首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Summary The ultrastructural localization of acid phosphatase activity was investigated in ultrathin (0.05 m) and semithin (0.5 m) sections of the small intestinal epithelial cells of postnatal rats. Until around the 15th day of neonatal life acid phosphatase activity in the duodenal and jejunal epithelial cells was observed on the microvillous membrane, the membrane of the tubulo-vacuolar system, the lateral cell membrane, the lysosomes, the Golgi apparatus and the GERL of Novikoff (1963). After about the 15th neonatal day, the tubulo-vacuolar system enzyme disappeared from both cells. Acid phosphatase activity then became localized on the microvillous membrane, the lateral cell membrane, the lysosomes, the Golgi apparatus, and the GERL, as in adult rats. During the suckling period, acid phosphatase in the ileal cells could be seen on the microvillous membrane, the lateral cell membrane, the Golgi apparatus, the GERL, the membrane of tubulo-vacuolar system and the supranuclear vacuole. At weaning, however, the tubulovacuolar system and the supranuclear vacuole enzyme disappeared, and only the lysosomes and the GERL of these cells showed acid phosphatase activity, as in the adult rat. It was concluded that the acid-phosphatase-containing tubulo-vacuolar system and the supranuclear vacuole in the epithelial cells of the distal intestine of suckling rats may possess a strong phagolysosomal function as well as having an absorptive capacity.  相似文献   

2.
It is believed that the uptake mechanism of some nutrients by Paramecium tetraurelia primarily involves transport through the cell surface, whereas the uptake of other compounds appears to be restricted to bulk transport during food vacuole (phagosome) formation. In this study, we established that, in axenically grown cells, food vacuole formation occurred at continuous rates over long periods. This information allows quantitation of the volume of media taken up by bulk transport. India ink and latex beads were shown to be inert food vacuole markers and carmine was found to have an initial stimulatory effect on phagosome formation rates. Cultures grown for 3.5 h or longer with the glycocalyx stain Alcian Blue, contained only three phagosomes/cell, whereas cells cultured with the other markers contained 15 phagosomes/cell. Electron microscopy of fecal material that accumulated at the bottom of Alcian Blue-grown cells demonstrated the presence of membranes, suggesting that the vacuolar membrane was eliminated during defecation. Neither cell lysis nor the formation of autophagous vacuoles was detected in Alcian Blue-grown cells, indicating that the stain was not cytotoxic at the concentrations used. Thus it appeared that the binding of Alcian Blue to the digestive vacuole membrane resulted in a loss of the vacuole membranes from the cell which reduced the amount of membranes retrieved and recycled and hence eventually reduced the rate of phagosome formation. Alcian Blue-treated cultures exhibited decreased rate of growth and final density, which is consistent with a decrease in bulk transport of nutrients resulting from reduced membranes of digestive cycle organelles available in the cell.  相似文献   

3.
It is believed that the uptake mechanism of some nutrients by Paramecium tetraurelia primarily involves transport through the cell surface, whereas the uptake of other compounds appears to be restricted to bulk transport during food vacuole (phagosome) formation. In this study, we established that, in axenically grown cells, food vacuole formation occurred at continuous rates over long periods. This information allows quantitation of the volume of media taken up by bulk transport. India ink and latex beads were shown to be inert food vacuole markers and carmine was found to have an initial stimulatory effect on phagosome formation rates. Cultures grown for 3.5 h or longer with the glycocalyx stain Alcian Blue, contained only three phagosomes/cell, whereas cells cultured with the other markers contained 15 phagosomes/cell. Electron microscopy of fecal material that accumulated at the bottom of Alcian Blue-grown cells demonstrated the presence of membranes, suggesting that the vacuolar membrane was eliminated during defecation. Neither cell lysis nor the formation of autophagous vacuoles was detected in Alcian Blue-grown cells, indicating that the stain was not cytotoxic at the concentrations used. Thus it appeared that the binding of Alcian Blue to the digestive vacuole membrane resulted in a loss of the vacuole membranes from the cell which reduced the amount of membranes retrieved and recycled and hence eventually reduced the rate of phagosome formation. Alcian Blue-treated cultures exhibited decreased rate of growth and final density, which is consistent with a decrease in bulk transport of nutrients resulting from reduced membranes of digestive cycle organelles available in the cell.  相似文献   

