首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Turnover of cytokeratin polypeptides in mouse hepatocytes   总被引:6,自引:0,他引:6  
The turnover of cytokeratin polypeptides A (equivalent to No. 8 of the human cytokeratin catalog) and D (equivalent to human cytokeratin No. 18) of mouse hepatocytes was studied by pulse-labeling of mouse liver proteins after intraperitoneal injection of L-[guanido-14C]arginine and [14C]sodium bicarbonate. At various times after injection cytoskeletal proteins were prepared and separated by SDS-polyacrylamide gel electrophoresis, and the specific radioactivities of polypeptides recovered from excised gel slices were determined. With L-[guanido-14C]arginine a rapid increase in the specific radioactivity of both cytokeratins was observed which reached a plateau between 12 and 24 h. With [14C]sodium bicarbonate maximal specific radioactivity was obtained at 6 h followed by a rapid decrease to half maximum values within the subsequent 6 h and then a slower decrease. Half-lives were determined from the decrease of specific radioactivities after pulse-labeling by least-squares plots and found to be 84 h (for cytokeratin component A) and 104 h (component D) for arginine labeling. Values obtained after bicarbonate labeling were similar (95 h for A and 98 h for D). These results show that liver cytokeratins are relatively stable proteins and suggest that components A and D are synthesized and degraded at similar rates, probably in a coordinate way.  相似文献   

2.
The differentiation of hepatocytes and biliary epithelial cells has been histochemically analyzed with anti-calf cytokeratin antiserum in the fetal mouse liver. Almost all young fetal hepatocytes transiently express bile-duct-specific cytokeratin; subsequently, the strong staining of the cytokeratin is confined to progenitor cells of intrahepatic biliary epithelial cells around portal veins. These results suggest that all fetal hepatocytes are bi-potent in terms of the differentiation of mature hepatocytes and intrahepatic bile-duct cells, and that the microenvironment around portal veins plays an important role in bile-duct differentiation. Large periportal hepatocytes continue to stain weakly for cytokeratin until 2 weeks after birth, although the number of positive hepatocytes decreases with development. The differentiation of bile ducts from periportal hepatocytes may continue for 2 weeks after birth.  相似文献   

3.
Cloned hepatoma cells (7222) derived from the liver of a rat treated with the carcinogen, diethylnitrosamine, exhibit a genetically stable, large, acentric, juxtanuclear, hyaline aggregate of loosely packed intermediate-sized (7–11 nm) filaments, interspersed with variable but minor amounts of microtubules, polyribosomes and membranous structures. Immunofluorescence microscopy shows that the these filaments react specifically with antibodies to bovine prekeratin and to murine vimentin. The aggregates contain aster-like foci common to the arrangement of both tonofilament-like and vimentin-containing intermediate-sized filaments, although both filament systems show different fibrillar patterns in other cytoplasmic regions. While the cytokeratin filament system is not significantly altered during exposure to colcemid, the vimentin in the abnormal aggregate is rearranged during such treatment into extensive and complex perinuclear ‘whorls’ of filaments. Treatment of the cells with butyrate results in a markedly flattened, hepatocyte-like morphology, a reappearance of typical actin-containing ‘cables’, and a progressive disintegration of the filament aggregate concomitant with a normal display of filaments of both the cytokeratin and vimentin type. The results show that (i) some cells contain aggregates consisting of two different types of intermediate-sized filaments oriented onto a common focal center; (ii) such an abnormal filament arrangement is clonally stable; (iii) the vimentin-type filaments contained in such aggregates are still susceptible to the action of antimitotic drugs and can be rearranged into characteristic perinuclear whorls; and (iv) this abnormal aggregate of intermediate filaments can be reverted to normal patterns upon treatment of the cells with butyrate.  相似文献   

