首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Mitochondria isolated from etiolated shoots of a range of maize genotypes with the Texas cytoplasm conferring cytoplasmically-inherited male sterility, are sensitive to a pathotoxin isolated from Helmintho-sporium maydis, race T. The pathotoxin inhibits oxidation of ketoglutarate and malate and stimulates NADH oxidation. The time taken for the pathotoxin to induce these changes is a measure of the sensitivity of the mitochondria to the pathotoxin. A range of nine different pairs of genotypes, each pair differing principally in the presence of nuclear male fertility restorer alleles has been compared in their sensitivity to pathotoxin. In every case the line carrying the restorer alleles is more resistant to the pathotoxin. The restored genotypes can be quantitatively arranged into groups which correspond to the four different sources of the restorer genes in these lines. It is suggested that the restorer genes cause changes in mitochondria, which modify the functional aberration introduced by the cytoplasmically-inherited mutation causing sterility.  相似文献   

2.
Summary Mitochondrial DNA was isolated from fertile and cytoplasmic male sterile lines of rice. Restriction analysis showed specific modifications in the male sterile cytoplasm. In addition to the major mitochondrial DNA, three small plasmid-like DNA molecules were detected by agarose gel electrophoresis in both cytoplasms. An additional molecule was specifically found in the sterile cytoplasm. These mitochondrial DNA modifications support the hypothesis of the mitochondrial inheritance of the cytoplasmic male sterility in rice.  相似文献   

3.
4.
5.
Cytoplasmic male sterility, conditioned by some maternally inherited plant mitochondrial genomes, is the most expedient method to produce uniform populations of pollen-sterile plants on a commercial scale. Plant mitochondrial genomes are not currently amenable to genetic transformation, but genetic manipulation of the plastid genome allows engineering of maternally inherited traits in some species. A recent study has shown that the Acinetobacter beta-ketothiolase gene, expressed in the Nicotiana tabacum plastid, conditions maternally inherited male sterility, laying the groundwork for new approaches to control pollen fertility in crop plants.  相似文献   

6.
Summary The paper describes the relation of cytoplasmic male sterility and the differentiation of nucleoli. Defects in the formation of nucleoli of pollen grains of maize with cytoplasmic male sterility were observed whereas the nuclei of control, i.e. fertile maize contained always only a single nucleole. In the nuclei of sterile pollen grains nucleoli of various sizes and numbers are formed.With 8 Figures in the Text  相似文献   

7.
The genetics of fertility restoration of cms-C group cytoplasm of maize was studied using crosses involving stable maintainer lines and lines that restored full pollen fertility. Pollen fertility in the sources of cms-C sterile cytoplasms studied was restored by a single dominant restorer (Rf4) gene. The fertility restoration was sporophytic. Allelism tests among five restorer lines showed that they all apparently carried the same alleles (Rf4 Rf4). Similar tests also demonstrated that seven nonrestoring maintainer lines had apparently the same genotype (rf4 rf4), although a partial "late break" of fertility was observed at low levels in some maintainer crosses. Comparative studies among different cms-C sources (C, Bb, ES, PR and RB) indicated that similar inheritance of fertility restoration was involved. The data indicated that a single, dominant Rf gene is involved in the restoration of several C-group cytoplasms, at least in the lines studied here. This is the first single-gene, sporophytic restorer system described in maize to date.  相似文献   

8.
The petunia fused gene (pcf), which is associated with cytoplasmic male sterility (CMS), is composed of sequences derived from atp9, coxII, and an unidentified reading frame termed urfS. To determine whether the pcf gene is expressed at the protein level, we produced antibodies to synthetic peptides specified by the coxII and urfS portions of the pcf gene. Anti-COXII peptide antibodies recognized petunia COXII but no other mitochondrial proteins. Anti-URF-S peptide antibodies recognized a 20-kilodalton protein present in both cytoplasmic male sterile and fertile lines and a protein with an apparent molecular mass of 25 kilodaltons present only in cytoplasmic male sterile lines. The 25-kilodalton protein was found to be synthesized by isolated mitochondria and to fractionate into both the soluble and membrane portions of disrupted mitochondria, whereas the 20-kilodalton protein was found only in the membrane fraction. The abundance of the 25-kilodalton protein was much lower in fertile plants carrying the cytoplasmic male sterile cytoplasm and a single dominant nuclear fertility restorer gene, Rf. Thus, the pcf gene is correlated with cytoplasmic male sterility not only by its co-segregation with the phenotype in somatic hybrids, but also by the modification of its expression at the protein level through the action of a nuclear gene that confers fertility.  相似文献   

