首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The 26S proteasome is an ATP-dependent eukaryotic protease responsible for degrading many important cell regulators, especially those conjugated with multiple ubiquitins. Bound on both ends of the 20S core protease is a multisubunit regulatory particle that plays a crucial role in substrate selection by an as yet unknown mechanism(s). Here, we show that the RPN12 subunit of the Arabidopsis regulatory particle is involved in cytokinin responses. A T-DNA insertion mutant that affects RPN12a has a decreased rate of leaf formation, reduced root elongation, delayed skotomorphogenesis, and altered growth responses to exogenous cytokinins, suggesting that the mutant has decreased sensitivity to the hormone. The cytokinin-inducible genes CYCD3 and NIA1 are upregulated constitutively in rpn12a-1, indicating that feedback-inhibitory mechanisms also may be altered. rpn12a-1 seedlings also showed changes in auxin-induced growth responses, further illustrating the close interaction between auxin and cytokinin regulation. In yeast, RPN12 is necessary for the G1/S and G2/M transitions of the cell cycle, phases that have been shown to be under cytokinin control in plants. We propose that RPN12a is part of the Arabidopsis 26S proteasome that controls the stability of one or more of the factors involved in cytokinin regulation.  相似文献   

2.
The 26S proteasome (26SP), the central protease of the ubiquitin-dependent proteolysis pathway, controls the regulated proteolysis of functional proteins and the removal of misfolded and damaged proteins. In Arabidopsis, cellular and stress response phenotypes of a number of mutants with partially impaired 26SP function have been reported. Here, we describe the responses of proteasome mutants to protein synthesis inhibitors. We show that the rpt2a-3, rpn10-1 and rpn12a-1 mutants are hypersensitive to the antibiotic hygromycin B, and tolerant to the translation inhibitor cycloheximide (CHX) and herbicide l-phosphinothricin (PPT). In addition to the novel mechanism for herbicide tolerance, our data suggests that the combination of hygromycin B, CHX and PPT growth-response assays could be used as a facile diagnostic tool to detect altered 26SP function in plant mutants and transgenic lines.  相似文献   

3.
4.
The 26S proteasome is an eukaryotic ATP-dependent, dumbbell-shaped protease complex with a molecular mass of approximately 2000 kDa. It consists of a central 20S proteasome, functioning as a catalytic machine, and two large V-shaped terminal modules, having possible regulatory roles, composed of multiple subunits of 25–110 kDa attached to the central portion in opposite orientations. The primary structures of all the subunits of mammalian and yeast 20S proteasomes have been determined by recombinant DNA techniques, but structural analyses of the regulatory subunits of the 26S proteasome are still in progress. The regulatory subunits are classified into two subgroups, a subgroup of at least 6 ATPases that constitute a unique multi-gene family encoding homologous polypeptides conserved during evolution and a subgroup of approximately 15 non-ATPase subunits, most of which are structurally unrelated to each other.  相似文献   

5.
The 26S proteasome plays a central role in the degradation of regulatory proteins involved in a variety of developmental processes. It consists of two multisubunit protein complexes: the proteolytic core protease and the regulatory particle (RP). The function of most RP subunits is poorly understood. Here, we describe mutants in the Arabidopsis thaliana RPN1 subunit, which is encoded by two paralogous genes, RPN1a and RPN1b. Disruption of RPN1a caused embryo lethality, while RPN1b mutants showed no obvious abnormal phenotype. Embryos homozygous for rpn1a arrested at the globular stage with defects in the formation of the embryonic root, the protoderm, and procambium. Cyclin B1 protein was not degraded in these embryos, consistent with cell division defects. Double mutant plants (rpn1a/RPN1a rpn1b/rpn1b) produced embryos with a phenotype indistinguishable from that of the rpn1a single mutant. Thus, despite their largely overlapping expression patterns in flowers and developing seeds, the two isoforms do not share redundant functions during gametogenesis and embryogenesis. However, complementation of the rpn1a mutation with the coding region of RPN1b expressed under the control of the RPN1a promoter indicates that the two RPN1 isoforms are functionally equivalent. Overall, our data indicate that RPN1 activity is essential during embryogenesis, where it might participate in the destruction of a specific set of protein substrates.  相似文献   

