首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chinese hamster ovary cell lines are good manufacturing practice-certified host cells and are widely used in the field of biotechnology to produce therapeutic antibodies. Recombinant protein productivity in cells is strongly associated with cell growth. To control cell proliferation, many approaches have previously been tested including: genetic engineering, chemical additives such as cell cycle inhibitors, and temperature shift of the culture. To be widely adopted in the biopharmaceutical industry, the culture methods should be simple, uniform and safe. To this end, we examined the use a natural compound to improve the production capacity. In this study, we focused on the antioxidants, catechin polyphenols, which are found in green tea, for cell proliferation control strategies. (–)-Epigallocatechin-3-gallate (EGCG), the major catechin that induces G0/G1 cell cycle arrest, was investigated for its effect on recombinant protein production. Adding EGCG to the cell culture media resulted in slower cellular growth and longer cell longevity, which improved the specific productivity and total yield of recombinant IgG1 in batch cultures by almost 50% for an extra 2 or 3 days of culture. A lower l-glutamine consumption rate was observed in cells cultured in EGCG-containing media, which may be suggesting that there was less stress in the culture environment. Additionally, EGCG did not affect the N-glycan quality of IgG1. Our results indicated that adding EGCG only on the first day of the culture enhanced the specific productivity and total amount of recombinant protein production in batch cultures. This approach may prove to be useful for biopharmaceutical production.  相似文献   

2.
Understanding variability in raw materials and their impacts on product quality is of critical importance in the biopharmaceutical manufacturing processes. For this purpose, several spectroscopic techniques have been studied for raw material characterization, providing fast and nondestructive ways to measure quality of raw materials. However, investigations of correlation between spectra of raw materials and cell culture performance have been scarce due to their complexity and uncertainty. In this study, near-infrared spectra and bioassays of multiple soy hydrolysate lots manufactured by different vendors were analyzed using chemometrics approaches in order to address variability of raw materials as well as correlation between raw material properties and corresponding cell culture performance. Principal component analysis revealed that near-infrared spectra of different soy lots contain enough physicochemical information about soy hydrolysates to allow identification of lot-to-lot variability as well as vendor-to-vendor differences. The identified compositional variability was further analyzed in order to estimate cell growth and protein production of two mammalian cell lines under the condition of varying soy dosages using partial least square regression combined with optimal variable selection. The performance of the resulting models demonstrates the potential of near-infrared spectroscopy as a robust lot selection tool for raw materials while providing a biological link between chemical composition of raw materials and cell culture performance.  相似文献   

3.
Events of viral contaminations occurring during the production of biopharmaceuticals have been publicly reported by the biopharmaceutical industry. Upstream raw materials were often identified as the potential source of contamination. Viral contamination risk can be mitigated by inactivating or eliminating potential viruses of cell culture media and feed solutions. Different methods can be used alone or in combination on raw materials, cell culture media, or feed solutions such as viral inactivation technologies consisting mainly of high temperature short time, ultraviolet irradiation, and gamma radiation technologies or such as viral removal technology for instance nanofiltration. The aim of this review is to present the principle, the advantages, and the challenges of high temperature short time (HTST) technology. Here, we reviewed effectiveness of HTST treatment and its impact on media (filterability of media, degradation of components), on process performance (cell growth, cell metabolism, productivity), and product quality based on knowledge shared in the literature.  相似文献   

4.
Elemental metals are critical raw material attributes which can impact cell culture performance and associated therapeutic protein product quality profiles. Metals such as copper and manganese act as cofactors and reagents for numerous metabolic pathways which govern cell growth, protein expression, and glycosylation, thus mandating elemental monitoring. The growing complexity of modern cell culture media formulations adds additional opportunities for elemental variance and its associated impact risks. This article describes an analytical technique applying inductively coupled plasma mass spectrometry to characterize a list of common raw materials and media powders used in mammalian cell culture and therapeutic protein production. We aim to describe a method qualification approach suitable for biopharmaceutical raw materials. Furthermore, we present detailed profiles of many common raw materials and discuss trends in raw material subtypes. Finally, a case study demonstrating the impact of an unexpected source of raw material variation is presented along with recommendations for raw material elemental risk profiling and control.  相似文献   

