首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of pH and Auxin on Chloride Uptake into Avena Coleoptile Cells   总被引:15,自引:15,他引:0       下载免费PDF全文
The effect of pH on 36Cl movement into coleoptile cells (Avena sativa L. cv. Garry) was investigated and compared with effects of indoleacetic acid. 36Cl uptake, but not efflux, is stimulated when coleoptile sections are placed in media adjusted to pH levels from 5 to 3 after a preincubation period at pH 6.5. The enhancement is seen within 2 minutes, is not correlated with growth, and is completely erased by respiratory inhibitors. In comparison to the acid-induced stimulation, the stimulatory effect of indoleacetic acid on 36Cl uptake is also not accompanied by accelerated efflux, and indoleacetic acid does not further stimulate 36Cl uptake into 1-millimeter sections beyond that seen at pH 3.5 without auxin.  相似文献   

2.
Light-induced coleoptile stimulation and mesocotyl suppression in etiolated Avena sativa (cv. Lodi) has been quantitated. Etiolated seedlings showed the greatest response to light when they were illuminated 48 to 56 hours after imbibition. Two low-irradiance photoresponses for each tissue have been described. Red light was 10 times more effective than green and 1,000 times more effective than far red light in evoking these responses. The first response, which resulted in a 45% mesocotyl suppression and 30% coleoptile stimulation, had a threshold at 10−14 einsteins per square centimeter and was saturated at 3.0 × 10−12 einsteins per square centimeter of red light. This very low-irradiance response could be induced by red, green, or far red light and was not photoreversible. Reciprocity failed if the duration of the red illumination exceeded 10 minutes. The low-irradiance response which resulted in 80% mesocotyl suppression and 60% coleoptile stimulation, had a threshold at 10−10 einsteins per square centimeter and was saturated at 3.0 × 10−8 einsteins per square centimeter of red light. A complete low-irradiance response could be induced by either red or green light but not by far red light. This response could be reversed by a far red dose 30 times greater than that of the initial red dose for both coleoptiles and mesocotyls. Reciprocity failed if the duration of the red illumination exceeded 170 minutes. Both of these responses can be explained by the action of phytochrome.  相似文献   

3.
1. A new method is described which gives a continuous record of the absolute rate of protoplasmic streaming in epidermal cells of the Avena coleoptile. 2. With this method a study was made of the influence of malate and iodoacetate on streaming velocity, in order to make correlations with the previously established effects of these substances on growth and respiration. 3. In the presence of optimum concentrations of indole-3-acetic acid in freshly cut sections, malate had no effect on streaming. In the presence of very low concentrations of the auxin, however, malate increased the range of response, so that the threshold of auxin sensitivity was lowered some ten times by the malate. Malate alone had no effect on streaming. 4. In coleoptile sections, soaked overnight in sugar solution or in water, the acceleration of streaming normally caused by auxin almost disappears, but the presence of malate causes large accelerations of streaming by the auxin. 5. Similarly, in sections from old coleoptiles, which no longer show acceleration of streaming by auxin, the acceleration is restored when malate is added together with the auxin. 6. Malate does not enter the cell as rapidly as does auxin, but easily detectable amounts penetrate within 30 minutes. 7. Iodoacetate in the concentration which inhibits growth (5 x 10–5 M) completely inhibits the acceleration of streaming by auxin. In still lower concentrations iodoacetate slightly accelerates streaming. Higher concentrations, up to 2 x 10–4 M, did not reduce the rate of streaming below that of controls without auxin. The effect of iodoacetate is therefore to inhibit the acceleration caused by auxin and not to affect the basal streaming rate. 8. It is concluded that, just as for growth and respiration, malate is necessary for the response to auxin shown by acceleration of streaming. This further strengthens the triple parallel between the effects of auxin on streaming, growth, and respiration, all of which are apparently mediated by the 4-carbon acid system.  相似文献   