6.
Viruses and the 26S proteasome: hacking into destruction   总被引:1,自引:0,他引:1  
The discovery that the human papillomavirus E6 oncoprotein could direct the ubiquitination and degradation of the p53 tumour suppressor at the 26S proteasome was the beginning of a new view on virus-host interactions. A decade later, a plethora of viral proteins have been shown to direct host-cell proteins for proteolytic degradation. These activities are required for various aspects of the virus life-cycle from entry, through replication and enhanced cell survival, to viral release. As with oncogenes and cell-cycle control, the study of apparently simple viruses has provided a wealth of information on the function of a whole class of cellular proteins whose function is arguably as important as that of the kinases: the ubiquitin-protein ligases.  相似文献   

7.
8.
Transferring substrates to the 26S proteasome   总被引:14,自引:0,他引:14  
Ubiquitin-dependent protein degradation is not only involved in the recycling of amino acids from damaged or misfolded proteins but also represents an essential and deftly controlled mechanism for modulating the levels of key regulatory proteins. Chains of ubiquitin conjugated to a substrate protein specifically target it for degradation by the 26S proteasome, a huge multi-subunit protein complex found in all eukaryotic cells. Recent reports have clarified some of the molecular mechanisms involved in the transfer of ubiquitinated substrates from the ubiquitination machinery to the proteasome. This novel substrate transportation step in the ubiquitin-proteasome pathway seems to occur either directly or indirectly via certain substrate-recruiting proteins and appears to involve chaperones.  相似文献   

9.
The 26S proteasome: a dynamic structure   总被引:1,自引:0,他引:1  
The proteasomal system consists of a proteolytic core, the 20S proteasome, which associates in ATP-dependent and independent reactions with endogenous regulators providing specific substrate binding sites, chaperone function and regulation of activity to the protease. The best known regulators of the 20S proteasome are the 11S and the 19S complexes. Three subunits of the 20S proteasome and the two subunits of the 11S regulator are induced by -Interferon. However, there are no indications for an influence of -interferon on the subunit composition of the 19S regulator and only a few data exist about the dynamics of this complex. The analysis of 19S regulator subunits from yeast mutants reveals that the ATPases appear to be stringently organized in the 26S complex, while peripheral non-ATPases, such as S5a, might serve as subunits which shuttle substrates to the enzyme. A novel non-ATPase has been cloned, sequenced and identified in a complex besides the 19S regulator, the function of which is presently unknown. The dynamic structure of the 26S proteasome is also characterized by transient associations with components such as the modulator and isopeptidases. Certain viral proteins can also be associated with components of the proteasomal system and alter enzymatic activities.  相似文献   

10.
Recognition of polyubiquitinated substrates by the 26S proteasome is a key step in the selective degradation of various cellular proteins. The Rpn10 subunit of the 26S proteasome can bind polyubiquitin conjugates in vitro. We have previously reported the unique diversity of Rpn10, which differs from other multiple proteasome subunits, and that the mouse Rpn10 mRNA family is generated from a single gene by developmentally regulated alternative splicing. To determine whether such alternative splicing mechanisms occur in other species, we searched for Rpn10 isoforms in databases and in our original PCR products. Here we report the genomic organization of the Rpn10 gene in lower vertebrates and provide evidence for the competent generation of distinct forms of Rpn10 by alternative splicing through evolution.  相似文献   

11.
Huang W  Pi L  Liang W  Xu B  Wang H  Cai R  Huang H 《The Plant cell》2006,18(10):2479-2492
Polarity formation is central to leaf morphogenesis, and several key genes that function in adaxial-abaxial polarity establishment have been identified and characterized extensively. We previously reported that Arabidopsis thaliana ASYMMERTIC LEAVES1 (AS1) and AS2 are important in promoting leaf adaxial fates. We obtained an as2 enhancer mutant, asymmetric leaves enhancer3 (ae3), which demonstrated pleiotropic plant phenotypes, including a defective adaxial identity in some leaves. The ae3 as2 double mutant displayed severely abaxialized leaves, which were accompanied by elevated levels of leaf abaxial promoting genes FILAMENTOUS FLOWER, YABBY3, KANADI1 (KAN1), and KAN2 and a reduced level of the adaxial promoting gene REVOLUTA. We identified AE3, which encodes a putative 26S proteasome subunit RPN8a. Furthermore, double mutant combinations of as2 with other 26S subunit mutations, including rpt2a, rpt4a, rpt5a, rpn1a, rpn9a, pad1, and pbe1, all displayed comparable phenotypes with those of ae3 as2, albeit with varying phenotypic severity. Since these mutated genes encode subunits that are located in different parts of the 26S proteasome, it is possible that the proteolytic function of the 26S holoenzyme is involved in leaf polarity formation. Together, our findings reveal that posttranslational regulation is essential in proper leaf patterning.  相似文献   