5.
Biopharmaceutical manufacturing processes can be affected by variability in cell culture media, e.g. caused by raw material impurities. Although efforts have been made in industry and academia to characterize cell culture media and raw materials with advanced analytics, the process of industrial cell culture media preparation itself has not been reported so far. Within this publication, we first compare mid‐infrared and two‐dimensional fluorescence spectroscopy with respect to their suitability as online monitoring tools during cell culture media preparation, followed by a thorough assessment of the impact of preparation parameters on media quality. Through the application of spectroscopic methods, we can show that media variability and its corresponding root cause can be detected online during the preparation process. This methodology is a powerful tool to avoid batch failure and is a valuable technology for media troubleshooting activities. Moreover, in a design of experiments approach, including additional liquid chromatography–mass spectrometry analytics, it is shown that variable preparation parameters such as temperature, power input and preparation time can have a strong impact on the physico‐chemical composition of the media. The effect on cell culture process performance and product quality in subsequent fed‐batch processes was also investigated. The presented results reveal the need for online spectroscopic methods during the preparation process and show that media variability can already be introduced by variation in media preparation parameters, with a potential impact on scale‐up to a commercial manufacturing process.  相似文献   

6.
Monoclonal antibodies are subjected to a wide variety of post-translational modifications (PTMs) that cause structural heterogeneity. Characterization and control of these modifications or quality attributes are critical to ensure antibody quality and to define any potential effects on the ultimate safety and potency of antibody therapeutics. The biopharmaceutical industry currently uses numerous tools to analyze these quality attributes individually, which requires substantial time and resources. Here, we report a simple and ultrafast bottom-up liquid chromatography-mass spectrometry (uLC-MS) method with 5 min tryptic digestion to simultaneously analyze multiple modifications, including oxidation, deamidation, isomerization, glycation, glycosylation, and N-terminal pyro-glutamate formation, which can occur during antibody production in mammalian cell culture, during purification and/or on storage. Compared to commonly used preparation procedures, this uLC-MS method eliminates assay artifacts of falsely-increased Met oxidation, Asp isomerization, and Asn deamidation, a problem associated with long digestion times in conventional LC-MS methods. This simple, low artifact multi-attribute uLC-MS method can be used to quickly and accurately analyze samples at any stage of antibody drug development, in particular for clone and media selection during cell culture development.  相似文献   

7.
Viral contaminations of biopharmaceutical manufacturing cell culture facilities are a significant threat and one for which having a risk mitigation strategy is highly desirable. High temperature, short time (HTST) mammalian cell media treatment may potentially safeguard manufacturing facilities from such contaminations. HTST is thought to inactivate virions by denaturing proteins of the viral capsid, and there is evidence that HTST provides ample virucidal efficacy against nonenveloped or naked viruses such as mouse minute virus (MMV), a parvovirus. The aim of the studies presented herein was to further delineate the susceptibility of MMV, known to have contaminated mammalian cell manufacturing facilities, to heat by exposing virus‐spiked cell culture media to a broad range of temperatures and for various times of exposure. The results of these studies show that HTST is capable of inactivating MMV by three orders of magnitude or more. Thus, we believe that HTST is a useful technology for the purposes of providing a barrier to adventitious contamination of mammalian cell culture processes in the biopharmaceutical industry. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

8.
Lipids are critical nutrients for high density eukaryotic cell cultivation, but inclusion of lipid components into dry-form media has been technically challenging. Lipid supplements are usually supplied for separate addition after powder reconstitution and filtration, which increases manipulation and risk in a biopharmaceutical manufacturing facility. Advanced Granulation Technology (AGT) is a novel dry-form media format designed for large-scale biopharmaceutical manufacture. All components of a complex formulation are homogeneously incorporated into a single granulated medium that simply requires water addition to yield a complete reconstituted 1X medium. We investigated whether cyclodextrin technology could be combined with the AGT process to deliver usable lipid in a dry medium format. The test lipids were cholesterol and several fatty acids supplied either as an aseptic supplement to liquid media or as part of a complete AGT formulation. The test system utilized a cholesterol auxotroph, NS0, and a protein-free basal formulation (CD Hybridoma Medium), with or without supplemental lipid. Post-filtration recovery of cholesterol from AGT-processed materials compared favorably with media supplemented with liquid lipid concentrates. Cell growth and viability and expression of recombinant protein were equivalent in all test media.  相似文献   

