首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A wide number of pesticides, including highly persistent organochlorine compounds, such as lindane (γ-Hexachlorocyclohexane), have deteriorative effect on fauna and flora by inducing oxidative stress. Lindane induces cell damage by producing free radicals and reactive oxygen species. Quercetin, a dietary flavonoid, is ubiquitous in fruits and vegetables and plays an important role in human health by virtue of its antioxidant function. In this study the flavonoid quercetin was used to investigate its antioxidative effect against lindane induced oxidative stress in rats. The level of lipid peroxidation, reduced glutathione (GSH) were analysed in addition to the antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione-s-transferase (GST) activities in the liver and kidney tissue. Levels of hepatic marker enzymes in serum like Aspartate transaminase (AST), Alanine transaminase (ALT), Alkaline phosphatase (ALP) and Lactate dehydrogenase (LDH) and renal markers like serum creatinine and serum urea were estimated. Administration of Lindane induced histopathological alterations and increased levels of serum hepatic and renal markers and malondialdehyde (MDA) with a significant decrease in GSH content and CAT, SOD, GPx and GST activities. Cotreatment of quercetin along with lindane significantly decreased the lindane induced alteration in histology, serum hepatic and renal markers and MDA and also improved the cellular antioxidant status. The results show that Quercetin ameliorates Lindane induced oxidative stress in liver and kidney. The quercetin exhibited chemopreventive effect when administered along with lindane.  相似文献   

2.
Arsenic has a long history as a potent human poison, chronic exposure over a period of time may result in the manifestation of toxicity in practically all systems of the body. In the present investigation the efficacy of naringenin (NRG), a naturally occurring citrus flavanone against arsenic-induced hepatotoxic and nephrotoxic manifestations have been studied in rats. Arsenic trioxide was administered orally at the dose of 2 mg/kg/day with or without combination of NRG (20 or 50 mg/kg/day) for 28 days. At the end of the experimental period the hepatic and renal dysfunction was evaluated by histological examination, serum biomarkers and markers of oxidative stress; lipid peroxidation (LPO), reduced glutathione (GSH) and antioxidant enzymes. Arsenic intoxication increased serum bilirubin, urea, uric acid and creatinine levels, additionally enhanced the activities of hepatic marker enzymes aspartate transaminase, alanine transaminase and alkaline phosphatase. Also, the hepatic and renal tissues showed a marked elevation in LPO levels with a decrease in GSH content and the activities of antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase on arsenic treatment. Simultaneous treatment with NRG restored the activities of serum biomarkers and antioxidant enzymes in the tissues in a dose-dependent manner. Furthermore, the histopathological studies confirmed the protective effect of NRG co-treatment by reducing the pathological changes due to arsenic intoxication in both liver and kidney. Thus, our present study demonstrates that NRG has a potential to protect arsenic-induced oxidative hepatic and renal dysfunction.  相似文献   

3.
To elucidate the protective effects of glutathione against iron-induced peroxidative injury, changes in the hepatic glutathione metabolism were studied in chronically iron-loaded mice. When the diets of the mice were supplemented with carbonyl iron, iron deposition occurred primarily in the parenchymal cells of the liver. In addition, expiratory ethane production was elevated, suggesting an enhancement in lipid peroxidation. In iron-loaded mice, the total hepatic glutathione contents were higher (6.21 +/- 0.53 mumol/g wet wt.) than in control mice (4.61 +/- 0.31 mumol/g wet wt.), primarily due to an increase in the reduced glutathione contents. The value of oxidized glutathione was also higher (98.5 +/- 8.1 nmol/g wet wt.) than in the controls (60.8 +/- 9.5 nmol/g wet wt.), and the ratio of oxidized glutathione to total glutathione increased. The excretion rate of glutathione from the hepatocytes in iron-loaded mice also increased. These observations suggest that chronic iron-loading of mice stimulates lipid peroxidation and oxidation of glutathione and that peroxidized molecules may be catabolized using reduced glutathione.  相似文献   