12.
Molecular model of the human 26S proteasome   总被引:1,自引:0,他引:1  
  相似文献   

13.
Xin Wen 《Autophagy》2016,12(6):905-906
The ubiquitin-proteasome system (UPS) and macroautophagy/autophagy are 2 main degradative routes, which are important for cellular homeostasis. In a study conducted by Marshall et al., the authors demonstrated that the UPS and autophagy converge in Arabidopsis (see the punctum in issue #11–10). In particular, they found that the 26S proteasome is degraded by autophagy, either nonselectively (induced by nitrogen starvation) or selectively (induced by proteasome inhibition). The selective phenotype is mediated through the proteasome subunit RPN10, which can bind both ubiquitin and ATG8. This newly identified autophagic degradation of the proteasome is termed “proteaphagy,” and the process reveals an interesting relationship between these degradative systems.  相似文献   

14.
The 26S proteasome is a self-compartmentalizing protease responsible for the degradation of intracellular proteins. This giant intracellular protease is formed by several subunits arranged into two 19S polar caps-where protein recognition and ATP-dependent unfolding occur-flanking a 20S central barrel-shaped structure with an inner proteolytic chamber. Proteins targeted to the 26S proteasome are conjugated with a polyubiquitin chain by an enzymatic cascade before delivery to the 26S proteasome for degradation into oligopeptides. As a self-compartmentalizing protease, the 26S proteasome circumvents proteins not destined for degradation and can be deployed to the cytoplasmic and nuclear compartments. The 26S proteasome is a representative of emerging group of giant proteases, including tricorn protease, multicorn protease, and TPPII (tripeptidyl peptidase II).  相似文献   

15.
We sequenced five peptides from subunit 11 (S11), a 43 kDa protein of the human 26S proteasome, and used this information to clone its cDNA. The S11 cDNA encodes a 376 amino acid protein with a pI of 5.6 and a molecular mass of 42.9 kDa. Translation of S11 RNA in the presence of [35S]methionine produces a radiolabeled protein that co-migrates with S11 of the human 26S proteasome on SDS-PAGE. Polyclonal antiserum made against recombinant S11 recognizes a protein of the same size in extracts of bacteria expressing S11 and in purified 26S proteasomes from human red blood cells or rabbit reticulocytes. The S11 sequence does not contain motifs that suggest a biological function. S11 is, however, the human homolog of Rpn9, a recently identified subunit of the yeast 26S proteasome.  相似文献   

16.
Chen C  Huang C  Chen S  Liang J  Lin W  Ke G  Zhang H  Wang B  Huang J  Han Z  Ma L  Huo K  Yang X  Yang P  He F  Tao T 《Proteomics》2008,8(3):508-520
Ubiquitin-dependent proteolysis is mediated by the proteasome. To understand the structure and function of the human 26S proteasome, we cloned complete ORFs of 32 human proteasome subunits and conducted a yeast two-hybrid analysis of their interactions with each other. We observed that there are 114 interacting-pairs in the human 26S proteasome. About 10% (11/114) of these interacting-pairs was confirmed by the GST-pull down analysis. Among these observed interacting subunits, 58% (66/114) are novel and the rest 42% (48/114) has been reported previously in human or in other species. We observed new interactions between the 19S regulatory particle and the beta-rings of the 20S catalytic particle and therefore proposed a modified model of the 26S proteasome.  相似文献   