4.
1. It is shown that when plant tissues are ground with water the growth substance contained therein is inactivated by the oxidizing enzymes. 2. A simple method of extraction is described which enables the quantitative determination of growth substance in such tissues. 3. The amount and distribution of growth substance in the Avena coleoptile is determined by this method, and it is shown that while the substance does not diffuse out from the lower parts of the coleoptile, it is nevertheless present in considerable amounts, the concentration decreasing steadily with the distance from the tip. 4. Growth substance is also present in considerable amounts in Avena roots, and here also its concentration decreases steadily with distance from the tip. 5. The amount of growth substance diffusing out of root tips into dextrose agar, even during long periods of time, is not greater than the amount obtainable by direct extraction. Actual production in the root tip therefore either does not take place at all, or else takes place under quite different conditions from the production in the tip of the coleoptile.  相似文献   

5.
Effect of calmodulin antagonists on auxin-induced elongation   总被引:7,自引:5,他引:2       下载免费PDF全文
Coleoptile segments of oat (Avena sativa var Cayuse) and corn (Zea mays L. var Patriot) were incubated in different concentrations of calmodulin antagonists in the presence and absence of α-naphthaleneacetic acid. The calmodulin antgonists (chlorpromazine (CP), trifluoperazine, and fluphenazine) inhibited the auxin-induced elongation at 5 to 50 micromolar concentrations. Chlorpromazine sulfoxide, an analog of chlorpromazine, did not have significant effect on the elongation of oat and corn coleoptiles. A specific inhibitor of calmodulin N-(6-aminohexyl)5-chloro-1-naphthalenesulfonamide hydrochloride (W-7, a naphthalenesulfonamide derivative) inhibited coleoptile elongation, while its inactive analog N-(6-aminohexyl)-1-naphthalenesulfonamide hydrochloride (W-5) was ineffective at similar concentrations. During a 4-hour incubation period, coleoptile segments accumulated significant quantities of 3H-CP. About 85 to 90% of auxin-induced growth was recovered after 4 hours of preincubation with CP or 12 hours with W-7 and transferring coleoptiles to buffer containing NAA. Leakage of amino acids from coleoptiles increased with increasing concentration of CP, showing a rapid and significant increase above 20 micromolar CP. The amount of amino acids released in the presence of W-7 and W-5 was significantly lower than the amount released in the presence of CP. Both W-5 and W-7 increased amino acid release but only W-7 inhibited auxin-induced growth. Calmodulin activity measured by phosphodiesterase activation did not differ significantly between auxin-treated and control coleoptile segments. These results suggest the possible involvement of calmodulin in auxin-induced coleoptile elongation.  相似文献   

6.

Background and Aims

The mechanism of auxin action on ion transport in growing cells has not been determined in detail. In particular, little is known about the role of chloride in the auxin-induced growth of coleoptile cells. Moreover, the data that do exist in the literature are controversial. This study describes experiments that were carried out with maize (Zea mays) coleoptile segments, this being a classical model system for studies of plant cell elongation growth.

Methods

Growth kinetics or growth and pH changes were recorded in maize coleoptiles using two independent measuring systems. The growth rate of the segments was measured simultaneously with medium pH changes. Membrane potential changes in parenchymal cells of the segments were also determined for chosen variants. The question of whether anion transport is involved in auxin-induced growth of maize coleoptile segments was primarily studied using anion channel blockers [anthracene-9-carboxylic acid (A-9-C) and 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS)]. In addition, experiments in which KCl was replaced by KNO3 were also performed.

Key Results

Both anion channel blockers, added at 0·1 mm, diminished indole-3-acetic acid (IAA)-induced elongation growth by ∼30 %. Medium pH changes measured simultaneously with growth indicated that while DIDS stopped IAA-induced proton extrusion, A-9-C diminished it by only 50 %. Addition of A-9-C to medium containing 1 mm KCl did not affect the characteristic kinetics of IAA-induced membrane potential changes, while in the presence of 10 mm KCl the channel blocker stopped IAA-induced membrane hyperpolarization. Replacement of KCl with KNO3 significantly decreased IAA-induced growth and inhibited proton extrusion. In contrast to the KCl concentration, the concentration of KNO3 did not affect the growth-stimulatory effect of IAA. For comparison, the effects of the cation channel blocker tetraethylammonium chloride (TEA-Cl) on IAA-induced growth and proton extrusion were also determined. TEA-Cl, added 1 h before IAA, caused reduction of growth by 49·9 % and inhibition of proton extrusion.