4.
Jagetia GC  Reddy TK 《Life sciences》2005,77(7):780-794
The alteration in the antioxidant status and lipid peroxidation was investigated in Swiss albino mice treated with 2 mg/kg b.wt. naringin, a citrus flavoglycoside, before exposure to 0.5, 1, 2, 3, and 4 Gy gamma radiation. Lipid peroxidation, glutathione, glutathione peroxidase, catalase and superoxide dismutase were determined in the liver and small intestine of mice treated or not with naringin at 0.5, 1, 2, 4 and 8 h post-irradiation. Whole-body irradiation of mice caused a dose-dependent elevation in the lipid peroxidation while a dose-dependent depletion was observed for glutathione, glutathione peroxidase, superoxide dismutase and catalase in both liver as well as small intestine. Treatment of mice with 2 mg/kg b. wt. naringin inhibited the radiation-induced elevation in the lipid peroxidation as well as depletion of glutathione, glutathione peroxidase, superoxide dismutase and catalase in liver and small intestine. Radiation-induced lipid peroxidation increased with time, which was greatest at 2 h post-irradiation and declined thereafter in the liver and small intestine. Similarly, a maximum decline in the glutathione glutathione peroxidase, and superoxide dismutase was observed at 1 h, while catalase showed a maximum decline at 2 h post-irradiation. Our study demonstrates that naringin protects mouse liver and intestine against the radiation-induced damage by elevating the antioxidant status and reducing the lipid peroxidation.  相似文献   

5.
Cajanus indicus is a herb with medicinal properties and is traditionally used to treat various forms of liver disorders. Present study aimed to evaluate the effect of a 43 kD protein isolated from the leaves of this herb against chloroform induced hepatotoxicity. Male albino mice were intraperitoneally treated with 2 mg/kg body weight of the protein for 5 days followed by oral application of chloroform (0.75 ml/kg body weight) for 2 days. Different biochemical parameters related to physiology and pathophysiology of liver, such as, serum glutamate pyruvate transaminase and alkaline phosphatase were determined in the murine sera under various experimental conditions. Direct antioxidant role of the protein was also determined from its reaction with Diphenyl picryl hydroxyl radical, superoxide radical and hydrogen peroxide. To find out the mode of action of this protein against chloroform induced liver damage, levels of antioxidant enzymes catalase, superoxide dismutase and glutathione-S-transferase were measured from liver homogenates. Peroxidation of membrane lipids both in vivo and in vitro were also measured as malonaldialdehyde. Finally, histopathological analyses were done from liver sections of control, toxin treated and protein pre- and post-treated (along with the toxin) mice. Levels of serum glutamate pyruvate transaminase and alkaline phosphatase, which showed an elevation in chloroform induced hepatic damage, were brought down near to the normal levels with the protein pretreatment. On the contrary, the levels of antioxidant enzymes such as catalase, superoxide dismutase and glutathione-S-transferase that had gone down in mice orally fed with chloroform were significantly elevated in protein pretreated ones. Besides, chloroform induced lipid peroxidation was effectively reduced by protein treatment both in vivo and in vitro. In cell free system the protein effectively quenched diphenyl picryl hydroxyl radical and superoxide radical, though it could not catalyse the breakdown of hydrogen peroxide. Post treatment with the protein for 3 days after 2 days of chloroform administration showed similar results. Histopathological studies indicated that chloroform induced extensive tissue damage was less severe in the mice livers treated with the 43 kD protein prior and post to the toxin administration. Results from all these data suggest that the protein possesses both preventive and curative role against chloroform induced hepatotoxicity and probably acts by an anti-oxidative defense mechanism.  相似文献   