17.
18.
Ishii T  Sakurai T  Usami H  Uchida K 《Biochemistry》2005,44(42):13893-13901
Reactive oxygen species (ROS) have the potential to damage cellular components, such as protein, resulting in loss of function and structural alteration of proteins. The oxidative process affects a variety of side amino acid groups, some of which are converted to carbonyl compounds. We have previously shown that a prostaglandin D2 metabolite, 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2), is the potent inducer of intracellular oxidative stress on human neuroblastoma SH-SY5Y cells [Kondo, M., Oya-Ito, T., Kumagai, T., Osawa, T., and Uchida, K. (2001) Cyclopentenone prostaglandins as potential inducers of intracellular oxidative stress, J. Biol. Chem. 276, 12076-12083]. In the present study, to elucidate the molecular mechanism underlying the oxidative stress-mediated cell degeneration, we analyzed the protein carbonylation on SH-SY5Y cells when these cells were submitted to an endogenous inducer of ROS production. Upon exposure of SH-SY5Y cells to this endogenous electrophile, we observed significant accumulation of protein carbonyls within the cells. Proteomic analysis of oxidation-sensitive proteins showed that the major intracellular target of protein carbonylation was one of the regulatory subunits in 26 S proteasome, S6 ATPase. Accompanied by a dramatic increase in protein carbonyls within S6 ATPase, the electrophile-induced oxidative stress exerted a significant decrease in the S6 ATPase activities and a decreased ability of the 26 S proteasome to degrade substrates. Moreover, in vitro oxidation of 26 S proteasome with a metal-catalyzed oxidation system also confirmed that S6 ATPase represents the most oxidation-sensitive subunit in the proteasome. These and the observation that down-regulation of S6 ATPase by RNA interference resulted in the enhanced accumulation of ubiquitinated proteins suggest that S6 ATPase is a molecular target of ROS under conditions of electrophile-induced oxidative stress and that oxidative modification of this regulatory subunit of proteasome may be functionally associated with the altered recognition and degradation of proteasomal substrates in the cells.  相似文献   

19.
The 26S proteasome complex plays a major role in the non-lysosomal degradation of intracellular proteins. Purified 26S proteasomes give a pattern of more than 40 spots on 2D-PAGE gels. The positions of subunits have been identified by mass spectrometry of tryptic peptides and by immunoblotting with subunit-specific antipeptide antibodies. Two-dimensional polyacrylamide gel electrophoresis of proteasomes immunoprecipitated from [32P]phosphate-labelled human embryo lung L-132 cells revealed the presence of at least three major phosphorylated polypeptides among the regulatory subunits as well as the C8 and C9 components of the core 20S proteasome. Comparison with the positions of the regulatory polypeptides revealed a minor phosphorylated form to be S7 (MSS1). Antibodies against S4, S6 (TBP7) and S12 (MOV34) all cross-reacted at the position of major phosphorylated polypeptides suggesting that several of the ATPase subunits may be phosphorylated. The phosphorylation of S4 was confirmed by double immunoprecipitation experiments in which 26S proteasomes were immunoprecipitated as above and dissociated and then S4 was immunoprecipitated with subunit-specific antibodies. Antibodies against the non-ATPase subunit S10, which has been suggested by others to be phosphorylated, did not coincide with the position of a phosphorylated polypeptide. Some differences were observed in the 2D-PAGE pattern of proteasomes immunoprecipitated from cultured cells compared to purified rat liver 26S proteasomes suggesting possible differences in subunit compositions of 26S proteasomes.  相似文献   

20.
We determined composition and relative roles of deubiquitylating proteins associated with the 26S proteasome in mammalian cells. Three deubiquitylating activities were associated with the 26S proteasome: two from constituent subunits, Rpn11/S13 and Uch37, and one from a reversibly associated protein, Usp14. RNA interference (RNAi) of Rpn11/S13 inhibited cell growth, decreased cellular proteasome activity via disrupted 26S proteasome assembly, and inhibited cellular protein degradation. In contrast, RNAi of Uch37 or Usp14 had no detectable effect on cell growth, proteasome structure or proteolytic capacity, but accelerated cellular protein degradation. RNAi of both Uch37 and Usp14 also had no effect on proteasome structure or proteolytic capacity, but inhibited cellular protein degradation. Thus, proper proteasomal processing of ubiquitylated substrates requires Rpn11 plus either Uch37 or Usp14. Although the latter proteins feature redundant deubiquitylation functions, they also appear to exert noncatalyic effects on proteasome activity that are similar to but independent of one another. These results reveal unexpected functional relationships among multiple deubiquitylating proteins and suggest a model for mammalian 26S proteasome function whereby their concerted action governs proteasome function by linking deubiquitylation to substrate hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号