Conclusions

These results suggest that Cl plays a role in the IAA-induced growth of maize coleoptile segments. A possible mechanism for Cl uptake during IAA-induced growth is proposed in which uptake of K+ and Cl ions in concert with IAA-induced plasma membrane H+-ATPase activity changes the membrane potential to a value needed for turgor adjustment during the growth of maize coleoptile cells.  相似文献   

7.
Summary 1.During second positive irradiation, bending increases steadily with time. Under optimal conditions, the lag between onset of illumination and beginning of parabolic bending behavior is about 3 min. — 2. Shortly after irradiation ceases, bending becomes linear with time. On a clinostat, bending continues for about 2.5 hr. Auxanometric measurements show that the ultimate cessation of bending is not due to failing growth rate. — 3. The second positive response shows a striking dependence on intensity of irradiation. Inactivation occurs when irradiation approaches the intensity of full daylight. — 4. Induction is linear with duration of illumination, both at purely activating intensities and at partially inactivating intensities. — 5. Induction at 2°, while somewhat slower than at 25°, retains linear dependence on exposure duration. This suggests that the reactions immediately following light reception are slowed but not stopped at low temperature. — 6. Growth, which drops to about 0.5 /min at 2°, resumes at about 18 min-1 as soon as plants are warmed to 25°. Curvature does not seem to begin for about 10 min. Combined with information about lag time for primary auxin action, this suggests that lateral auxin transport, as well as growth, is strongly inhibited at near-freezing temperatures. — 7. The induced transport system is highly stable at 2°. — 8. Under optimal conditions, the lag between onset of irradiation and induction of capacity to produce measurable curvature is only a few seconds. The length of the lag is dependent on the rate of induction. The lag is thought to be due to the requirement that enough induction be accumulated to overcome resistance of the coleoptile. — 9. Induction is dependent on the gradient of light across the coleoptile, whether measured for purely activating or partially inactivating intensities. The light received is probably integrated either across individual cells or across the entire width of the coleoptile.  相似文献   

8.
Bound indoleacetic Acid in Avena coleoptiles   总被引:12,自引:12,他引:0       下载免费PDF全文
When C14 carboxyl indoleacetic acid (IAA) is transported through Avena coleoptile sections a fraction of the activity becomes bound. The nature of this bound IAA has been investigated. Upon extraction with solvents and chromatography a substance having the RF of IAA in 4 solvents was detected. No evidence could be found for the formation of indoleacetyl conjugates. In pea stem sections subjected to a similar experimental regime good evidence was obtained for the occurrence of conjugates. When IAA was supplied exogenously to coleoptile sections floating in solutions the occurrence of conjugates was shown to be dependent on the presence of the primary leaf. In its absence no conjugates could be detected.

On grinding coleoptile sections and subsequent centrifugation at 240 × g the radioactivity was found to be in the tissue fraction as opposed to the supernatant. The radioactivity cannot be removed from the tissue by extraction with water, buffer solution or treatment with ribonuclease. It is readily removed by 10% urea, crystalline trypsin and chymotrypsin. It is therefore concluded that IAA becomes bound to a protein. Bound IAA does not appear to be able to cause growth in Avena coleoptile sections.

