首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nine species from the genus Stachys L. representing subgenera Stachys and Betonica were surveyed for flavonoid glycosides by means of HPLC coupled to diode-array detection and LC-APCI-MS. Those species belonging to subgenus Betonica were characterised by the presence of glycosides of tricetin methyl ethers, including a new derivative, which was isolated from S. scardica Griseb. and identified as tricetin 3',4',5' -trimethyl ether 7-O-beta-glucopyranoside by spectroscopic methods. This type of flavonoid was absent from species belonging to subgenus Stachys and can be considered as a chemosystematic marker for subgenus Betonica.  相似文献   

3.
Recently marketed genetically modified violet carnations cv. Moondust and Moonshadow (Dianthus caryophyllus) produce a delphinidin type anthocyanin that native carnations cannot produce and this was achieved by heterologous flavonoid 3',5'-hydroxylase gene expression. Since wild type carnations lack a flavonoid 3',5'-hydroxylase gene, they cannot produce delphinidin, and instead accumulate pelargonidin or cyanidin type anthocyanins, such as pelargonidin or cyanidin 3,5-diglucoside-6"-O-4, 6"'-O-1-cyclic-malyl diester. On the other hand, the anthocyanins in the transgenic flowers were revealed to be delphinidin 3,5-diglucoside-6"-O-4, 6"'-O-1-cyclic-malyl diester (main pigment), delphinidin 3,5-diglucoside-6"-malyl ester, and delphinidin 3,5-diglucoside-6",6"'- dimalyl ester. These are delphinidin derivatives analogous to the natural carnation anthocyanins. This observation indicates that carnation anthocyanin biosynthetic enzymes are versatile enough to modify delphinidin. Additionally, the petals contained flavonol and flavone glycosides. Three of them were identified by spectroscopic methods to be kaempferol 3-(6"'-rhamnosyl-2"'-glucosyl-glucoside), kaempferol 3-(6"'-rhamnosyl-2"'-(6-malyl-glucosyl)-glucoside), and apigenin 6-C-glucosyl-7-O-glucoside-6"'-malyl ester. Among these flavonoids, the apigenin derivative exhibited the strongest co-pigment effect. When two equivalents of the apigenin derivative were added to 1 mM of the main pigment (delphinidin 3,5-diglucoside-6"-O-4,6"'-O-1-cyclic-malyl diester) dissolved in pH 5.0 buffer solution, the lambda(max) shifted to a wavelength 28 nm longer. The vacuolar pH of the Moonshadow flower was estimated to be around 5.5 by measuring the pH of petal. We conclude that the following reasons account for the bluish hue of the transgenic carnation flowers: (1). accumulation of the delphinidin type anthocyanins as a result of flavonoid 3',5'-hydroxylase gene expression, (2). the presence of the flavone derivative strong co-pigment, and (3). an estimated relatively high vacuolar pH of 5.5.  相似文献   

4.
The 3(')-->5(')-exonucleolytic activity of human apurinic/apyrimidinic endonuclease 1 (APE1) on mispaired DNA at the 3(')-termini of recessed, nicked or gapped DNA molecules was analyzed and compared with the primary endonucleolytic activity. We found that under reaction conditions optimal for AP endonuclease activity the 3(')-->5(')-exonuclease activity of APE1 manifests only at enzyme concentration elevated by 6-7 orders of magnitude. This activity does not show a preference to mismatched compared to matched DNA structures as well as to nicked or gapped DNA substrates in comparison to recessed ones. Therefore, the 3(')-->5(')-exonuclease activity associated with APE1 can hardly be considered as key mechanism that improves fidelity of DNA repair.  相似文献   