4.
SYNOPSIS. Mutants (NP1 and PSJ5) of Tetrahymena thermophila strains B and D 1968 exist that are unable to construct a functional oral apparatus and form food vacuoles at 37 C but which do so normally at 30 C. Food vacuole-less cells starved in dilute salt solution released similar amounts of acid phosphatase, β-N-acetyl-glucosaminidase and ±-glucosidase activity into the medium as wildtype cells during an 8-h period. Actively growing, food vacuole-less cells had ?50% less total protein, acid phosphatase, β-N-acetyl-glucosamin-idase, and ±-glucosidase per cell than wildtype cells after 72-h growth. During this time food vacuole-less cells released significant amounts of the 3 acid hydrolases into the growth medium. For each hydrolase, the total activity released from growing, food vacuole-less cells was less, on a per cell basis, than the amount released from food vacuole formers. The proportion of the total activity secreted by the mutant and the wildtype cells was the same for acid phosphatase and β-N-acetyl-glucosaminidase and somewhat lower for ±-glucosidase. It is concluded that the release of a significant amount of acid hydrolase activity from Tetrahymena is independent of food vacuole formation and may be analogous to the secretory activity of other nonphagocytic eukaryotic cells.  相似文献   

5.
Plasma membranes were isolated from both exponential and stationary phase cells and their properties compared, to determine whether alterations are sustained coincident with the transition to plateau phase growth. Polyacrylamide gel electrophoresis revealed no significant differences in macromolecular composition between the two types of membrane. However, the specific activity of alkaline phosphatase (EC 3.1.3.1), an enzyme which shows enrichments in purified plasma membrane fractions relative to homogenates, was markedly reduced in preparations from stationary as compared with exponentially growing cells. The total activity per cell did not change, but in cell fractionation experiments the stationary phase cells yielded a higher proportion of the enzyme in microsomal fractions than did exponentially growing cells. This indicates that once plateau phase is attained, a greater proportion of the membrane bearing alkaline phosphatase activity is internalized as opposed to being associated with the plasmalemma.Alkaline phosphatase is known to be present on the contractile vacuole membrane. During discharge this vacuole becomes associated with the plasmalemma, an event which presumably accounts for at least part of the alkaline phosphatase in plasma membrane preparations. Thus one interpretation of the decreased levels of alkaline phosphatase in plasma membrane fractions from stationary phase cells is that they reflect a decline in the rate of water expulsion. This in turn suggests that the plasmalemma of stationary phase cells may have undergone changes leading to a decreased rate of water influx.  相似文献   

6.
Mutants (NP1 and PSJ5) of Tetrahymena thermophila strains B and D 1968 exist that are unable to construct a functional oral apparatus and form food vacuoles at 37 C but which do so normally at 30 C. Food vacuole-less cells starved in dilute salt solution released similar amounts of acid phosphatase, beta-N-acetyl-glucosaminidase and alpha-glucosidase activity into the medium as wildtype cells during an 8-h period. Actively growing, food vacuole-less cells had approximately 50% less total protein, acid phosphatase, beta-N-acetyl-glucosaminidase, and alpha-glucosidase per cell than wildtype cells after 72-h growth. During this time food vacuole-less cells released significant amounts of the 3 acid hydrolases into the growth medium. For each hydrolase, the total activity released from growing, food vacuole-less cells was less, on a per cell basis, tahn the amount released from food vacuole formers. The proportion of the total activity secreted by the mutant and the wildtype cells was the same for acid phosphatase and beta-N-acetyl-glucosaminidase and somewhat lower for alpha-glucosidase. It is concluded that the release of a significant amount of acid hydrolase activity from Tetrahymena is independent of food vacuole formation and may be analogous to the secretory activity of other nonphagocytic eukaryotic cells.  相似文献   

7.
The induction of high rates of food vacuole formation in Tetrahymena pyriformis increased the rate of respiration in exponentially growing cells by 17% and in starving cells by 47.5%. The increased rate of oxygen uptake was caused by phagocytosis itself, as shown by comparing the rates of respiration of a Tetrahymena mutant exposed to particles at the permissive or restrictive temperatures for food vacuole formation. During cell division, heat-synchronized cells in rich, particle-supplemented medium showed a significant decrease in the rate of respiration. Furthermore, dimethyl sulphoxide, in concentrations sufficient to block food vacuole formation, suppressed the rate of respiration to a level similar to that of starved cells. Cytochalasin B, fowever, did not reduce the rate of oxygen uptake despite the inability of the cells to complete the formation of food vacuoles during treatment; a possible explanation for this finding is discussed. There was a strong correlation between formation of food vacuoles and a high metabolic rate in Tetrahymena.  相似文献   