9.
Baldrian P  Gabriel J 《Mycologia》2002,94(3):428-436
The intraspecific variability in growth response to cadmium (Cd) on agar media and in liquid culture was studied among fourteen strains of a wood-rotting fungus Piptoporus betulinus. The variability of Cd tolerance was found to be very high. The ED(50) ranged from 6.8 μM Cd in the most sensitive strain, up to 255.1 μM in the most resistant one. On agar media the addition of Cd to nutrient media resulted in reduction of relative growth rate and increased lag time. While the reduction of growth rate was already apparent at 10 μM Cd, the lag time was significantly increased in higher Cd concentrations. Five strains of P. betulinus failed to grow at 250 μM Cd and none grew at 500 μM metal. Biomass production in liquid culture was less sensitive to addition of Cd than the growth rate on solid media. At 100 μM Cd the radial growth rate of the mycelium was reduced to 27%, whereas the dry mass of mycelium was 77% of the respective control value. A group of four Cd-sensitive strains was found, showing low metal tolerance both on solid media and in liquid cultures. Although the isolates originated from sites with different Cd-pollution level, no correlation between level of Cd-pollution and resistance (ED(50)) was found. The growth rate of fourteen tested strains displayed lower variability than biomass production, showing that radial growth rate is more species-specific and therefore more valuable for interspecific comparisons of growth response.  相似文献   

10.
Large scale biopharmaceutical production of biologics relies on the overexpression of foreign proteins by cells cultivated in stirred tank bioreactors. It is well recognized and documented fact that protein overexpression may impact host cell metabolism and that factors associated with large scale culture, such as the hydrodynamic forces and inhomogeneities within the bioreactors, may promote cellular stress. The metabolic adaptations required to support the high-level expression of recombinant proteins include increased energy production and improved secretory capacity, which, in turn, can lead to a rise of reactive oxygen species (ROS) generated through the respiration metabolism and the interaction with media components. Oxidative stress is defined as the imbalance between the production of free radicals and the antioxidant response within the cells. Accumulation of intracellular ROS can interfere with the cellular activities and exert cytotoxic effects via the alternation of cellular components. In this context, strategies aiming to alleviate oxidative stress generated during the culture have been developed to improve cell growth, productivity, and reduce product microheterogeneity. In this review, we present a summary of the different approaches used to decrease the oxidative stress in Chinese hamster ovary cells and highlight media development and cell engineering as the main pathways through which ROS levels may be kept under control.  相似文献   

11.
Chinese hamster ovary (CHO) cells are routinely used in the biopharmaceutical industry for production of therapeutic monoclonal antibodies (mAbs). Although multiple offline and time-consuming measurements of spent media composition and cell viability assays are used to monitor the status of culture in biopharmaceutical manufacturing, the day-to-day changes in the cellular microenvironment need further in-depth characterization. In this study, two-photon fluorescence lifetime imaging microscopy (2P-FLIM) was used as a tool to directly probe into the health of CHO cells from a bioreactor, exploiting the autofluorescence of intracellular nicotinamide adenine dinucleotide phosphate (NAD(P)H), an enzymatic cofactor that determines the redox state of the cells. A custom-built multimodal microscope with two-photon FLIM capability was utilized to monitor changes in NAD(P)H fluorescence for longitudinal characterization of a changing environment during cell culture processes. Three different cell lines were cultured in 0.5 L shake flasks and 3 L bioreactors. The resulting FLIM data revealed differences in the fluorescence lifetime parameters, which were an indicator of alterations in metabolic activity. In addition, a simple principal component analysis (PCA) of these optical parameters was able to identify differences in metabolic progression of two cell lines cultured in bioreactors. Improved understanding of cell health during antibody production processes can result in better streamlining of process development, thereby improving product titer and verification of scale-up. To our knowledge, this is the first study to use FLIM as a label-free measure of cellular metabolism in a biopharmaceutically relevant and clinically important CHO cell line.  相似文献   