6.
Manna P  Sinha M  Sil PC 《Amino acids》2009,36(3):417-428
The present study has been carried out to investigate the role of taurine (2-aminoethanesulfonic acid), a conditionally essential amino acid, in ameliorating cadmium-induced renal dysfunctions in mice. Cadmium chloride (CdCl2) has been selected as the source of cadmium. Intraperitoneal administration of CdCl2 (at a dose of 4 mg/kg body weight for 3 days) caused significant accumulation of cadmium in renal tissues and lessened kidney weight to body weight ratio. Cadmium administration reduced intracellular ferric reducing/antioxidant power (FRAP) of renal tissues. Levels of serum marker enzymes related to renal damage, creatinine and urea nitrogen (UN) have been elevated due to cadmium toxicity. Cadmium exposure diminished the activities of enzymatic antioxidants, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and glucose-6-phosphate dehydrogenase (G6PD) as well as non-enzymatic antioxidant, reduced glutathione (GSH) and total thiols. On the other hand, the levels of oxidized glutathione (GSSG), lipid peroxidation, protein carbonylation, DNA fragmentation, concentration of superoxide radicals and activities of cytochrome P450 enzymes (CYP P450s) have been found to increase due to cadmium intoxication. Treatment with taurine (at a dose of 100 mg/kg body weight for 5 days) before cadmium intoxication prevented the toxin-induced oxidative impairments in renal tissues. The beneficial role of taurine against cadmium-induced renal damage was supported from histological examination of renal segments. Vitamin C, a well-established antioxidant was used as the positive control in the study. Experimental evidence suggests that both taurine and vitamin C provide antioxidant defense against cadmium-induced renal oxidative injury. Combining all, results suggest that taurine protects murine kidneys against cadmium-induced oxidative impairments, probably via its antioxidative property.  相似文献   

7.
This study was designed to assess the effect of green tea, an aqueous extract of Camellia sinensis, on the oxidative stress, antioxidant defense system and liver pathology of Schistosoma mansoni-infected mice. Green tea at concentration of 3% (w/v) was given orally to treated mice as sole source of drinking water from the end of the 4th week to the end of 10th week post-infection; untreated mice were allowed to drink normal water. The data of the studied S. mansoni-infected mice exhibited a suppression of hepatic total antioxidant capacity, superoxide dismutase (SOD), catalase (CAT) activity and glutathione content. The liver lipid peroxidation was deleteriously elevated in S. mansoni-infected mice. The hepatic total protein content, AST and ALT activities were profoundly decreased in the S. mansoni-infected mice. Most hepatocytes were damaged and showed abnormal microscopic appearance with aggressive necrosis. Both total protein and glycogen levels have been greatly reduced as indicated by histochemical examination. The treatment of S. mansoni-infected mice with green tea succeeded to suppress oxidative stress by decreasing the lipid peroxides but failed to significantly enhance the antioxidant defense system and deteriorated changes owing to liver damage and necrosis. In consistence with biochemical data, histopathological and histochemical data indicated that treatment of S. mansoni-infected mice with green tea could ameliorate hepatocytes thus reduce cellular necrosis and partially restore both total protein and glycogen levels. Thus, the study concluded that the green tea suppresses the oxidative stress through its constituent with free radicals scavenging properties rather than through the endogenous antioxidant defense system.  相似文献   

8.
Acetaminophen overdose causes acute liver injury or even death in both humans and experimental animals. We investigated the effect of 17β-estradiol against acetaminophen-induced acute liver injury and mortality in mice. Male mice were given acetaminophen (p-acetamidophenol; 300 mg/kg; orally) to induce acute liver injury. Acetaminophen significantly increased the levels of aspartate transaminase, alanine transaminase, myeloperoxidase, lipid peroxidation, and glutathione reductase, but it decreased superoxide dismutase, catalase, and glutathione. In addition, acetaminophen-induced mortality began 4h post-treatment, and all mice died within 9h. 17β-Estradiol (200 μg/kg; i.p.) protected against acetaminophen-induced oxidative hepatic damage by inhibiting neutrophil infiltration and stimulating the antioxidant defense system. However, 17β-estradiol did not affect acetaminophen-induced glutathione depletion or increased glutathione reductase activity. We conclude that 17β-estradiol specifically attenuates acute hepatic damage and decreases mortality in acetaminophen-overdosed male mice.  相似文献   