4.
The intermediate filaments (IF) present in the various cells of human ovaries were studied by immunolocalization using antibodies to cytokeratins (CKs), vimentin, desmin and alpha-smooth muscle (-SM) actin. Oocytes revealed a single paranuclear aggregate, which reacted with antibodies to CKs 8, 18 and 19 both in adult and fetal ovaries. The existence of this aggregate was also documented by electron microscopy. Ovarian surface epithelium and granulosa cells consistently coexpressed CKs 8, 18, 19 and vimentin. During follicle maturation vimentin remained unchanged in the granulosa layer while CKs content decreased, showing variation in the amount and distribution of the different CK-types. Thecal cells of secondary and mature follicles showed -SM actin positivity. These contractile fibres increased in mature follicles. Ordinary fibrous stromal cells showed isolated cells which were desmin and -SM actin positive. A similar pattern of IF expression and distribution existed in all stages of development in fetal and embryonic ovaries. These results indicate that CKs are present in human oocytes and that the coexpression of vimentin and CKs can be regarded as a peculiar feature of all ovarian cell types except oocytes and ordinary stromal cells. Contractile properties have been documented associated with a modification in expression of IF proteins. This is likely to represent an integral part of folliculogenesis along with the functional hormone-dependent changes.  相似文献   

5.
The distribution of the cytokeratin network in the intact preimplantation mouse embryo and the role of cytokeratin filaments in trophectoderm differentiation were investigated by means of whole-mount indirect immunofluorescence microscopy and microinjection of anti-cytokeratin antibody. Assembled cytokeratin filaments were detected in some blastomeres as early as the compacted 8-cell stage. The incidence and organization of cytokeratin filaments increased during the morula stage, although individual blastomeres varied in their content of assembled filaments. At the blastocyst stage, each trophectoderm cell contained an intricate network of cytokeratin filaments, and examination of sectioned blastocysts confirmed that extensive arrays of cytokeratin filaments were restricted to cells of the trophectoderm. Microinjection of anticytokeratin antibody into individual mural trophectoderm cells of expanded blastocysts resulted in a dramatic rearrangement of the cytokeratin network in these cells. Moreover, antibody injection into 2-cell embryos inhibited assembly of the cytokeratin network during the next two days of development. Despite this disruption of cytokeratin assembly, the injected embryos compacted and developed into blastocysts with normal morphology and nuclear numbers. These results suggest that formation of an elaborate cytokeratin network in preimplantation mouse embryos is unnecessary for the initial stages of trophectoderm differentiation resulting in blastocyst formation.  相似文献   

6.
When cultured cells of the rat kangaroo cell line PtK2 grown on plastic or glass surfaces are lysed and extracted with combinations of low and high salt buffers and the non-ionic detergent Triton X-100 cytoskeletal preparations are obtained that show an enrichment of 6 to 11 nm thick filaments. The arrays of these filaments have been examined by various light and electron microscopic techniques, including ultrathin sectioning, whole mount transmission electron microscopy, negative staining, and indirect immunofluorescence microscopy. In addition, 6 to 11 nm filaments isolated from these cells with similar extraction procedures and with centrifugation techniques have been examined by electron microscopy. The arrays of these isolated intermediate-sized filaments, their ultrastructure and their specific decoration by certain antibodies present in normal rabbit sera as well as by guinea pig antibodies against purified bovine prekeratin is demonstrated. When preparations enriched in these intermediate-sized filaments are examined by SDS-polyacrylamide gel electrophoresis a corresponding enrichment of three polypeptide bands with apparent molecular weights of about 45 000, 52 000 and 58 000 (the latter component sometimes appears split into two bands) is observed, besides some residual actin and a few high molecular weight bands. The morphology of the isolated filaments, their immunological reaction with antibodies decorating prekeratin-containing structures, and the sizes of their constitutive polypeptides suggest that these filaments are closely related to prekeratin-containing filaments observed in a variety of epithelial cells.  相似文献   