5.
6.
Voltammetric behavior of 4',7-dimethoxy-3'-isoflavone sulfonic sodium (DISS) was studied by linear sweep voltammetry and cyclic voltammetry. DISS caused two waves between pH 8.0 and 12.0. Above pH 8.0, the peak current of first wave Pc1 of DISS was enhanced in the presence of cetyltrimethylammonium bromide (CTAB). Based on this, a novel method for the determination of DISS was proposed. In Britton-Robinson buffer solution (pH 11.7) containing 9.4 x 10(-6)mol L(-1) CTAB, the peak potential of first wave Pc1 of DISS was -1.59 V (vs standard saturated calomel electrode) and its first-order derivative peak current was proportional to the concentration of DISS in the range 5.0 x 10(-8)-6.0 x 10(-7)mol L(-1) (r=0.998). The detection limit was 1 x 10(-8)mol L(-1), which was 10 times lower than that of the corresponding reduction wave. The method was applied to the determination of DISS in synthetic samples.  相似文献   

7.
Apurinic/apyrimidinic (AP) endonuclease (Ape1) is the major cellular enzyme responsible for repairing AP-sites in DNA. It can cleave the DNA phosphodiester backbone immediately 5(') to an AP-site. Ape1 also shows 3(')-phosphodiesterase activity, a 3(')-phosphatase activity, and an RNaseH activity. However, regarding its exonuclease activity, it remains controversial whether human Ape1 may possess a 3(')-5(') exonuclease activity. During the course of study to search for the major nuclease activity to double-stranded DNA in human leukemia cells, we purified a 37 kDa Mg(2+)-dependent exonuclease from cytosolic fraction of human leukemia U937 cells. Surprisingly, this exonuclease is Ape1. We demonstrated for the first time that Ape1 possesses a significant activity as major 3(')-5(') exonuclease in human leukemia cells. In addition, we also observed that translocation of cytoplasmic Ape1 into nucleus occurs during DNA damage.  相似文献   

8.
Seitz C  Ameres S  Forkmann G 《FEBS letters》2007,581(18):3429-3434
Flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) are cytochrome P450 enzymes and determine the B-ring hydroxylation pattern of flavonoids by introducing hydroxyl groups at the 3'- or the 3'- and 5'-position, respectively. Sequence identity between F3'H and F3'5'H is generally low since their divergence took place early in the evolution of higher plants. However, in the Asteraceae the family-specific evolution of an F3'5'H from an F3'H precursor occurred, and consequently sequence identity is substantially higher. We used this phenomenon for alignment studies, in order to identify regions which could be involved in determining substrate specificity and functionality. Subsequent construction and expression of chimeric genes indicated that substrate specificity of F3'H and F3'5'H is determined near the N-terminal end and the functional difference between these two enzymes near the C-terminal end. The impact on function of individual amino acids located in substrate recognition site 6 (SRS6) was further tested by site-directed mutagenesis. Most interestingly, a conservative Thr to Ser exchange at position 487 conferred additional 5'-hydroxylation activity to recombinant Gerbera hybrida F3'H, whereas the reverse substitution transformed recombinant Osteospermum hybrida F3'5'H into an F3'H with low remaining 5'-hydroxylation activity. Since the physicochemical properties of Thr and Ser are highly similar, the difference in size appears to be the main factor contributing to functional difference. The results further suggest that relatively few amino acids exchanges were required for the evolutionary extension of 3'- to 3',5'-hydroxylation activity.  相似文献   

9.
White clover (Trifolium repens) plants were grown in the presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Flavones, 4',5,6,7,8-pentahydroxy-3-methoxyflavone and 5,6,7,8-tetrahydroxy-3-methoxyflavone, as well as two flavones 3,7-dihydroxy-4'-methoxyflavone and 5,6,7,8-tetrahydroxy-4'-methoxyflavone never previously reported in plants, were isolated. The known 3,5,6,7,8-pentahydroxy-4'-methoxyflavone, 2',3',4',5',6'-pentahydroxy-chalcone, 6-hydroxykaempferol, 4',5,6,7,8-pentahydroxyflavone and 3,4'-dimethoxykaempferol were also obtained. Analysis of extracts obtained from roots and shoots revealed that the compositions of the flavonoid mixtures varied with growing conditions. Quercetin, acacetin and rhamnetin accumulated in roots of inoculated plants, whereas they were not detected in non-inoculated plants.  相似文献   