12.
Advantages of using internally developed chemically‐defined (CD) media for cell culture‐based therapeutic protein production over commercial media include better raw material control and medium vendor options, and most importantly, flexibility for process development and subsequent optimization needed for therapeutic protein production. Through several rounds of design of experiment (DOE) screening, and medium component supplementation and optimization studies, we successfully developed a CD basal medium (CDM) for CHO cell culture. The internally prepared liquid CDM demonstrated comparable cell culture performance to that from a commercially available control medium. However, when the same CDM formulation was transferred to two major commercial medium suppliers for manufacturing, cell culture performance utilizing these newly prepared media was significantly reduced compared with the in‐house prepared counterpart. An investigation was launched to assess whether key medium components were sensitive to large‐scale preparation of the final bulk media by the vendors. Further work necessitated the reformulation of the original CDM formulation into a core medium that was suitable for large‐scale media manufacturing. The modified preparation of the core medium with two separate supplements to generate the final CDM was able to recover the expected cell culture performance and monoclonal antibody (mAb) productivity. Confirmation of cell culture robustness in cell growth and production was corroborated in two additional mAb‐expressing cell lines. This work demonstrates that a robust CD medium is not only one that performs during the development stage, but also one that must be reproducible by commercial media vendors. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1163–1171, 2015  相似文献   

13.
Aims: Microbial contamination of cell culture production processes is a current concern for biopharmaceutical industries. Traditional testing methods require several days to detect contamination and may advantageously be replaced by a rapid detection method. We developed a new method combining membrane filtration to microcolonies fluorescence staining method (MFSM) and compared it to epifluorescence microscopy. Methods and Results: Both methods were used to detect bacteria in CHO cells cultures. The epifluorescence microscopy showed to be limited by filterability, media interference and nonrobustness issues, whereas MFSM enabled consistent detection of Bacillus cereus, Staphylococcus epidermidis and Propionibacterium acnes after, respectively, 8, 9 and 48 h of incubation. Thanks to the nondestructive feature of the MFSM, stained membranes could be reincubated on culture media to yield visible colonies used for identification. Conclusions: The new method described in this study showed its ability to detect microbial contaminants in cell culture samples with time‐to‐results from 2–5 times shorter than the traditional testing method. Significance and Impact of the Study: The MFSM can be used as monitoring tool for cell cultures to significantly shorten detection times of microbial contamination, while preserving the ability to identify the contaminants and their viability.  相似文献   

14.
Chemically defined media have been widely used in the biopharmaceutical industry to enhance cell culture productivities and ensure process robustness. These media, which are quite complex, often contain a mixture of many components such as vitamins, amino acids, metals and other chemicals. Some of these components are known to be sensitive to various stress factors including photodegradation. Previous work has shown that small changes in impurity concentrations induced by these potential stresses can have a large impact on the cell culture process including growth and product quality attributes. Furthermore, it has been shown to be difficult to detect these modifications analytically due to the complexity of the cell culture media and the trace level of the degradant products. Here, we describe work performed to identify the specific chemical(s) in photodegraded medium that affect cell culture performance. First, we developed a model system capable of detecting changes in cell culture performance. Second, we used these data and applied an LC‐MS analytical technique to characterize the cell culture media and identify degradant products which affect cell culture performance. Riboflavin limitation and N‐formylkynurenine (NFK), a tryptophan oxidation catabolite, were identified as chemicals which results in a reduction in cell culture performance. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:74–82, 2016  相似文献   

15.
Trace metals are supplied to chemically-defined media (CDM) for optimal Chinese hamster ovary (CHO) cell culture performance during the production of monoclonal antibodies and other therapeutic proteins. However, lot-to-lot and vendor-to-vendor variability in raw materials consequently leads to an imbalance of trace metals that are supplied to CDM. This imbalance can yield detrimental effects rooted in several primary mechanisms and pathways including oxidative stress, apoptosis, lactate accumulation, and unfavorable glycan synthesis. Recent research endeavors involve supplying zinc, copper, and manganese to CDM in excess to further maximize culture productivity and product quality. These treatments significantly impact critical quality attributes and furthermore highlight the degree to which trace metal availability can affect CHO cell culture performance. This review highlights the role of trace metal variability, supplementation, and interplay on key cellular mechanisms responsible for overall culture performance and the production and quality of therapeutic proteins.  相似文献   

16.
Process intensification of monoclonal antibody production is leading to more concentrated feed media causing issues with precipitation of solids from the media solution. This results in processing problems since components in the precipitate are no longer in solution, changing the media composition and leading to variability in cell culture performance. The goal of this work is to characterize the feed media precipitate, and in particular to identify the precipitated components so that mitigation strategies can be developed. From the conducted analysis, the precipitate was predominately found to be organic and was analyzed with liquid chromatography-mass spectrometry and inductively coupled plasma-optical emission spectroscopy (ICP-OES) to identify the constituent components. Up to ten amino acids were identified with tyrosine (approximately 77 wt.%) and phenylalanine (approximately 4 wt.%) being the most prevalent amino acids. Elemental analysis with ICP-OES revealed that inorganic components were accounted for less than one weight percentage of the solid precipitate with metal sulfates being the predominant inorganic components.  相似文献   