7.
In higher vertebrates the cytoskeleton of glial cells, notably astrocytes, is characterized (a) by masses of intermediate filaments (IFs) that contain the hallmark protein of glial differentiation, the glial filament protein (GFP); and (b) by the absence of cytokeratin IFs and IF-anchoring membrane domains of the desmosome type. Here we report that in certain amphibian species (Xenopus laevis, Rana ridibunda, and Pleurodeles waltlii) the astrocytes of the optic nerve contain a completely different type of cytoskeleton. In immunofluorescence microscopy using antibodies specific for different IF and desmosomal proteins, the astrocytes of this nerve are positive for cytokeratins and desmoplakins; by electron microscopy these reactions could be correlated to IF bundles and desmosomes. By gel electrophoresis of cytoskeletal proteins, combined with immunoblotting, we demonstrate the cytokeratinous nature of the major IF proteins of these astroglial cells, comprising at least three major cytokeratins. In this tissue we have not detected a major IF protein that could correspond to GFP. In contrast, cytokeratin IFs and desmosomes have not been detected in the glial cells of brain and spinal cord or in certain peripheral nerves, such as the sciatic nerve. These results provide an example of the formation of a cytokeratin cytoskeleton in the context of a nonepithelial differentiation program. They further show that glial differentiation and functions, commonly correlated with the formation of GFP filaments, are not necessarily dependent on GFP but can also be achieved with structures typical of epithelial differentiation; i.e., cytokeratin IFs and desmosomes. We discuss the cytoskeletal differences of glial cells in different kinds of nerves in the same animal, with special emphasis on the optic nerve of lower vertebrates as a widely studied model system of glial development and nerve regeneration.  相似文献   

8.
The in vitro renaturation and assembly of cytokeratin molecules to form intermediate filaments (IF) illustrates that these molecules contain all of the structural information necessary for IF information. These molecules contain nine structural domains: the amino- and carboxyterminal extra helical regions, and three conserved extra helical segments that separate four helical rod-like domains. Chymotrypsin treatment of these molecules removes the end-peptide domains and inhibits the self-assembly process. We have examined the renaturation and assembly of cytokeratin molecules using solution conditions that favor the presence of intermediate forms of IF organization. Dialysis against low salt buffers revealed the presence of bead-like chains of filaments in which the 6-8-nm beads are separated by a distance of 21 nm. These data suggest that a lateral stagger of protofilaments was among the primary events in IF assembly. Chymotrypsin-modified cytokeratin enriched for alpha-helix barely initiated a turbidity increase at conditions favoring self-assembly. Addition of small amounts of intact cytokeratin accelerated the rate and extent of this reaction. These results indicate that the nonhelical peptides on intact cytokeratin potentiate the assembly of IF by orientating the stagger of laterally associated protofilaments.  相似文献   

9.
To investigate the dystrophic influence on the characteristics of actin, a method for the isolation of F-actin filaments from the skeletal muscle of small sizes, i.e., less than 0.5 g, was devised. In this method, minced muscle was treated with collagenase and hyaluronidase, and the isolated filaments were washed with adenosine triphosphate (ATP). Upon examination in the sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the ATP-washed filaments showed a protein component identical in mobility to actin in untreated myofibrils or to that prepared by the conventional method. Electron microscopic appearances of the filaments were similar to those of F-actin filaments described in the literature. The dimensions of the filaments were 0.5--2.5 micrometer in length and 60--70 A in diameter. The ability to activate the Mg-adenosine triphosphatase or myosin was found to be Ca2+ independent. In all aspects of the above characteristics, the filaments from leg muscles of 129/Re dydy dystrophic mice and their litter mates were observed to be identical.  相似文献   

10.
11.
We studied the distribution of intermediate-sized filaments in developing and adult kidneys and renal cell carcinoma (RCC) by indirect immunohistochemistry, using a pan-cytokeratin mouse monoclonal antibody (MAb), chain-specific anti-cytokeratin MAb, and anti-vimentin and anti-desmin MAb, to resolve controversy concerning intermediate-sized filament expression in the kidney. With the pan-cytokeratin MAb, cytokeratin expression was detectable in all stages of nephron development, starting with expression in the renal vesicles, the progenitors of the glomeruli, proximal tubules, Henle's loop, and part of the distal tubules. Using chain-specific anti-cytokeratin MAb, cytokeratin 8 and 18 expression was demonstrated in all developmental structures of the nephron, whereas cytokeratin 19 expression was more complex. None of the nephrogenic blastema cells from which the renal vesicles arise expressed cytokeratins. Transient expression of vimentin and cytokeratin 19 was observed in differentiating collecting ducts and proximal tubule cells at the S-shaped stage of nephron development, respectively. In RCC, cytokeratin expression closely resembled that of the mature proximal tubule, i.e., RCC cells expressed cytokeratins 8 and 18. However, in a subset of RCC additional cytokeratin 19 expression was noted. In addition, all except one RCC showed co-expression of cytokeratins and vimentin.  相似文献   