9.
Partial restoration of male fertility limits the use of C-type cytoplasmic male sterility (C-CMS) for the production of hybrid seeds in maize. Nevertheless, the genetic basis of the trait is still unknown. Therefore, the aim to this study was to identify genomic regions that govern partial restoration by means of a QTL analysis carried out in an F2 population (n = 180). This population was derived from the Corn Belt inbred lines B37C and K55. F2BC1 progenies were phenotyped at three locations in Switzerland. Male fertility was rated according to the quality and number of anthers as well as the anthesis-silking interval. A weak effect of environment on the expression of partial restoration was reflected by high heritabilities of all fertility-related traits. Partial restoration was inherited like an oligogenic trait. Three major QTL regions were found consistently across environments in the chromosomal bins 2.09, 3.06 and 7.03. Therefore, a marker-assisted counter-selection of partial restoration is promising. Minor QTL regions were found on chromosomes 3, 4, 5, 6 and 8. A combination of partial restorer alleles at different QTL can lead to full restoration of fertility. The maternal parent was clearly involved in the partial restoration, because the restorer alleles at QTL in bins 2.09, 6.04 and 7.03 originated from B37. The three major QTL regions collocated with other restorer genes of maize, a phenomenon, which seems to be typical for restorer genes. Therefore, a study of the clusters of restorer genes in maize could lead to a better understanding of their evolution and function. In this respect, the long arm of chromosome 2 is particularly interesting, because it harbors restorer genes for the three major CMS systems (C, T and S) of maize.  相似文献   

10.
11.
12.
The cytoplasm of Triticum timopheevi causes cytoplasmic male sterility (CMS) in common wheat (T. aestivum) cv. 'Chinese Spring' (CS), and that of Aegilops kotschyi causes CMS in spelt wheat (T. spelta) var. duhamelianum (Sp). CS has fertility-restoring (Rf) genes against the latter cytoplasm and Sp has the ones against the former. To know the genetic system concerning to CMS, we crossed 66 F8 recombinant inbred lines (RILs) derived from a cross between CS and Sp as males to the alloplasmic lines of CS and Sp having the cytoplasms of T. timopheevi and Ae. kotschyi, respectively. The fertilities of respective F1 plants derived from the crosses were examined for QTL analysis. The major QTLs detected in both systems were located on the short arm of chromosome 1B. One minor QTL on chromosome 2B was also commonly detected in both of the systems, while other minor QTLs against T timopheevi cytoplasm were distributed on the chromosomes 2A, 4B, and 6A.  相似文献   

13.
14.
Endonuclease restriction fragment patterns of Pennisetum americanum L. mitochondrial DNAs (mtDNAs) from a cytoplasmic male-sterile (CMS-A1), fertile revertants and a normal fertile cytoplasm were variable, while chloroplast DNA from those lines lacked variation. Comparisons between mtDNAs of CMS-A1 (parental) and fertile revertant lines revealed the presence of a unique 4.7 kbp PstI fragment in the sterile line that was not detected in any of the revertant lines. A 9.7 kbp PstI fragment was found in all of the revertants, but not in the CMS-A1. Neither of those fragments was found in the normal cytoplasm mtDNA. Hybridization studies revealed two sets of multiple homologies: 1) the 4.7 kbp fragment had homology with a 10.9 kbp and a 13.6 kbp fragment; and 2) the 9.7 kbp fragment was homologous with the 13.6 kbp fragment. The presence of those two repeated mitochondrial sequences on the altered fragments suggests that they may be involved in the recombinational associated events with reversion from CMS to fertility in P. americanum.Florida Agricultural Experiment Station Journal Series No.7797.  相似文献   