  相似文献   

9.
Recent studies have shown that guard cell and coleoptile chloroplasts appear to be involved in blue light photoreception during blue light-dependent stomatal opening and phototropic bending. The guard cell chloroplast has been studied in detail but the coleoptile chloroplast is poorly understood. The present study was aimed at the characterization of the corn coleoptile chloroplast, and its comparison with mesophyll and guard cell chloroplasts. Coleoptile chloroplasts operated the xanthophyll cycle, and their zeaxanthin content tracked incident rates of solar radiation throughout the day. Zeaxanthin formation was very sensitive to low incident fluence rates, and saturated at around 800–1000 mol m–2 s–1. Zeaxanthin formation in corn mesophyll chloroplasts was insensitive to low fluence rates and saturated at around 1800 mol m–2 s–1. Quenching rates of chlorophyll a fluorescence transients from coleoptile chloroplasts induced by saturating fluence rates of actinic red light increased as a function of zeaxanthin content. This implies that zeaxanthin plays a photoprotective role in the coleoptile chloroplast. Addition of low fluence rates of blue light to saturating red light also increased quenching rates in a zeaxanthin-dependent fashion. This blue light response of the coleoptile chloroplast is analogous to that of the guard cell chloroplast, and implicates these organelles in the sensory transduction of blue light. On a chlorophyll basis, coleoptile chloroplasts had high rates of photosynthetic oxygen evolution and low rates of photosynthetic carbon fixation, as compared with mesophyll chloroplasts. In contrast with the uniform chloroplast distribution in the leaf, coleoptile chloroplasts were predominately found in the outer cell layers of the coleoptile cortex, and had large starch grains and a moderate amount of stacked grana and stroma lamellae. Several key properties of the coleoptile chloroplast were different from those of mesophyll chloroplasts and resembled those of guard cell chloroplasts. We propose that the common properties of guard cell and coleoptile chloroplasts define a functional pattern characteristic of chloroplasts specialized in photosensory transduction.Abbreviations Ant or A antheraxanthin - dv/dt fluorescence quenching rate - Fm maximum yield of fluorescence with all PS II reaction centers closed - Fo yield of instantaneous fluorescence with all PS II reaction centers open - Vio or V violaxanthin - Zea or Z zeaxanthin  相似文献   

10.
Abstract Optimal conditions for studying the elongation response to a 1 mmol m?2, 2-min pulse of red light in subapical coleoptile sections from dark-grown oat (Avena sativa L. ev. Lodi) seedlings have been determined. A technique for obtaining standard-length coleoptile sections without exposing either seedlings or sections to any light has been developed, and is described. The optimal conditions found were: sampling time, 12 h after irradiation; buffer conditions, 5 mol m?3 potassium phosphate with 5% (w/v) sucrose (pH 5.9). The optima were determined by obtaining the time course for light-induced growth under various conditions. The red light-induced growth response is linear until 12 h after irradiation, when it undergoes an interruption. Optimal incubation conditions were determined by varying the buffer contents systematically and measuring the responses at the optimal lime determined. The results indicate a distinct difference between auxin-induced and light-induced growth responses. Even with variations of basal growth rate and several incubation conditions, the red light-induced elongation appears to be of a constant magnitude, to persist for a constant time period. and to exhibit a constant lag period between irradiation and the onset of response. The use of sections that were produced and handled in complete darkness yielded an unusual response to fusicoccin. A linear, high growth rate in response to I mmol m?3 FC was observed for more than 12 h, both in the irradiated sections and in the dark controls.  相似文献   

11.
It was found that production of superoxide (O2 – ·) is crucial for normal morphogenesis of etiolated wheat seedlings in the early stages of plant development. The development of etiolated wheat seedlings was shown to be accompanied with cyclic changes in the rate of O2 – · production both in the entire intact seedling and in its separated organs (leaf, coleoptile). First increase in the rate of O2 – · production was clearly observed in the period from two to four days of seedling development, then the rate of O2 – · production decreased to the initial level, and then it increased again for two days to a new maximum. An increase in O2 – · production in the period of the first four days of seedling development correlates with an increase in DNA and protein contents in the coleoptile. The second peak of increased rate of O2 – · production observed on the sixth or seventh day of seedling development coincides with a decrease in DNA and protein contents and apoptotic internucleosomal nuclear DNA fragmentation in the coleoptile. Incubation of seedlings in the presence of the antioxidant BHT (ionol) strongly affects their development but it does not influence the increase in DNA and protein contents for the initial four days of seedling life, and it slows down the subsequent age-dependent decrease in protein content and fully prevents the age-dependent decrease in DNA content in the coleoptile. A decrease in the O2 – · amount induced by BHT distorts the seedling development. BHT retards seedling growth, presumably by suppression of cell elongation, and it increases the life span of the coleoptile. It seems that O2 – · controls plant growth by cell elongation at the early stages of seedling development but later O2 – · controls (induces) apoptotic DNA fragmentation and protein disintegration.  相似文献   