12.
Specific antibodies against vimentin, the major constitutive protein of intermediate-sized filaments present in cytoskeletons of mesenchymal cells of vertebrates, have been raised in guinea pigs. Antibodies to murine and human vimentin are of three types. The first two types produced against murine vimentin show an exclusive or preferential reaction with vimentin filaments of rodents. The third type raised against murine or human vimentin reacts with intermediate-sized filaments in species as diverse as mammals, birds and amphibia. This latter type is used here to show, both by immunoreplica techniques and by immunofluorescence microscopy, that almost all vertebrate cells growing in culture contain filaments of the vimentin type which are usually present in extended arrays. These immunological findings also suggest that the vimentin molecule contains both sequences conserved during evolution and regions different in different vertebrate species. The cells studied include not only cells of mesenchymal origin, but also cells derived from epithelia, in which it is now possible to demonstrate extensive arrays of vimentin filaments in interphase cells as well as intermediate-sized filaments of the prekeratin type. The data are consistent with the idea that most cells grown in culture contain intermediate-sized filaments of the vimentin type, irrespective of the state of differentiation of the cells from which they are derived.  相似文献   

13.
The location of constitutive proteins of different types of intermediate-sized (about 10 mm) filaments (cytokeratin, vimentin, desmin, brain filament protein) was examined in various tissues of 11--20 day chick embryos, using specific antibodies against the isolated proteins and immunofluorescence microscopy on frozen sections and on isolated serous membrane. The tissues studied which contained epithelia were small intestine, gizzard, esophagus, crop, liver, kidney, thymus, mesenteries, and epidermis. The results show that the different intermediate filament proteins, as seen in the same organ, are characteristic of specific lines of differentiation: Cytokeratin filaments are restricted to--and specific for--epithelial cells; vimentin filaments are seen--at this stage of embryogenesis--only in mesenchymal cells, including connective tissue, endothelial and blood cells, and chondrocytes; filaments containing protein(s) related to the subunit protein prepared from gizzard 10 nm filaments (i.e., desmin) are significant only in muscle cells; and intermediate filament protein of brain, most probably neurofilament protein, is present only in nerve cells. We conclude that for most tissues the expression of filaments of cytokeratin, vimentin, desmin, and neurofilament protein is mutually exclusive, and that these protein structurees provide useful markers for histochemical and cytochemical differentiation of cells of epithelial, mesenchymal, myogenic, and neurogenic differentiation.  相似文献   

14.
Using the smallest subunit (NF-L) of a neurofilament and a glial fibrillary acidic protein, the subunit arrangement in intermediate filaments was studied by low-angle rotary shadowing. NF-L formed a pair of 70 to 80 nm rods in a low ionic strength solution at pH 6.8. Two 70 to 80 nm rods appeared to associate in an antiparallel manner with an overlap of about 55 nm, almost the same length as the alpha-helix-rich central rod domain of intermediate filament proteins. The overlap extended for three-beaded segments, present at 22 nm intervals along the pairs of rods. The observations that (1) 70 to 80 nm rods were a predominant structure in a low ionic strength solution at pH 8.5, (2) the molecular weights of the rod and the pair were measured by sedimentation equilibrium as 190,000 and 37,000 respectively, and (3) the rods formed from the trypsin-digested NF-L had a length of about 47 nm, indicated that the 70 to 80 nm rod is the four-chain complex and the pair of rods is the eight-chain complex. Similar structures were observed with glial fibrillary acidic protein, indicating that these oligomeric structures are common to other intermediate filament proteins. NF-L assembled into short intermediate-sized filaments upon dialysis against a low-salt solution containing 1 to 2 mM-MgCl2 at 4 degrees C. The majority of these short filaments possessed four or five-beaded segments, suggesting that the pair of rods were arranged in a half-staggered fashion in neurofilaments. On the basis of these observations, we propose the following model for the intermediate filament subunit arrangement. (1) The four-chain complex is the 70 to 80 nm rod, in which two coiled-coil molecules align in parallel and in register. (2) Two four-chain complexes form the eight-chain complex by associating in an antiparallel fashion with the overlap of the entire central rod domain. (3) The eight-chain complex is the building block of the intermediate filament. The eight-chain complexes are arranged in a half-staggered fashion within the intermediate filament.  相似文献   