8.
SYNOPSIS. Food vacuole-free P. multimicronucleatum and T. pyriformis readily ingest non-nutritive Dow polystyrene latex particles (PLP) and form vacuoles containing PLP at a rate comparable to the formation of vacuoles containing bacteria. The particles aggregate within the vacuoles and are egested as balls of the size of the vacuoles. PLP containing vacuoles rapidly acquire acid phosphatase activity, which is demonstrated by histochemical (alpha-naphthyl phosphatehexazonium salt or lead phosphate) methods as a peripheric staining. The total activity of the cell does not significantly change as a consequence of PLP uptake as suggested by the histochemical preparations and confirmed in T. pyriformis by measuring the splitting of p-nitrophenyl phosphate at pH 5. Accordingly, no selection between nutritive and non-nutritive particles could be revealed. The vacuole formation is induced by the mechanical action of the particles. The appearance of acid phosphatase activity in the vacuole seems to be dependent on the vacuole formation and not on its content. This early appearance of activity is due to a redistribution of the preexistent activity.  相似文献   

9.
The Saccharomyces cerevisiae DPP1-encoded diacylglycerol pyrophosphate phosphatase is a vacuole membrane-associated enzyme that catalyzes the removal of the beta-phosphate from diacylglycerol pyrophosphate to form phosphatidate, and it then removes the phosphate from phosphatidate to form diacylglycerol. The enzyme has six putative transmembrane domains and a hydrophilic region that contains a phosphatase motif required for its catalytic activity. In this work, we examined the topography of diacylglycerol-pyrophosphate phosphatase catalytic site within the transverse plane of the vacuole membrane. Results of protease protection analysis using endoproteinase Lys-C and labeling of cysteine residues using sulfhydryl reagents were consistent with a model where the catalytic site of diacylglycerol-pyrophosphate phosphatase was oriented to the cytosolic face of the vacuole membrane. In addition, diacylglycerol-pyrophosphate phosphatase activity was found with intact vacuoles. The phospholipids diacylglycerol pyrophosphate (0.6 mol %) and phosphatidate (1.4 mol %) were found in the vacuole membrane, and their levels decreased to an undetectable level and by 79%, respectively, when cells were depleted for zinc. The reduced levels of diacylglycerol pyrophosphate and phosphatidate correlated with the induced expression of diacylglycerol-pyrophosphate phosphatase. This work suggested that diacylglycerol pyrophosphate phosphatase functions to regulate the levels of diacylglycerol pyrophosphate and phosphatidate on the cytosolic face of the vacuole membrane.  相似文献   

10.
The ELF-97 phosphatase substrate was used to examine phosphatase activity in four strains of the estuarine heterotrophic dinoflagellate, Pfiesteria shumwayae. Acid and alkaline phosphatase activities also were evaluated at different pH values using bulk colorimetric methods. Intracellular phosphatase activity was demonstrated in P. shumwayae cells that were actively feeding on a fish cell line and in food limited cells that had not fed on fish cells for 3 days. All strains, whether actively feeding or food limited showed similar phosphatase activities. P. shumwayae cells feeding on fish cells showed ELF-97 activity near, or surrounding, the food vacuole. Relatively small, spherical ELF-97 deposits were also observed in the cytoplasm and sometimes near the plasma membrane. ELF-97 fluorescence was highly variable among cells, likely reflecting different stages in digestion and related metabolic processes. The location of enzyme activity and supporting colorimetric measurements suggest that, as in other heterotrophic protists, acid phosphatases predominate in P. shumwayae and have a general catabolic function.  相似文献   

11.
张敏  谭宁  侯连生 《动物学报》2007,53(2):278-284
利用电镜酶细胞化学方法,观察盘基网柄菌细胞分化和凋亡过程中酸性磷酸酶的变化。在细胞丘阶段,酶反应颗粒出现在线粒体内自噬空泡内,随着内自噬空泡的逐渐增大,线粒体内的酶反应颗粒逐渐增多,线粒体内嵴结构不断破坏,直至遍布整个空泡化的线粒体内;当细胞发育至前孢子细胞时,由于嵴结构被完全破坏,酶反应颗粒主要集中在前孢子细胞空泡的单层膜上,空泡化的线粒体内酶反应颗粒逐渐消失。在凋亡的柄细胞中,自噬泡内酶反应强烈,凋亡中期的前柄细胞的细胞核中出现酶反应颗粒,均匀分布在细胞核中,直至细胞核与自噬泡融合。在孢子细胞外被与质膜间也观察到非溶酶体酸性磷酸酶。所得结果证实:线粒体内自噬小泡具有消化功能;自噬泡内酶活性与细胞器消亡有关;细胞核中的酸性磷酸酶可能作为一种非溶酶体酸性磷酸酶参与细胞核中核蛋白的脱磷酸化过程,与发育相关基因表达有关  相似文献   