17.
Due to the inherent risks of animal-derived raw materials, the biopharmaceutical industry has an increasing demand for serum-free and protein-free media for industrial cell culture bioprocesses. The absence of serum often changes the characteristics of mammalian cells, especially growth, productivity, and adherence properties. This study is mainly focused on the influence of media additives on cell adherence characteristics. An array of different carboxymethyl dextrans and different ferric citrate concentrations was tested with a number of CHO clones, using standard cell culture Roux-flasks and Cytoline 1 macroporous microcarriers. A prototype mixing system with controlled shear force input was developed as a screening system for adherence characteristics. The results of this evaluation revealed a negatively correlated dose-dependent influence on adhesion for ferric citrate. It was also found that certain carboxymethyl dextrans are capable of increasing the adherence on Roux-flasks and microcarriers.  相似文献   

18.
重组蛋白在中国仓鼠卵巢细胞中高效表达的影响因素   总被引:8,自引:0,他引:8  
高效表达重组蛋白 ,对于生物制药意义重大。大多数药用蛋白是糖蛋白 ,中国仓鼠卵巢细胞 (Chinesehamsterovarycell,CHO)是目前重组糖基蛋白生产的首选体系。影响外源蛋白在CHO细胞中表达的因素很多 ,从CHO细胞表达体系、表达载体系统、外源基因、表达细胞株的加压扩增与筛选、细胞大规模培养等方面对CHO高效表达加以阐述 ,同时提出存在的问题和未来的发展方向。  相似文献   

19.
Ultraviolet (UV) irradiation is advantageous as a sterilization technique in the biopharmaceutical industry since it is capable of targeting non-enveloped viruses that are typically challenging to destroy, as well as smaller viruses that can be difficult to remove via conventional separation techniques. In this work, we investigated the influence of oxygen in the media during UV irradiation and characterized the effect on chemical composition using NMR and LC-MS, as well as the ability of the irradiated media to support cell culture. Chemically defined Chinese hamster ovary cell growth media was irradiated at high fluences in a continuous-flow UV reactor. UV-irradiation caused the depletion of pyridoxamine, pyridoxine, pyruvate, riboflavin, tryptophan, and tyrosine; and accumulation of acetate, formate, kynurenine, lumichrome, and sarcosine. Pyridoxamine was the only compound to undergo complete degradation within the fluences considered; complete depletion of pyridoxamine was observed at 200 mJ/cm2. Although in both oxygen- and nitrogen-saturated media, the cell culture performance was affected at fluences above 200 mJ/cm2, there was less of an impact on cell culture performance in the nitrogen-saturated media. Based on these results, minimization of oxygen in cell culture media prior to UV treatment is recommended to minimize the negative impact on sensitive media.  相似文献   

20.
Improving the productivity of a biopharmaceutical Chinese hamster ovary (CHO) fed-batch cell culture can enable cost savings and more efficient manufacturing capacity utilization. One method for increasing CHO cell productivity is the addition of histone deacetylase (HDAC) inhibitors to the cell culture process. In this study, we examined the effect of valproic acid (VPA, 2-propylpentanoic acid), a branched-chain carboxylic acid HDAC inhibitor, on the productivity of three of our CHO cell lines that stably express monoclonal antibodies. Fed-batch shake flask VPA titrations on the three different CHO cell lines yielded cell line-specific results. Cell line A responded highly positively, cell line B responded mildly positively, and cell line C did not respond. We then performed factorial experiments to identify the optimal VPA concentration and day of addition for cell line A. After identifying the optimal conditions for cell line A, we performed verification experiments in fed-batch bioreactors for cell lines A and B. These experiments confirmed that a high dose of VPA late in the culture can increase harvest titer >20 % without greatly changing antibody aggregation, charge heterogeneity, and N-linked glycosylation profiles. Our results suggest that VPA is an attractive and viable small molecule enhancer of protein production for biopharmaceutical CHO cell culture processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号