10.
Although the use of IFN-alpha in combination with ribavirin has improved the treatment efficacy of chronic hepatitis C virus (HCV) infection, 20-50% of patients still fail to eradicate the virus depending on the HCV genotype. Recently, overexpression of HCV core protein has been shown to inhibit IFN signaling and induce SOCS-3 expression. Aim of this study was to examine the putative role of SOCS proteins in IFN resistance. By Western blot analysis, a 4-fold induction of STAT-1/3 phosphorylation by IFN-alpha was observed in mock-transfected HepG2 clones. In contrast, IFN-induced STAT-1/3 phosphorylation was considerably downregulated by SOCS-1/3 overexpression. In mock-transfected cells, IFN-alpha induced 2',5'-OAS and myxovirus resistance A (MxA) promoter activity 40- to 80-fold and 10- to 35-fold, respectively, and this effect was abrogated in SOCS-1/3 overexpressing cells. As detected by Northern blot technique, IFN-alpha potently induced 2',5'-OAS and MxA mRNA expression in the control clones. Overexpression of SOCS-1 completely abolished both 2',5'-OAS and MxA mRNA expression, whereas SOCS-3 mainly inhibited 2',5'-OAS mRNA expression. Our results demonstrate that SOCS-1 and SOCS-3 proteins inhibit IFN-alpha-induced activation of the Jak-STAT pathway and expression of the antiviral proteins 2',5'-OAS and MxA. These data suggest a potential role of SOCS proteins in IFN resistance during antiviral treatment.  相似文献   

11.
2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) is commonly used to detect the generation of reactive oxygen intermediates and for assessing the overall oxidative stress in toxicological phenomenon. It has been suggested that DCFH-DA crosses the cell membrane, subsequently undergoing deacetylation by intracellular esterases. The resulting 2',7'-dichlorodihydrofluorescein (DCFH) is proposed to react with intracellular hydrogen peroxide or other oxidizing ROS to give the fluorescent 2',7'-dichlorofluorescein (DCF). Using an NMR chemical shift-polarity correlation, we have determined that DCFH-DA and DCFH are located well within the lipid bilayer and certainly not at the interface. These results, therefore, put into serious question the proposed ability of DCFH to come in contact with the aqueous phase and thereby interact with aqueous intracellular ROS and components. However, H2O2 and superoxide can cross or at least penetrate the lipid bilayer and react with certain lipophilic substrates. This may well describe the mode of reaction of these and other ROS with DCFH.  相似文献   

12.
Animal genomes contain hundreds of microRNAs (miRNAs), small regulatory RNAs that control gene expression by binding to complementary sites in target mRNAs. Some rules that govern miRNA/target interaction have been elucidated but their general applicability awaits further experimentation on a case-by-case basis. We use here an assay system in transgenic nematodes to analyze the interaction of the Caenorhabditis elegans lsy-6 miRNA with 3' UTR sequences. In contrast to many previously described assay systems used to analyze miRNA/target interactions, our assay system operates within the cellular context in which lsy-6 normally functions, a single neuron in the nervous system of C. elegans. Through extensive mutational analysis, we define features in the known and experimentally validated target of lsy-6, the 3' UTR of the cog-1 homeobox gene, that are required for a functional miRNA/target interaction. We describe that both in the context of the cog-1 3' UTR and in the context of heterologous 3' UTRs, one or more seed matches are not a reliable predictor for a functional miRNA/target interaction. We rather find that two nonsequence specific contextual features beyond miRNA target sites are critical determinants of miRNA-mediated 3' UTR regulation. The contextual features reside 3' of lsy-6 binding sites in the 3' UTR and act in a combinatorial manner; mutation of each results in limited defects in 3' UTR regulation, but a combinatorial deletion results in complete loss of 3' UTR regulation. Together with two lsy-6 sites, these two contextual features are capable of imparting regulation on a heterologous 3' UTR. Moreover, the contextual features need to be present in a specific configuration relative to miRNA binding sites and could either represent protein binding sites or provide an appropriate structural context. We conclude that a given target site resides in a 3' UTR context that evolved beyond target site complementarity to support regulation by a specific miRNA. The large number of 3' UTRs that we analyzed in this study will also be useful to computational biologists in designing the next generation of miRNA/target prediction algorithms.  相似文献   

