversed micelles for protein extraction is introduced. A three-step extraction mechanism is proposed including solubilization, transportation, and release of the protein. The surfactants Span80 and sodium di(2-ethylhexyl)sulfosuccinate (AOT) are used to stabilize the membrane phase and to build up the reversed micelles, respectively. alpha-Chymotrypsin was used as the model protein. The condition in the internal phase inhibits the solubilization process of the already extracted protein back into reversed micelles. Concerning the solubilization, we studied the influence of the AOT concentration in the membrane phase and the ionic strength in the external phase. The extraction rate increases with higher AOT concentration and decreases with higher ionic strength. Using NaCl in the external phase led to better extraction results than using KCl. Maximum extraction results of 98% into the membrane phase and 65% into the internal phase were obtained. This condition retained 60% of the enzyme's activity. The concentration of KCl in the internal phase does not affect the solubilization rate but the release into the internal phase. By this way the ionic strength in the internal phase is used as the driving force for the protein release. The solubilization process is much faster than the diffusion and the releasing process, as found by variation of the extraction time. The influence of the operating conditions on the membrane swelling is also discussed. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 267-273, 1997.  相似文献   

17.
Proteins are spontaneously transferred from an aqueous solution into reversed micelles, provided the aqueous phase has the proper composition. Besides the composition of the aqueous phase, the composition of the organic phase and the properties of the proteins also play a role. We studied uptake profiles of 19 proteins as a function of pH of the aqueous solution. The organic phase consisted of trioctylmethylammonium chloride and nonylphenol pentaethoxylate (Rewopal HV5) as surfactant, octanol as cosurfactant and isooctane as continuous phase. In all cases, except for rubredoxin, proteins were transferred at pH values above their isoelectric point. The pH where maximal solubilization takes place can be described by the relationship: pHoptimum = isoelectric point +0.11 x 10(-3) Mr -0.97. So, the larger the protein, the more charge is needed to provide the energy required for the adaptation of the micellar size to the protein size. For protein transfer into sodium di-(2-ethylhexyl)sulphosuccinate (AOT) reversed micelles a similar relationship was found. The percentage of protein transferred could be related to the symmetry of charge distribution over the protein. This symmetry was expressed as the % of random electric moments on a protein that is larger than the effective electric moment of the protein (% S) [Barlow, D. J. and Thornton, J. M. (1986) Biopolymers 25, 1717]. The larger the value of % S, the more homogeneously the charges are distributed and the lower the percentage transfer.  相似文献   

18.
We have used the enhanced green fluorescent protein (EGFP) to investigate the properties of surfactant-entrapped water pools in organic solvents (reversed micelles) with steady-state and time-resolved fluorescence methods. The surfactant used was sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and the organic solvents were isooctane and (the more viscous) dodecane, respectively. The water content of the water pools could be controlled through the parameter w0, which is the water-to-surfactant molar ratio. With steady-state fluorescence, it was observed that subtle fluorescence changes could be noted in reversed micelles of different water contents. EGFP can be used as a pH-indicator of the water droplets in reversed micelles. Time-resolved fluorescence methods also revealed subtle changes in fluorescence decay times when the results in bulk water were compared with those in reversed micelles. The average fluorescence lifetimes of EGFP scaled with the relative fluorescence intensities. Time-resolved fluorescence anisotropy of EGFP in aqueous solution and reversed micelles yielded single rotational correlation times. Geometrical considerations could assign the observed correlation times to dehydrated protein at low w0 and internal EGFP rotation within the droplet at the highest w0.  相似文献   

19.
Selective separation and purification of two lipases form Chromobacterium viscosum were carried out by liquid-liquid extraction using a reversed micellar system. Optimum parameters for extraction were determined using a 250 mM AOT micellar solution in isooctane. Complete separation of the two lipases was achieved at pH 6.0 with a 50mM potassium phosphate buffer solution containing 50 mM KCI. By adding 2.5% by volume of ethanol to the lipase-loaded micellar solution, 85% of the extracted lipase could be recovered in a new aqueous phase, 50 mM K(2)HPO(4) with 50 mM KCl, at pH 9.0. Lipase A was purified 2.6-fold with a recovery of 86%, and lipase B by 1.5-fold with a recovery of 76%.  相似文献   

20.
This work reports on the continuous extraction of a recombinant cutinase with reversed micelles using a perforated rotating disc contactor. Intracellular cutinase was directly extracted at 20°C with 100 mM AOT in isooctane from complex biological media of Escherichia coli disrupted cells. The optimal conditions for the direct extraction of the enzyme from media containing cell debris led to an extraction yield of 54.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号