15.
赵卓凡  黄玲  刘永明  张鹏  魏桂  曹墨菊 《遗传》2018,40(5):402-414
玉米是最早利用细胞质雄性不育系生产杂交种的作物之一,C型细胞质雄性不育系(C-type cytoplasmic male sterile, CMS-C)在杂交种生产中具有重要的作用,育性恢复的稳定性直接影响其应用价值。然而,玉米CMS-C的育性恢复机理复杂,且至今仍不明确。为进一步探究玉米CMS-C育性恢复的影响因素,本研究以玉米CMS-C同质异核不育系C48-2、C黄早四和C478为母本,分别与测验系18白、自330、5022以及恢复系A619组配杂交获得F1。其中育性恢复F1通过自交获得F2,并以育性恢复F1为父本分别给育性保持F1授粉,组配双交群体,共获得4个F2群体,6个双交群体。同时以不育系C48-2、C黄早四和C478为母本,各自的保持系48-2、黄早四和478为父本杂交组配不完全双列杂交F1。将所有杂交组合的F1、F2以及双交组合群体分别在不同年份不同地点种植观察,通过植株田间育性调查并结合室内花粉镜检鉴定育性表现。结果表明:1) 同一测验系对玉米CMS-C同质异核不育系的恢保关系不同,暗示不育系的核背景参与调控育性恢复表现;2) 在不同年份不同地点对(C48-2×A619) F2群体进行种植观察,发现不同环境下F2群体可育株与不育株的分离比均符合15∶1,但在云南种植的可育株的育性级别主要为Ⅲ和Ⅳ级,而在四川种植的可育株的育性级别主要为Ⅴ级,表明环境对恢复系A619恢复后代的育性表现有影响;3) 通过恢保关系测定发现18白不能恢复C478,48-2也不能恢复C478,但双交群体[(C478×18白) F1S×(C48-2×18白) F1F]后代却出现了可育株与不育株的分离;同理,双交群体[(C48-2×自330) F1S×(C478×自330) F1F]的后代也出现了可育株与不育株的分离。因此,本文推测C48-2、C478核背景中存在微效恢复基因,这些微效基因与18白、自330中的微效恢复基因通过杂交聚合后能使C478、C48-2的育性恢复,暗示玉米CMS-C的育性恢复呈现一定的剂量效应。这些结果为进一步认识玉米CMS-C育性恢复的复杂性和多样性奠定了基础,为深入研究玉米CMS-C育性恢复机理以及加快CMS-C在不育化制种中的应用提供重要参考。  相似文献   

16.
17.
对水稻BT型和WA型细胞质的雄性不育系,相应保持系和恢复系以及杂种的mtDNA用12个线粒体探针进行了RFLP分析,结果如下(1)BT型和WA型不育系的mtDNA在组织结构上存在差异;(2)不育系的mtDNA与其保持系间存在显著差异,推测mtDNA与水稻的cms有关;(3)atp9探针检测到WA型不育系与F1之间的多态性,Frag36探针检测到BT型不育系与F1之间的多态性,Frag9探针检测到WA型和BT型不育系与其F1之间的多态性,证明核恢复基因影响mtDNA的结构;(4)对mtDNA的结构变异与细胞质雄性不育的关系进行了分析与探讨.  相似文献   

18.
对水稻BT型和WA型细胞质的雄性不育系,相应保持系和恢复系以及杂种的mtD-NA用12个线粒探针进行了RFLP分析,结果如下:(1)BT型和WA型不育系的mtDNA在组织结构上存在差异;(2)不育系的mtDNA与其保持系间存在显著差异,推测mtDNA与水稻的cms有关;(3)atp9探针检测到WA型不育系与F1之间的多态性,Frag36探针检测到BT型不育系与F1之间的多态性,Frag9探针检测到WA型和BT型不育系与其F1之间的多态性,证明核恢复基因影响mtDNA的结构;(4)对mtDNA的结构变异与细胞质雄性不育的关系进行了分析与探讨。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号