15.
Actin, keratin, vinculin and desmoplakin organization were studied in primary mouse keratinocytes before and during Ca2+-induced cell contact formation. Double-label fluorescence shows that in cells cultured in low Ca2+ medium, keratin-containing intermediate filament bundles (IFB) and desmoplakin-containing spots are both concentrated towards the cell center in a region bounded by a series of concentric microfilament bundles (MFB). Within 5-30 min after raising Ca2+ levels, a discontinuous actin/vinculin-rich, submembranous zone of fluorescence appears at cell-cell interfaces. This zone is usually associated with short, perpendicular MFB, which become wider and longer with time. Later, IFB and the desmoplakin spots are seen aligned along the perpendicular MFB as they become redistributed to cell-cell interfaces where desmosomes form. Ultrastructural analysis confirms that before the Ca2+ switch, IFB and desmosomal components are found predominantly within the perimeter defined by the outermost of the concentric MFB. Individual IF often splay out, becoming interwoven into these MFB in the region of cell-substrate contact. In the first 30 min after the Ca2+ switch, areas of submembranous dense material (identified as adherens junctions), which are associated with the perpendicular MFB, can be seen at newly formed cell-cell contact sites. By 1-2 h, IFB-desmosomal component complexes are aligned with the perpendicular MFB as the complexes become redistributed to cell-cell interfaces. Cytochalasin D treatment causes the redistribution of actin into numerous patches; keratin-containing IFB undergo a concomitant redistribution, forming foci that coincide with the actin-containing aggregates. These results are consistent with an IF-MF association before and during desmosome formation in the primary mouse epidermal keratinocyte culture system, and with the temporal and spatial coordination of desmosome and adherens junction formation.  相似文献   

16.
Covalently cross-linked multimers of cytokeratins were shown to be present in transplantable Morris hepatoma 7777 cells. These high molecular weight antigens were not detectable in normal rat liver cells. However, identical high molecular weight antigens were also demonstrated in rat liver cells when the cells were homogenized in solutions containing Ca2+. The cross-linking reaction was suggested to be mediated by the action of tissue transglutaminases.  相似文献   

17.
The epithelial derived cell lines PtK2 and HeLa were characterized by double immunofluorescence microscopy using purified antibodies against vimentin and prekeratin. The results show that both cell types express simultaneously two immunologically distinct intermediate-sized filaments. Use of colcemid-treated cells confirms that the vimentin fibers and not the keratin-related fibers are rearranged into coils around the nucleus. In some cells staining of fibrous fragments is observed, which are perhaps involved in the synthesis or breakdown of this class of filaments. The concept that growing cells derived from differentiated cell types express not only the intermediate-sized filament system typical of the differentiated cell type but in addition contain intermediate-sized filaments of the vimentin type is discussed.  相似文献   

18.
Intermediate filaments of rat hepatocytes are composed of cytokeratins 8 and 18 (CK8 and CK18, respectively). Recent work from our laboratory has indicated a close relationship between the synthesis of these cytokeratins, their organization into intermediate filaments, and the promotion of growth and differentiation of cultured rat hepatocytes by insulin, epidermal growth factor, and dexamethasone. In the present study, we examined the mRNA expression, level of protein synthesis, and fibrillar distribution of cytokeratins 8 and 18 and actin in hepatocytes, isolated from normal and dexamethasone-injected rats and cultured as monolayers or spheroids in the presence of insulin, or from normal rat hepatocytes, cultured as monolayers in the presence of dexamethasone, insulin, and dimethyl sulfoxide. The CK8 mRNA level was lower in hepatocytes isolated from noninjected rats and cultured as either monolayers or spheroids, than in those from dexamethasone-injected rats. However, the CK18 mRNA level varied in a manner that was different from that of CK8 mRNA, showing that the modes of expression of the two genes were independent. The various changes in hepatocyte culture conditions led to variations in albumin mRNA levels that largely followed those observed in CK8 mRNA levels. In the case of actin, the amount of mRNAs varied from relatively high levels in hepatocyte monolayers to extremely low levels in hepatocyte spheroids, even though in both cases the cells were isolated from dexamethasone-injected rats. These changes in mRNA levels did not necessarily correlate with changes in the synthesis of cytokeratins 8 and 18, and actin. Changes in culture conditions induced a major reorganization in the distribution of cytokeratin intermediate filaments and actin filament between the region near the surface membrane and the cytoplasm. The most divergent patterns in cytokeratin intermediate filaments and actin filament distributions were observed between hepatocytes cultured as spheroidal aggregates and as monolayers in the presence of dimethyl sulfoxide. The former condition resulted in patterns of cytokeratin and actin gene expression and fibrillar organization that best matched those in situ. In the latter condition, inappropriate patterns were obtained, in spite of the fact that dimethyl sulfoxide treated hepatocytes are known to exhibit survival and functional activities equivalent to that of hepatocyte spheroids. These results demonstrate for the first time that the survival and functional activity (i.e., albumin production) of rat hepatocytes in vitro is not necessarily correlated with a particular pattern of cytokeratin and actin gene expression and fibrillar arrangement.  相似文献   