9.
Antioxidants are likely potential pharmaceutical agents for the treatment of alcoholic liver disease. Metallothionein (MT) is a cysteine-rich protein and functions as an antioxidant. This study was designed to determine whether MT confers resistance to acute alcohol-induced hepatotoxicity and to explore the mechanistic link between oxidative stress and alcoholic liver injury. MT-overexpressing transgenic and wild-type mice were administrated three gastric doses of alcohol at 5 g/kg. Liver injury, oxidative stress, and ethanol metabolism-associated changes were determined. Acute ethanol administration in the wild-type mice caused prominent microvesicular steatosis, along with necrosis and elevation of serum alanine aminotransferase. Ultrastructural changes of the hepatocytes include glycogen and fat accumulation, organelle abnormality, and focal cytoplasmic degeneration. This acute alcohol hepatotoxicity was significantly inhibited in the MT-transgenic mice. Furthermore, ethanol treatment decreased hepatic-reduced glutathione, but increased oxidized glutathione along with lipid peroxidation, protein oxidation, and superoxide generation in the wild-type mice. This hepatic oxidative stress was significantly suppressed in the MT-transgenic mice. However, MT did not affect the ethanol metabolism-associated decrease in NAD(+)/NADH ratio or increase in cytochrome P450 2E1. In conclusion, MT is an effective agent in cytoprotection against alcohol-induced liver injury, and hepatic protection by MT is likely through inhibition of alcohol-induced oxidative stress.  相似文献   

10.
Cyclophosphamide (CPM), an alkylating agent is used as an immunosuppressant in rheumatoid arthritis and in the treatment of several cancers as well. In this study, Ellagic acid (EA), a naturally occurring plant polyphenol, was evaluated for its antigenotoxicity and antioxidant efficacy against the CPM-induced renal oxidative stress and genotoxicity in Swiss albino mice. The mice were given a prophylactic treatment of EA orally at a dose of 50 and 100 mg/kg body weight (b wt) for seven consecutive days before the administration of a single intraperitoneal (i.p.) injection of CPM at 50 mg/kg b wt. The modulatory effects of EA on CPM-induced nephrotoxicity and genotoxicity were investigated by assaying oxidative stress biomarkers, serum kidney toxicity markers, DNA fragmentation, alkaline unwinding assay, micronuclei (MN) assay, and by histopathological examination of kidney tissue. A single intraperitoneal administration of CPM in mice increased malondialdehyde level with depletion in glutathione content, antioxidant enzymes activities, viz. glutathione peroxidase, glutathione reductase, catalase, quinone reductase, induced DNA strand breaks, and MN induction. EA oral administration at both doses caused significant reduction in their levels, restoration in the activities of antioxidant enzymes, reduction in MN formation, and DNA fragmentation. Serum toxicity marker enzymes like BUN, creatinine, and LDH were also increased after CPM treatment which was significantly decreased in EA pretreated groups. Present findings suggest a prominent role of EA against CPM-induced renal injury, DNA damage, and genotoxicity.  相似文献   

11.
12.
The effect of two doses (30 microl and 60 microl/day/mice daily for 14 days) of the fresh leaf pulp extract of Aloe vera was examined on carcinogen-metabolizing phase-I and phase-II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase and lipid peroxidation in the liver of mice. The modulatory effect of the pulp extract was also examined on extrahepatic organs (lung, kidney and forestomach) for the activities of glutathione S-transferase, DT-diophorase, superoxide dismutase and catalase. The positive control mice were treated with butylated hydroxyanisole (BHA). Significant increases in the levels of acid soluble sulfhydryl (-SH) content, NADPH-cytochrome P450 reductase, NADH-cytochrome b5 reductase, glutathione S-transferase (GST), DT-diaphorase (DTD), superoxide dismutase (SOD), catalase, glutathione peroxidase (GPX) and glutathione reductase (GR) were observed in the liver. Aloe vera significantly reduced the levels of cytochrome P450 and cytochrome b5. Thus, Aloe vera is clearly an inducer of phase-II enzyme system. Treatment with both doses of Aloe caused a decrease in malondialdehyde (MDA) formation and the activity of lactate dehydrogenase in the liver, suggesting its role in protection against prooxidant-induced membrane and cellular damage. The microsomal and cytosolic protein was significantly enhanced by Aloe vera, indicating the possibility of its involvement in the induction of protein synthesis. BHA, an antioxidant compound, provided the authenticity of our assay protocol and response of animals against modulator. The pulp extract was effective in inducing GST, DTD, SOD and catalase as measured in extrahepatic organs. Thus, besides liver, other organs (lung, kidney and forestomach) were also influenced favorably by Aloe vera in order to detoxify reactive metabolites, including chemical carcinogens and drugs.  相似文献   