12.
Summary A linear displacement transducer has been used to monitor the growth of a column of Avena coleoptile segments in flowing solution. IAA at 10-5M in phosphate buffer of pH7 promotes growth after a latent period of 10.9 min, the initial maximum growth rate occurring after 25 min. Simultaneous treatment with 10-5 M ABA does not affect either the latent period or the initial maximum growth rate in response to the IAA treatment, but subsequently gives rise to an inhibition of growth detectable after 30 min. In contrast, pretreatment with ABA for 100 min increases the duration of the latent period and reduces the initial maximum growth rate. Removal of the ABA rapidly relieves the inhibition of IAA-induced growth but a growth rate comparable to that of material treated only with IAA is never attained. Studies using 2-[14C]ABA and 1-[14C]IAA suggest that the latent period before ABA inhibition of growth is detectable is not due to a lag in ABA uptake, and that ABA is not acting by reducing IAA uptake.  相似文献   

13.
Nishimura T  Mori Y  Furukawa T  Kadota A  Koshiba T 《Planta》2006,224(6):1427-1435
When maize coleoptiles were unilaterally exposed to red light (7.9 μmol m−2s−1 for 5 min), 3 h after treatment IAA levels in coleoptiles decreased in all regions, from top to basal, with levels about 60% of dark controls. Localized irradiation in the 5 mm top zone was sufficient to cause the same extent of IAA reduction in the tips to that in the tips of whole irradiated shoots. When coleoptiles were treated with N-1-naphthylphthalamic acid (NPA), an accumulation of IAA in the tip and a decrease of diffusible IAA from tips were simultaneously detected. IAA accumulation in red-light treated coleoptiles by NPA was much lower than that of dark controls. NPA treatment did not affect the content of conjugated IAA in either dark or light treated coleoptile tips. When 13C11 15N2-tryptophan (Trp) was applied to the top of coleoptiles, substantial amounts of stable isotope were incorporated into free IAA in dark and red-light treated coleoptile tips. The ratio of incorporation was slightly lower in red-light treated coleoptile tips than that in dark controls. The label could not be detected in conjugated IAA. The rate of basipetal transport of IAA was about 10 mm h−1 and the velocity was not affected by red light. These results strongly suggest that red light does not affect the rates of conversion of free IAA to the conjugate form or of the basipetal transport, but just reduces the IAA level in the tips, probably inhibited by IAA biosynthesis from Trp in this region.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

14.
When 3–4 mm long coleoptiles of etiolated rice seedlings (cv. Koshijiwase) were irradiated with continuous red light their growth was seriously inhibited. If a brief exposure of red light (4×103 ergs cm−2) was given to the short coleoptiles, the growth rate dropped immediately after the irradiation, but the growth did not stop till the coleoptile reached some calculated length. If another brief red irradaition of the same order was given 24 hr after the first, the growth rate and the final length dropped further. The effect of red light was reversed by successively given far-red light, and this response was repeatedly red and far-red reversible. The escape reaction was rather slow so that photoreversibility was not lost at all by 8th hr, and 50% of the initial reversibility was lost within ca. 16 hr at 25±0.5 C. Blue light also induced the inhibition of coleoptile elongation, the effect was reversed by subsequent far-red irradiation, and this could be obtained repeatedly. Thus, the photoinhibition of the young coleoptile can be concluded to be under the control of phytochrome, and the mode of action appeared quite different from the previously reported results with longer coleoptiles.  相似文献   