12.
Glutaraldehyde prefixation causes a considerable inactivation of the acid phosphatase of yeast protoplasts in dependence on the duration of aldehyde influence. Lead ions necessary for ultracytochemical demonstration effect a still stronger inhibition of enzymatic activity. Prefixation, however, protects the enzyme from further inhibition by lead. At pH 4.4 in intact cells acid phosphatase activities are mainly localized in the periplasmic space and in vesicles fused with the plasma membrane. The cell wall and cytoplasm usually remain free of reaction products. On the cell surface activities are found in form of globular lead deposits. At pH 5.2 and 6.3 the periplasmic activity appears decreased compared to that at lower pH values and the intracellular activity is increased. The plasma membrane of protoplasts is completely free of precipitates. The intracellular activity sites of protoplasts (cisternae of endoplasmic reticulum and/or Golgi-like system, small vesicles, central vacuole, nuclear envelope) are the same as for intact cells. The occurrence of at least two forms of acid phosphatase in S. cerevisiae id deduced.  相似文献   

13.
Synopsis The localization of acid phosphatase in the yeastSaccharomyces cerevisiae at different growth phases has been studied. It was shown to be crucial for authentic location of acid phosphatase that the cytochemical reaction be performed on whole cells. Dimethylsulphoxide was used to alleviate the effects of fixation of the yeast cells with glutaraldehyde; the sulphoxide did not affect the distribution of acid phosphatase in the cells. It has been established that in exponentially-growing cells acid phosphatase is localized mostly in small vacuolar compartments. In mature cells, the bulk of acid phosphatase is found in the central vacuole, although a significant amount of the enzyme is detectable in the plasma membrane and the adjacent vesicles.  相似文献   

14.
Gametes, zoospores, and zygotes of the multicellular, green alga Ulva mutabilis showed acid phosphatase reaction product in Golgi vesicles and on the membrane lining the vacuole. In addition gametes and zoospores showed enzyme reaction product on the entire surface membrane including the flagellar membrane. The surface membrane enzyme activity disappears from the zygote shortly after copulation and at the same time lysosome-like bodies start to appear in the cytoplasm. No alkaline phosphatase activity could be detected. The distribution of acid phosphatase is discussed in relation to the events taking place during and shortly after fertilization.  相似文献   

15.
The cellular localization and activity of the lysosomal enzymes acid phosphatase, trimetaphosphatase, and arylsulfatase were studied in rat bone marrow-derived macrophages infected with Leishmania mexicana amazonensis amastigotes. The specific activity of acid phosphatase normalized for protein content was similar in normal macrophages and in isolated amastigotes, whereas the latter were markedly deficient in trimetaphosphatase and arylsulfatase activities. It is thus likely that trimetaphosphatase and arylsulfatase activities detected in infected macrophages were of host cell origin. The activities of the three enzymes, assayed biochemically, varied independently in the infected macrophages. While arylsulfatase activity was unchanged after infection, the activity of acid phosphatase increased by 19, 40, and 94% at 6, 24, and 48 hr, respectively. Trimetaphosphatase activity rose only slightly during the first 24 hr after infection but increased by 74% at 48 hr. The rise in acid phosphatase activity could be accounted for only partially by multiplication of the amastigotes. Thus, as for trimetaphosphatase, these results suggest enhanced macrophage synthesis of acid phosphatase and/or reduced enzyme degradation by the infected macrophages. The reduction in host cell lysosomes previously described (Ryter et al. 1983; Barbieri et al. 1985) was confirmed but appearance of lysosomal enzyme activity in the parasitophorous vacuole is documented in the present report. Thus, Leishmania do not seem to reduce the amount and the activity of host lysosomal enzymes.  相似文献   