19.
We determined and correlated the rigidity of Salmonella typhimurium, Escherichia coli, and Rhizobium lupini flagellar filaments representing various structural and polymorphic states (plain, complex, straight, superhelical, and right- and left-handed). Persistence length, from which the filament's rigidity and other parameters (Young's modulus, bending force constant, buckling persistence length, flexural deformation, and flexural time) were derived, was determined from electron micrographs of isolated, negatively stained filaments. Outer diameters and radii of strong intersubunit connectivity were determined from three-dimensional image reconstructions and radial mass density profiles from scanning transmission electron microscopy. All filaments appear to be highly rigid with no evident correlation with their helical sense or superhelicity. The complex filament of R. lupini is rigid to the extent that it becomes brittle. The overall flexibility of the flagellum seems to stem mainly from the hook and not from the filament. Polymorphism is probably related to the propelling properties and hydrodynamic shape of the filament rather than to its rigidity.  相似文献   

20.
Following the original proposals about myosin filament structure put forward as part of a general myosin filament model (Squire, 1971, 1972) it is here shown what the most likely molecular packing arrangements within the backbones of certain myosin filaments would be assuming that the model is correct. That this is so is already indicated by recently published experimental results which have confirmed several predictions of the model (Bullard and Reedy, 1972; Reedy et al., 1972; Tregear and Squire, 1973).The starting point in the analysis of the myosin packing arrangements is the model for the myosin ribbons in vertebrate smooth muscle proposed by Small &; Squire (1972). It is shown that there is only one reasonable type of packing arrangement for the rod portions of the myosin molecules which will account for the known structure of the ribbons and which is consistent with the known properties of myosin molecules. The dominant interactions in this packing scheme are between parallel myosin molecules which are related by axial shifts of 430 Å and 720 Å. In this analysis the myosin rods are treated as uniform rods of electron density and only the general features of two-strand coiled-coil molecules are considered.Since the general myosin filament model is based on the assumption that the structures of different types of myosin filament must be closely related, the packing scheme derived for the myosin ribbons is used to deduce the structures of the main parts (excluding the bare zones) of the myosin filaments in a variety of muscles. It is shown in each case that there is only one packing scheme consistent with all the available data on these filaments and that in each filament type exactly the same interactions between myosin rods are involved. In other words the myosin-myosin interactions involved in filament formation are specific, they involve molecular shifts of either 430 Å or 720 Å, and are virtually identical in all the different myosin filaments which have been considered. Apart from the myosin ribbons, these are the filaments in vertebrate skeletal muscle, insect flight muscle and certain molluscan muscles.In the case of the thick filaments in vertebrate skeletal muscle the form of the myosin packing arrangement in the bare zone is considered and a packing scheme proposed which involves antiparallel overlaps between myosin rods of 1300 Å and 430 Å. It is shown that this scheme readily explains the triangular profiles of the myosin filaments in the bare zone (Pepe, 1967, 1971) and many other observations on the form of these myosin filaments.Finally it is shown that the cores of several different myosin filaments, assuming they contain protein, may consist of different arrangements of one or other of two types of core subfilament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号