15.
The effect of low temperature on cell growth, photosynthesis, photoinhibition, and nitrate assimilation was examined in the cyanobacterium Synechococcus sp. PCC 6301 to determine the factor that limits growth. Synechococcus sp. PCC 6301 grew exponentially between 20°C and 38°C, the growth rate decreased with decreasing temperature, and growth ceased at 15°C. The rate of photosynthetic oxygen evolution decreased more slowly with temperature than the growth rate, and more than 20% of the activity at 38°C remained at 15°C. Oxygen evolution was rapidly inactivated at high light intensity (3 mE m−2 s−1) at 15°C. Little or no loss of oxygen evolution was observed under the normal light intensity (250 μE m−2 s−1) for growth at 15°C. The decrease in the rate of nitrate consumption by cells as a function of temperature was similar to the decrease in the growth rate. Cells could not actively take up nitrate or nitrite at 15°C, although nitrate reductase and nitrite reductase were still active. These data demonstrate that growth at low temperature is not limited by a decrease in the rate of photosynthetic electron transport or by photoinhibition, but that inactivation of the nitrate/nitrite transporter limits growth at low temperature.  相似文献   

16.
Biological Properties of d-Amino Acid Conjugates of 2,4-D   总被引:1,自引:1,他引:0  
Some d-amino acid (glutamic acid, valine, or leucine) conjugates of 2,4-dichlorophenoxyacetic acid (2,4-D) at 10−5 molar, stimulated elongation of Avena sativa L. var Mariner coleoptile sections and growth of soybean (Glycine max. L. var Amsoy) tissue as much as did the l-amino acid conjugates at 10−6 molar. The d-methionine conjugate did not stimulate growth of soybean root callus tissue but did stimulate Avena elongation. The d-aspartic acid conjugate did not stimulate elongation of Avena coleoptiles but did stimulate growth of root callus tissue.  相似文献   

17.
1. Evidence has accumulated that the action of auxins in promoting growth is exerted not upon the cell wall but upon the cell contents; i.e., the protoplasm. Following indications previously obtained, therefore, the effect of auxins on the rate of protoplasm streaming in the Avena coleoptile was studied. 2. Indole-3-acetic acid, the most active auxin available in pure form, was found to increase the rate of streaming in the epidermal cells of the Avena coleoptile at concentrations between 0.5 and 0.002 mg. per liter, the maximum increase being brought about at 0.01 mg. per liter. This concentration is approximately that which, applied in agar to one side of the decapitated coleoptile, would give a curvature of 1°; i.e., it is well within the range of concentrations active in growth promotion. It is, however, much less than that which produces maximum elongation in immersed sections of Avena coleoptiles. 3. This accelerating effect is readily determined quantitatively by comparison with the streaming in control coleoptiles in pure water, which, if thoroughly aerated, maintain a constant rate for over an hour. The accelerating effect takes place immediately and is over within about 30 minutes. 4. Concentrations of indole-3-acetic acid greater than 0.5 mg.per liter inhibit the streaming, the effect being also over in about 30 minutes, and its extent increasing with increasing auxin concentration. This parallels the effect of high auxin concentrations in inhibiting elongation, although the inhibition of streaming is obtained at much lower concentrations than inhibit elongation. 5. The effects of indole-3-acetic acid on streaming are not specific for that substance, but appear to be common to auxins in general. Thus coumaryl-3-acetic acid and allocinnamic acid, both of which bring about cell enlargement, root formation, and bud inhibition, i.e. are typical auxins, also cause an immediate acceleration of the rate of streaming, and as with indole-acetic add the effect is over in about 30 minutes. The concentrations of these two substances which produce the maximum effect are about ten times that of indole-acetic acid, which approximately corresponds with their relative auxin activities. The curves relating concentrations of these substances to their effects on streaming are very similar to that for indole-acetic acid. 6. On the other hand, certain substances which are known to affect streaming in other materials do not produce any effect comparable to that of auxin. Ethylene chlorhydrin, histidine, and urea in all concentrations were without effect on streaming in the Avena coleoptile within the first 30 minutes of treatment. 7. The effects produced by the auxins were not due to pH. 8. The action on streaming here studied is evidently quite different from the re-starting of streaming after its cessation, studied by Fitting in Vallisneria. Correspondingly histidine, which in Fitting''s experiments showed activity down to 10–7 M, is inactive here. 9. Per contra, the effect of auxin here studied is on normal streaming. It takes place immediately and at concentrations in the same range as those which produce growth. The curve of effect against concentration parallels that for growth although the actual concentration values differ. It is therefore reasonable to suppose that the effect of auxin on streaming is closely connected with one of the first stages of its effect on the growth process.  相似文献   