16.
To elucidate the phenotypic expression of proliferating prostatic cells, rats were castrated, and the regenerating process of involuted ventral prostates during testosterone propionate (TP) administration was investigated by examining morphology, [5-125I]iododeoxyuridine (125I-UdR) uptake, DNA content, weight, acid phosphatase, and delta 4-steroid 5 alpha-reductase (5 alpha-reductase) activities. Morphologically, TP treatment initially increased the number of epithelial cells lining glandular lobules and subsequently restored the shape of epithelial cells. 125I-UdR uptake peaked on Day 3 of TP treatment and stayed at higher levels than for uncastrated controls until Day 14 of treatment. Prostatic weight, protein content, acid phosphatase, and DNA content returned to uncastrated control levels by Day 14 of TP treatment. TP administration markedly stimulated prostatic 5 alpha-reductase activity, which peaked on the Day 5 of treatment and decreased to uncastrated control levels by Day 14 of treatment. It is concluded that TP administration to castrated rats initially induced active mitotic division of the remaining stem cells, followed by formation of differentiated functional epithelial cells. Prostatic 5 alpha-reductase was highly active at the initial phase of active mitotic cell division. The major portion of the increased enzyme activity can be regarded as a phenotypic expression of stem or transient cells of prostatic epithelium.  相似文献   

17.
Optimal conditions of the cytochemical assay for acid phosphatase in protoplasts and whole cells of S. cerevisiae have been described. Dimethyl sulfoxide was used to increase the permeability of the yeast cell envelope. In the yeast cells, grown up to the end of the exponential phase, acid phosphatase is shown to be located mainly in the central vacuole and on the cell envelope surface. A considerable activity of acid phosphatase is demonstrable on the surface of the plasma membrane and within adjacent vesicles that represent, presumably, part of the endoplasmic reticulum. Acid phosphatase can be considered as a marker enzyme for yeast cell vacuoles.  相似文献   

18.
DIGESTION AND THE DISTRIBUTION OF ACID PHOSPHATASE IN BLEPHARISMA   总被引:1,自引:1,他引:0       下载免费PDF全文
Suspensions of Blepharisma intermedium were fed latex particles for 5 min and then were separated from the particles by filtration. Samples were fixed at intervals after separation and incubated to demonstrate acid phosphatase activity. They were subsequently embedded and sectioned for electron microscopy. During formation of the food vacuole, the vacuolar membrane is acid phosphatase-negative. Within 5 min, dumbbell-shaped acid phosphatase-positive bodies, possibly derived from the the acid phosphatase-positive Golgi apparatus, apparently fuse with the food vacuole and render it acid phosphatase-positive. A larger type of acid phosphatase-positive, vacuolated body may also fuse with the food vacuole at later stages. At about 20 min after formation, acid phosphatase-positive secondary pinocytotic vesicles pinch off from the food vacuoles and approach a separate system of membrane-bounded spaces. By 1 hr after formation, the food vacuole becomes acid phosphatase-negative, and the undigested latex particles are voided into the membrane-bounded spaces. The membrane-bounded spaces are closely associated with the food vacuole at all stages of digestion and are generally acid phosphatase-negative. Within the membrane-bounded spaces, dense, pleomorphic, granular bodies are found, in which are embedded mitochondria, paraglycogen granules, membrane-limited acid phosphatase-containing structures, and Golgi apparatuses. The granular bodies may serve as vehicles for the transport of organelles through the extensive, ramifying membrane-bounded spaces.  相似文献   

19.
20.
Ascorbic acid enhancement of norepinephrine formation from tyrosine in cultured bovine chromaffin cells was characterized in detail as a model system for determining ascorbate requirements. In resting cells, ascorbic acid increased dopamine beta-monooxygenase activity without changing tyrosine 3-monooxygenase activity. [14C]Norepinephrine specific activity was increased by ascorbic acid, while [14C]dopamine specific activity was unchanged. Dopamine content, dopamine biosynthesis, tyrosine content, and tyrosine uptake were also unaffected by ascorbic acid. Furthermore, increased norepinephrine formation could not be attributed to changes in norepinephrine catabolism. Enhancement of dopamine beta-monooxygenase activity was specific for ascorbic acid, since other reducing agents with higher redox potentials were unable to increase norepinephrine formation. The specific effect of ascorbic acid on enhancement of norepinephrine formation was also observed in chromaffin cells stimulated to secrete with carbachol, acetylcholine, veratridine, and potassium chloride. In stimulated cells with and without ascorbate, there were no differences in dopamine content, tyrosine uptake, dopamine specific activity, and norepinephrine catabolism. These data indicate that, under a wide variety of conditions, only one catecholamine biosynthetic enzyme activity, dopamine beta-monooxygenase, is specifically stimulated by ascorbic acid alone in cultured chromaffin cells. This model system exemplifies a new approach for determining ascorbic acid requirements in cells and animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号