13.
Dehydroepiandrosterone (DHEA), a lipid soluble steroid, administered to rats (100 mg/kg b.wt) by a single intraperitoneal injection, increases to twice its normal level in the liver microsomes. Microsomes so enriched become resistant to lipid peroxidation induced by incubation with carbon tetrachloride in the presence of a NADPH-regenerating system: also the lipid peroxidation-dependent inactivation of glucose-6-phosphatase and gamma-glutamyl transpetidase due to the haloalkane are prevented. Noteworthy, the liver microsomal drug-metabolizing enzymes and in particular the catalytic activity of cytochrome P450IIE1, responsible for the CCl4-activation, are not impaired by the supplementation with the steroid. Consistently, in DHEA-pretreated microsomes the protein covalent binding of the trichloromethyl radical (CCl3°), is similar to that of not supplemented microsomes treated with CCl4. It thus seems likely that DHEA protects liver microsomes from oxidative damage induced by carbon tetrachloride through its own antioxidant properties rather than inhibiting the metabolism of the toxin.  相似文献   

14.
Overdoses of acetaminophen (APAP), a famous and widely used drug, may have hepatotoxic effects. Nanoscience is a novel scientific discipline that provides specific tools for medical science problems including using nano trace elements in hepatic diseases. Our study aimed to assess the hepatoprotective role of selenium nanoparticles (Nano-Se) against APAP-induced hepatic injury. Twenty-four male rats were classified into three equal groups: a control group that received 0.9 % NaCl, an APAP-treated group (oral administration), and a group treated with Nano-Se (10–20 nm, intraperitoneal (i.p.) injection) and APAP (oral administration). APAP overdose induced significant elevations in liver function biomarkers, hepatic lipid peroxidation, hepatic catalase, and superoxide dismutase (SOD), decreased the reduced glutathione (GSH) content and glutathione reductase (GR) activity, and stimulated significant DNA damage in hepatocytes, compared to control rats. Nano-Se administration improved the hepatic antioxidant protection mechanism and decreased cellular sensitivity to DNA fragmentation. Nano-Se exhibits a protective effect against APAP-induced hepatotoxicity through improved liver function and oxidative stress mediated by catalase, SOD, and GSH and decreases hepatic DNA fragmentation, a hepatic biomarker of cell death. Nano-Se could be a novel hepatoprotective strategy to inhibit oxidative stress.  相似文献   

15.
16.
Chiu PY  Mak DH  Poon MK  Ko KM 《Life sciences》2005,77(23):2887-2895
In order to explore the role of cytochrome P-450 (P-450) in schisandrin B (Sch B)-induced antioxidant and heat shock responses, the effect of 1-aminobenzotriazole (ABT, a broad spectrum inhibitor of P-450) on hepatic mitochondrial glutathione antioxidant status (mtGAS) and heat shock protein (Hsp)25/70 expression was examined in Sch B-treated mice. The non-specific and partial inhibition of cytochrome P-450 (P-450) by ABT pretreatment significantly caused a protraction in the time-course of Sch B-induced enhancement in hepatic mitGAS and Hsp25/70 expression in mice. Using mouse liver microsomes as a source of P-450, Sch B, but not dimethyl diphenyl bicarboxylate (a non-hepatoprotective analog of Sch B), was found to serve as a co-substrate for the P-450-catalyzed NADPH oxidation reaction, with a concomitant production of oxidant species. Taken together, the results suggest that oxidant species generated from P-450-catalyzed reaction with Sch B may trigger the antioxidant and heat shock responses in mouse liver.  相似文献   