13.
14.
1',2'-cis-beta-Glycosyladenine nucleosides, such as beta-altroside, beta-mannoside, and beta-idoside, were efficiently synthesized from the corresponding 1',2'-trans-beta-6-chloropurine derivatives, beta-glucoside, and beta-galactoside. Nucleophilic substitution of the O-trifluoromethanesulfonyl groups at the C-2' and/or 3' was carried out using tetrabutylammonium acetate or cesium acetate under mild conditions. Subsequent deprotection and amidation afforded the desired compounds, 1',2'-cis-beta-pyranosyladenine nucleosides.  相似文献   

15.
Acrolein, a known mutagen, undergoes reaction in vitro under physiological conditions with both 2(')-deoxyguanosine and native DNA to give rise to exocyclic adducts of the 5,6,7,8-tetrahydropyrimido[1,2-a]purine-10(3H)-one class having an hydroxy group at either the 6 or the 8 position. Previously we have shown that the 8-hydroxy derivative in a bacterial system has very low mutagenicity probably because in double-stranded DNA this residue exists in the open-chain aldehydic form [N(2)-(3-oxopropyl)-2(')-deoxyguanosine] (3). To continue our investigation in this area, we needed ample supplies of the 6-hydroxy isomers. This current paper describes high-yield simple methods for the synthesis in bulk of the 6-hydroxy adduct 1 and its incorporation into DNA oligomers. The basic methods for the synthesis of the adduct 1, involve 1-substitution of dG derivatives with a 3-butenyl group, dihydroxylation of the olefin with osmium tetroxide and N-methylmorpholine N-oxide, then diol cleavage with periodate ion after incorporation of the 1-(3,4-diacetoxybutyl)-2(')-deoxyguanosine into oligomeric DNA.  相似文献   

16.
Gemcitabine (2',2'-difluorodeoxycytidine, dFdC) is a difluorine-substituted deoxycytidine analogue that has demonstrated antitumor activity against solid tumors. The pharmacokinetics of dFdC and its metabolite, 2',2'-difluorodeoxyuridine (dFdU) have been studied; however, their disposition has never been evaluated in a patient with bladder cancer. A patient with bladder cancer was treated with dFdC 1000 mg/m(2) over a 30min period. The patient received a dFdC infusion once per week for 3 weeks followed by a rest week. Serial plasma samples were obtained prior to, during, and after completion of the infusion for determination of dFdC and dFdU concentrations. dFdC and dFdU concentrations were measured using normal-phase high-performance liquid chromatography and one-compartment open model methods. Maximum plasma concentrations (C(max)) and area under the plasma concentration-time curve for dFdC and dFdU were 24.5 microg/ml and 11200 microg/Lh, 49.1 microg/ml and 272,800 microg/Lh, respectively.  相似文献   