18.
Biological N2 fixation is the dominant supply of new nitrogen (N) to the oceans, but is often inhibited in the presence of fixed N sources such as nitrate (NO3 ). Anthropogenic fixed N inputs to the ocean are increasing, but their effect on marine N2 fixation is uncertain. Thus, global estimates of new oceanic N depend on a fundamental understanding of factors that modulate N source preferences by N2-fixing cyanobacteria. We examined the unicellular diazotroph Crocosphaera watsonii (strain WH0003) to determine how the light-limited growth rate influences the inhibitory effects of fixed N on N2 fixation. When growth (µ) was limited by low light (µ = 0.23 d−1), short-term experiments indicated that 0.4 µM NH4 + reduced N2-fixation by ∼90% relative to controls without added NH4 +. In fast-growing, high-light-acclimated cultures (µ = 0.68 d−1), 2.0 µM NH4 + was needed to achieve the same effect. In long-term exposures to NO3 , inhibition of N2 fixation also varied with growth rate. In high-light-acclimated, fast-growing cultures, NO3 did not inhibit N2-fixation rates in comparison with cultures growing on N2 alone. Instead NO3 supported even faster growth, indicating that the cellular assimilation rate of N2 alone (i.e. dinitrogen reduction) could not support the light-specific maximum growth rate of Crocosphaera. When growth was severely light-limited, NO3 did not support faster growth rates but instead inhibited N2-fixation rates by 55% relative to controls. These data rest on the basic tenet that light energy is the driver of photoautotrophic growth while various nutrient substrates serve as supports. Our findings provide a novel conceptual framework to examine interactions between N source preferences and predict degrees of inhibition of N2 fixation by fixed N sources based on the growth rate as controlled by light.  相似文献   

19.
Apical segments of etiolated oat (Avena sativa L. cv. Victory) coleoptiles showed enhanced uptake of [86Rb+] when tested 30 minutes after a 5-minute red irradiation. The response was partly reversible by far red light. Uptake was sensitive to carbonyl cyanide m-chlorophenyl hydrazone, but not to isotonic mannitol. Indoleacetic acid (10−7 molar) caused a very pronounced and rapid stimulation of uptake. Basal coleoptile segments also exhibited a red light-enhanced uptake, but not an effect of red light on changes in the pH of the medium. The [86Rb+] uptake of third internode segments from etiolated peas (Pisum sativum L. cv. Alaska) was not affected by either red light or auxin. This tissue also showed no red light effect on acidification of the medium. It is concluded that alteration of [86Rb+] flux is not a general feature of phytochrome action.  相似文献   

20.
Cultures of megatherium 899a, growing under different conditions, were exposed to ultraviolet or white light. 1. Cultures exposed to ultraviolet light and then to white light continue to grow at the normal rate. Cultures exposed to ultraviolet light and then placed in the dark grow at the normal rate for varying lengths of time, depending on conditions, and then lyse with the liberation of from 5 to 1000 phage particles per cell, depending on the culture medium. 2. Increasing the time of exposure to ultraviolet light results in an increase in the fraction of cells which lyse in the dark. The lysis time decreases at first, remains constant over a wide range of exposure, and then increases. The lysis can be prevented by visible light after short exposure, but not after long exposures. 3. The time required for lysis is independent of the cell concentration. 4. Effect of temperature. After exposure to ultraviolet the cell concentration increases about 4 times at 20°, 30°, or 35°C., but only 1.5 to 2.0 times at 40–45°. This is due to the fact that the growth rate of the culture reaches a maximum at 38° while the lysis rate increases steadily up to 45°. 5. Terramycin decreases the growth rate and lysis rate in proportion. 6. At pH 5.1, the cultures continue to grow slowly in the dark after exposure to ultraviolet light. 7. Megatherium sensitive cells infected with T phage lyse more rapidly than ultraviolet-treated 899a, and visible light does not affect the lysis time. The results agree with the assumption that exposure to ultraviolet results in the production of a toxic (mutagenic) substance inside the bacterial cell. This substance is inactivated by white light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号