17.
The present study was undertaken to investigate the protective effect of Indian honey on acetaminophen induced oxidative stress and liver damage in rat. Honey serves as a source of natural medicine, which is effective to reducing the risk of heart disease, liver toxicity and inflammatory processes. The hepatoprotective activity of the Indian honey was determined by assessing levels of Serum transaminases, ALP and total bilirubin. Finally, the effects of the test substances on the antioxidant enzymes of the liver were also studied by assessing changes in the level of reduced glutathione, glutathione peroxidase, catalase and superoxide dismutase. Serum transaminase, ALP and total bilirubin level were significantly elevated and the antioxidant status in liver such as activities of SOD, CAT, GPx and the levels of GSH were declined significantly in APAP alone treated animals. Pretreatment with honey and silymarin prior to the administration of APAP significantly prevented the increase in the serum levels of hepatic enzyme markers and reduced oxidative stress. The histopathological evaluation of the livers also revealed that honey reduced the incidence of liver lesions induced by APAP. Results suggest that the Indian honey protects liver against oxidative damage and it could be used as an effective hepatoprotector against APAP induced liver damage.  相似文献   

18.
《Free radical research》2013,47(6):427-435
Dehydroepiandrosterone (DHEA), a lipid soluble steroid, administered to rats (100 mg/kg b.wt) by a single intraperitoneal injection, increases to twice its normal level in the liver microsomes. Microsomes so enriched become resistant to lipid peroxidation induced by incubation with carbon tetrachloride in the presence of a NADPH-regenerating system: also the lipid peroxidation-dependent inactivation of glucose-6-phosphatase and gamma-glutamyl transpetidase due to the haloalkane are prevented. Noteworthy, the liver microsomal drug-metabolizing enzymes and in particular the catalytic activity of cytochrome P450IIE1, responsible for the CCl4-activation, are not impaired by the supplementation with the steroid. Consistently, in DHEA-pretreated microsomes the protein covalent binding of the trichloromethyl radical (CCl3°), is similar to that of not supplemented microsomes treated with CCl4. It thus seems likely that DHEA protects liver microsomes from oxidative damage induced by carbon tetrachloride through its own antioxidant properties rather than inhibiting the metabolism of the toxin.  相似文献   

19.
KBrO3-mediated renal injury and hyperproliferative response in Wistar rats. In this communication, we report the efficacy of Nymphaea alba on KBrO3 (125 mg/kg body weight, intraperitoneally) caused reduction in renal glutathione content, renal antioxidant enzymes and phase-II metabolising enzymes with enhancement in xanthine oxidase, lipid peroxidation, gamma-glutamyl transpeptidase and hydrogen peroxide (H202). It also induced blood urea nitrogen, serum creatinine and tumor promotion markers, viz., ornithine decarboxylase (ODC) activity and DNA synthesis. Treatment of rats with Nymphaea alba (100 and 200 mg/kg body weight) one hour before KBrO3 (125 mg/kg body weight, i.p.) resulted in significant decreases in xanthine oxidase (P < 0.05), lipid peroxidation, gamma-glutamyl transpeptidase, H202 generation, blood urea nitrogen, serum creatinine, renal ODC activity and DNA synthesis (P < 0.001). Renal glutathione content, glutathione metabolizing enzymes and antioxidant enzymes were also recovered to significant levels (P < 0.001). These results show that Nymphaea alba acts as chemopreventive agent against KBrO3-mediated renal injury and hyperproliferative response.  相似文献   

20.
The hyperlipidemia is a serious health problem that increases the risk of many complications including cardiovascular disease. This study aims to evaluate the possible antihyperlipidemic effects of the feather protein hydrolysate (FPH) in a mice fed with a high‐fat diet (HFD)‐fed mice during 5 weeks. The FPH administration improved dose‐dependent lipid profile, as well as the liver and renal dysfunction indices in hyperlipidemic mice. The FPH also restored the antioxidant status in liver, kidney, and heart by lowering the lipid peroxidation and enhancing the antioxidant enzymes (catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase [SOD]). Moreover, the histological studies proved that FPH administration prevents hepatic steatosis, glomerular hyperfiltration risk, and cardiac muscle hypertrophy. Accordingly, the FPH is a promising novel medicinal ingredient for possible use in the hyperlipidemic treatment and related complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号