17.
CpG oligodeoxynucleotide induction of antiviral effector molecules in sheep   总被引:3,自引:0,他引:3  
Immunostimulatory CpG oligodeoxynucleotide (ODN) can protect mice against infection by many pathogens but the mechanisms mediating disease protection are not well defined. Furthermore, the mechanisms of CpG ODN induced disease protection in vivo have not been investigated in other species. We investigated the induction of antiviral effector molecules in sheep treated with a class B CpG ODN (2007). Subcutaneous injection of ODN 2007 induced a dose-dependent increase in serum levels of the antiviral effector molecule, 2'5'-A synthetase. Peak levels of enzyme were observed 4 days following ODN injection and enzyme levels remained elevated for the following 3-5 days. Repeated ODN injections induced a more sustained elevation of serum 2'5'-A synthetase activity. Finally, formulation of ODN 2007 in emulsigen increased the level of serum 2'5'-A synthetase activity and this response was CpG-specific. Elevated serum 2'5'-A synthetase activity suggested that CpG ODN acted through the induction of either interferon (IFN)-alpha or IFN-gamma. ODN 2007 did not induce detectable levels of IFN-alpha or IFN-gamma when incubated with peripheral blood mononuclear cells, but both IFN-alpha and IFN-gamma were detected following stimulation of lymph node cells with ODN 2007. CpG ODN induction of 2'5'-A synthetase in vitro correlated with the secretion of both IFN-alpha and IFN-gamma. Furthermore, immunohistochemical staining of skin revealed a marked cellular infiltration at the site of ODN 2007 injection. This cellular infiltration was CpG-specific and consisted of primarily CD172(+) myeloid cells. Many of the cells recruited to the site of ODN 2007 injection expressed IFN-alpha and some IFN-gamma. These observations support the conclusion that localized cell recruitment and activation contribute to CpG ODN induction of antiviral effector molecules, such as interferon and 2'5'-A synthetase.  相似文献   

18.
The 60S ribosomes from Saccharomyces cerevisiae contain a set of acidic P-proteins playing an important role in the ribosome function. Reversible phosphorylation of those proteins is a mechanism regulating translational activity of ribosomes. The key role in regulation of this process is played by specific, second messenger-independent protein kinases. The PK60S kinase was one of the enzymes phosphorylating P-proteins. The enzyme has been purified from yeast and characterised. Pure enzyme has properties similar to those reported for casein kinase type 2. Peptide mass fingerprinting (PMF) has identified the PK60S as a catalytic alpha(') subunit of casein kinase type 2 (CK2alpha(')). Protein kinase activity is inhibited by SOD1 and by highly specific CK2 inhibitor-4,5,6,7-tetrabromo-benzotriazole (TBBt). The possible mechanism of regulation of CK2alpha(') activity in stress conditions, by superoxide dismutase in regulation of 80S-ribosome activity, is discussed.  相似文献   

19.
Noroviruses are human enteric caliciviruses for which no cell culture is available. Consequently, the mechanisms and factors involved in their replication have been difficult to study. In an attempt to analyze the cis- and trans-acting factors that could have a role in NV replication, the 3(')-untranslated region of the genome was studied. Use of Zuker's mfold-2 software predicted that NV 3(')UTR contains a stem-loop structure of 47 nts. Proteins from HeLa cell extracts, such as La and PTB, form stable complexes with this region. The addition of a poly(A) tail (24 nts) to the 3(')UTR permits the specific binding of the poly(A) binding protein (PABP) present in HeLa cell extracts, as well as the recombinant PABP. Since La, PTB, and PABP are important trans-acting factors required for viral translation and replication, these RNA-protein interactions may play a role in NV replication or translation.  相似文献   

20.
Koo KA  Kim SH  Oh TH  Kim YC 《Life sciences》2006,79(7):709-716
We have previously reported that acteoside isolated from the leaves of Callicarpa dichotoma has significant neuroprotective activity against glutamate-induced neurotoxicity in primary cultured rat cortical cells. To determine the essential structural moiety within this phenylethanoid glycoside needed to exert neuroprotective activity, acteoside was hydrolyzed with acid into its aglycones, caffeic acid and 3',4'-dihydroxylphenylethanol. Caffeic acid and 3',4'-dihydroxylphenylethanol also showed significant neuroprotective activities. Acteoside and its aglycones inhibited glutamate-induced intracellular Ca2+ influx resulting in overproduction of nitric oxide and reduced the formation of reactive oxygen species. These compounds preserved the mitochondrial membrane potential and the activities of antioxidative enzymes, such as superoxide dismutase, glutathione reductase and glutathione peroxidase reduced by glutamate. It was followed by the preservation of the level of glutathione and finally the inhibition of membrane lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号